forked from OSchip/llvm-project
1179 lines
42 KiB
C++
1179 lines
42 KiB
C++
//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
|
|
/// instructions into machine operations.
|
|
/// The expectation is that the loop contains three pseudo instructions:
|
|
/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
|
|
/// form should be in the preheader, whereas the while form should be in the
|
|
/// preheaders only predecessor.
|
|
/// - t2LoopDec - placed within in the loop body.
|
|
/// - t2LoopEnd - the loop latch terminator.
|
|
///
|
|
/// In addition to this, we also look for the presence of the VCTP instruction,
|
|
/// which determines whether we can generated the tail-predicated low-overhead
|
|
/// loop form.
|
|
///
|
|
/// Assumptions and Dependencies:
|
|
/// Low-overhead loops are constructed and executed using a setup instruction:
|
|
/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
|
|
/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
|
|
/// but fixed polarity: WLS can only branch forwards and LE can only branch
|
|
/// backwards. These restrictions mean that this pass is dependent upon block
|
|
/// layout and block sizes, which is why it's the last pass to run. The same is
|
|
/// true for ConstantIslands, but this pass does not increase the size of the
|
|
/// basic blocks, nor does it change the CFG. Instructions are mainly removed
|
|
/// during the transform and pseudo instructions are replaced by real ones. In
|
|
/// some cases, when we have to revert to a 'normal' loop, we have to introduce
|
|
/// multiple instructions for a single pseudo (see RevertWhile and
|
|
/// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
|
|
/// are defined to be as large as this maximum sequence of replacement
|
|
/// instructions.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMBasicBlockInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopUtils.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/ReachingDefAnalysis.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-low-overhead-loops"
|
|
#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
|
|
|
|
namespace {
|
|
|
|
class PostOrderLoopTraversal {
|
|
MachineLoop &ML;
|
|
MachineLoopInfo &MLI;
|
|
SmallPtrSet<MachineBasicBlock*, 4> Visited;
|
|
SmallVector<MachineBasicBlock*, 4> Order;
|
|
|
|
public:
|
|
PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
|
|
: ML(ML), MLI(MLI) { }
|
|
|
|
const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
|
|
return Order;
|
|
}
|
|
|
|
// Visit all the blocks within the loop, as well as exit blocks and any
|
|
// blocks properly dominating the header.
|
|
void ProcessLoop() {
|
|
std::function<void(MachineBasicBlock*)> Search = [this, &Search]
|
|
(MachineBasicBlock *MBB) -> void {
|
|
if (Visited.count(MBB))
|
|
return;
|
|
|
|
Visited.insert(MBB);
|
|
for (auto *Succ : MBB->successors()) {
|
|
if (!ML.contains(Succ))
|
|
continue;
|
|
Search(Succ);
|
|
}
|
|
Order.push_back(MBB);
|
|
};
|
|
|
|
// Insert exit blocks.
|
|
SmallVector<MachineBasicBlock*, 2> ExitBlocks;
|
|
ML.getExitBlocks(ExitBlocks);
|
|
for (auto *MBB : ExitBlocks)
|
|
Order.push_back(MBB);
|
|
|
|
// Then add the loop body.
|
|
Search(ML.getHeader());
|
|
|
|
// Then try the preheader and its predecessors.
|
|
std::function<void(MachineBasicBlock*)> GetPredecessor =
|
|
[this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
|
|
Order.push_back(MBB);
|
|
if (MBB->pred_size() == 1)
|
|
GetPredecessor(*MBB->pred_begin());
|
|
};
|
|
|
|
if (auto *Preheader = ML.getLoopPreheader())
|
|
GetPredecessor(Preheader);
|
|
else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
|
|
GetPredecessor(Preheader);
|
|
}
|
|
};
|
|
|
|
struct PredicatedMI {
|
|
MachineInstr *MI = nullptr;
|
|
SetVector<MachineInstr*> Predicates;
|
|
|
|
public:
|
|
PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) :
|
|
MI(I) { Predicates.insert(Preds.begin(), Preds.end()); }
|
|
};
|
|
|
|
// Represent a VPT block, a list of instructions that begins with a VPST and
|
|
// has a maximum of four proceeding instructions. All instructions within the
|
|
// block are predicated upon the vpr and we allow instructions to define the
|
|
// vpr within in the block too.
|
|
class VPTBlock {
|
|
std::unique_ptr<PredicatedMI> VPST;
|
|
PredicatedMI *Divergent = nullptr;
|
|
SmallVector<PredicatedMI, 4> Insts;
|
|
|
|
public:
|
|
VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
|
|
VPST = std::make_unique<PredicatedMI>(MI, Preds);
|
|
}
|
|
|
|
void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI);
|
|
if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) {
|
|
Divergent = &Insts.back();
|
|
LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI);
|
|
}
|
|
Insts.emplace_back(MI, Preds);
|
|
assert(Insts.size() <= 4 && "Too many instructions in VPT block!");
|
|
}
|
|
|
|
// Have we found an instruction within the block which defines the vpr? If
|
|
// so, not all the instructions in the block will have the same predicate.
|
|
bool HasNonUniformPredicate() const {
|
|
return Divergent != nullptr;
|
|
}
|
|
|
|
// Is the given instruction part of the predicate set controlling the entry
|
|
// to the block.
|
|
bool IsPredicatedOn(MachineInstr *MI) const {
|
|
return VPST->Predicates.count(MI);
|
|
}
|
|
|
|
// Is the given instruction the only predicate which controls the entry to
|
|
// the block.
|
|
bool IsOnlyPredicatedOn(MachineInstr *MI) const {
|
|
return IsPredicatedOn(MI) && VPST->Predicates.size() == 1;
|
|
}
|
|
|
|
unsigned size() const { return Insts.size(); }
|
|
SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; }
|
|
MachineInstr *getVPST() const { return VPST->MI; }
|
|
PredicatedMI *getDivergent() const { return Divergent; }
|
|
};
|
|
|
|
struct LowOverheadLoop {
|
|
|
|
MachineLoop &ML;
|
|
MachineLoopInfo &MLI;
|
|
ReachingDefAnalysis &RDA;
|
|
const TargetRegisterInfo &TRI;
|
|
MachineFunction *MF = nullptr;
|
|
MachineInstr *InsertPt = nullptr;
|
|
MachineInstr *Start = nullptr;
|
|
MachineInstr *Dec = nullptr;
|
|
MachineInstr *End = nullptr;
|
|
MachineInstr *VCTP = nullptr;
|
|
VPTBlock *CurrentBlock = nullptr;
|
|
SetVector<MachineInstr*> CurrentPredicate;
|
|
SmallVector<VPTBlock, 4> VPTBlocks;
|
|
SmallPtrSet<MachineInstr*, 4> ToRemove;
|
|
bool Revert = false;
|
|
bool CannotTailPredicate = false;
|
|
|
|
LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
|
|
ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI)
|
|
: ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) {
|
|
MF = ML.getHeader()->getParent();
|
|
}
|
|
|
|
// If this is an MVE instruction, check that we know how to use tail
|
|
// predication with it. Record VPT blocks and return whether the
|
|
// instruction is valid for tail predication.
|
|
bool ValidateMVEInst(MachineInstr *MI);
|
|
|
|
void AnalyseMVEInst(MachineInstr *MI) {
|
|
CannotTailPredicate = !ValidateMVEInst(MI);
|
|
}
|
|
|
|
bool IsTailPredicationLegal() const {
|
|
// For now, let's keep things really simple and only support a single
|
|
// block for tail predication.
|
|
return !Revert && FoundAllComponents() && VCTP &&
|
|
!CannotTailPredicate && ML.getNumBlocks() == 1;
|
|
}
|
|
|
|
// Check that the predication in the loop will be equivalent once we
|
|
// perform the conversion. Also ensure that we can provide the number
|
|
// of elements to the loop start instruction.
|
|
bool ValidateTailPredicate(MachineInstr *StartInsertPt);
|
|
|
|
// Check that any values available outside of the loop will be the same
|
|
// after tail predication conversion.
|
|
bool ValidateLiveOuts() const;
|
|
|
|
// Is it safe to define LR with DLS/WLS?
|
|
// LR can be defined if it is the operand to start, because it's the same
|
|
// value, or if it's going to be equivalent to the operand to Start.
|
|
MachineInstr *isSafeToDefineLR();
|
|
|
|
// Check the branch targets are within range and we satisfy our
|
|
// restrictions.
|
|
void CheckLegality(ARMBasicBlockUtils *BBUtils);
|
|
|
|
bool FoundAllComponents() const {
|
|
return Start && Dec && End;
|
|
}
|
|
|
|
SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; }
|
|
|
|
// Return the loop iteration count, or the number of elements if we're tail
|
|
// predicating.
|
|
MachineOperand &getCount() {
|
|
return IsTailPredicationLegal() ?
|
|
VCTP->getOperand(1) : Start->getOperand(0);
|
|
}
|
|
|
|
unsigned getStartOpcode() const {
|
|
bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
|
|
if (!IsTailPredicationLegal())
|
|
return IsDo ? ARM::t2DLS : ARM::t2WLS;
|
|
|
|
return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo);
|
|
}
|
|
|
|
void dump() const {
|
|
if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
|
|
if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
|
|
if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
|
|
if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP;
|
|
if (!FoundAllComponents())
|
|
dbgs() << "ARM Loops: Not a low-overhead loop.\n";
|
|
else if (!(Start && Dec && End))
|
|
dbgs() << "ARM Loops: Failed to find all loop components.\n";
|
|
}
|
|
};
|
|
|
|
class ARMLowOverheadLoops : public MachineFunctionPass {
|
|
MachineFunction *MF = nullptr;
|
|
MachineLoopInfo *MLI = nullptr;
|
|
ReachingDefAnalysis *RDA = nullptr;
|
|
const ARMBaseInstrInfo *TII = nullptr;
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addRequired<ReachingDefAnalysis>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs).set(
|
|
MachineFunctionProperties::Property::TracksLiveness);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return ARM_LOW_OVERHEAD_LOOPS_NAME;
|
|
}
|
|
|
|
private:
|
|
bool ProcessLoop(MachineLoop *ML);
|
|
|
|
bool RevertNonLoops();
|
|
|
|
void RevertWhile(MachineInstr *MI) const;
|
|
|
|
bool RevertLoopDec(MachineInstr *MI) const;
|
|
|
|
void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
|
|
|
|
void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
|
|
|
|
MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
|
|
|
|
void Expand(LowOverheadLoop &LoLoop);
|
|
|
|
void IterationCountDCE(LowOverheadLoop &LoLoop);
|
|
};
|
|
}
|
|
|
|
char ARMLowOverheadLoops::ID = 0;
|
|
|
|
INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
|
|
false, false)
|
|
|
|
MachineInstr *LowOverheadLoop::isSafeToDefineLR() {
|
|
// We can define LR because LR already contains the same value.
|
|
if (Start->getOperand(0).getReg() == ARM::LR)
|
|
return Start;
|
|
|
|
unsigned CountReg = Start->getOperand(0).getReg();
|
|
auto IsMoveLR = [&CountReg](MachineInstr *MI) {
|
|
return MI->getOpcode() == ARM::tMOVr &&
|
|
MI->getOperand(0).getReg() == ARM::LR &&
|
|
MI->getOperand(1).getReg() == CountReg &&
|
|
MI->getOperand(2).getImm() == ARMCC::AL;
|
|
};
|
|
|
|
MachineBasicBlock *MBB = Start->getParent();
|
|
|
|
// Find an insertion point:
|
|
// - Is there a (mov lr, Count) before Start? If so, and nothing else writes
|
|
// to Count before Start, we can insert at that mov.
|
|
if (auto *LRDef = RDA.getReachingMIDef(Start, ARM::LR))
|
|
if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
|
|
return LRDef;
|
|
|
|
// - Is there a (mov lr, Count) after Start? If so, and nothing else writes
|
|
// to Count after Start, we can insert at that mov.
|
|
if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR))
|
|
if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
|
|
return LRDef;
|
|
|
|
// We've found no suitable LR def and Start doesn't use LR directly. Can we
|
|
// just define LR anyway?
|
|
return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) {
|
|
assert(VCTP && "VCTP instruction expected but is not set");
|
|
// All predication within the loop should be based on vctp. If the block
|
|
// isn't predicated on entry, check whether the vctp is within the block
|
|
// and that all other instructions are then predicated on it.
|
|
for (auto &Block : VPTBlocks) {
|
|
if (Block.IsPredicatedOn(VCTP))
|
|
continue;
|
|
if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: "
|
|
<< *Block.getDivergent()->MI);
|
|
return false;
|
|
}
|
|
SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
|
|
for (auto &PredMI : Insts) {
|
|
if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI
|
|
<< " - which is predicated on:\n";
|
|
for (auto *MI : PredMI.Predicates)
|
|
dbgs() << " - " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!ValidateLiveOuts())
|
|
return false;
|
|
|
|
// For tail predication, we need to provide the number of elements, instead
|
|
// of the iteration count, to the loop start instruction. The number of
|
|
// elements is provided to the vctp instruction, so we need to check that
|
|
// we can use this register at InsertPt.
|
|
Register NumElements = VCTP->getOperand(1).getReg();
|
|
|
|
// If the register is defined within loop, then we can't perform TP.
|
|
// TODO: Check whether this is just a mov of a register that would be
|
|
// available.
|
|
if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
|
|
return false;
|
|
}
|
|
|
|
// The element count register maybe defined after InsertPt, in which case we
|
|
// need to try to move either InsertPt or the def so that the [w|d]lstp can
|
|
// use the value.
|
|
// TODO: On failing to move an instruction, check if the count is provided by
|
|
// a mov and whether we can use the mov operand directly.
|
|
MachineBasicBlock *InsertBB = StartInsertPt->getParent();
|
|
if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) {
|
|
if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) {
|
|
if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) {
|
|
ElemDef->removeFromParent();
|
|
InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
|
|
<< *ElemDef);
|
|
} else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) {
|
|
StartInsertPt->removeFromParent();
|
|
InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
|
|
StartInsertPt);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop "
|
|
<< "start instruction.\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Especially in the case of while loops, InsertBB may not be the
|
|
// preheader, so we need to check that the register isn't redefined
|
|
// before entering the loop.
|
|
auto CannotProvideElements = [this](MachineBasicBlock *MBB,
|
|
Register NumElements) {
|
|
// NumElements is redefined in this block.
|
|
if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
|
|
return true;
|
|
|
|
// Don't continue searching up through multiple predecessors.
|
|
if (MBB->pred_size() > 1)
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
// First, find the block that looks like the preheader.
|
|
MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true);
|
|
if (!MBB) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n");
|
|
return false;
|
|
}
|
|
|
|
// Then search backwards for a def, until we get to InsertBB.
|
|
while (MBB != InsertBB) {
|
|
if (CannotProvideElements(MBB, NumElements)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
|
|
return false;
|
|
}
|
|
MBB = *MBB->pred_begin();
|
|
}
|
|
|
|
// Check that the value change of the element count is what we expect and
|
|
// that the predication will be equivalent. For this we need:
|
|
// NumElements = NumElements - VectorWidth. The sub will be a sub immediate
|
|
// and we can also allow register copies within the chain too.
|
|
auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) {
|
|
unsigned ImmOpIdx = 0;
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unhandled sub opcode");
|
|
case ARM::tSUBi3:
|
|
case ARM::tSUBi8:
|
|
ImmOpIdx = 3;
|
|
break;
|
|
case ARM::t2SUBri:
|
|
case ARM::t2SUBri12:
|
|
ImmOpIdx = 2;
|
|
break;
|
|
}
|
|
return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth;
|
|
};
|
|
|
|
MBB = VCTP->getParent();
|
|
if (MachineInstr *Def = RDA.getReachingMIDef(&MBB->back(), NumElements)) {
|
|
SmallPtrSet<MachineInstr*, 2> ElementChain;
|
|
SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP };
|
|
unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
|
|
|
|
if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) {
|
|
bool FoundSub = false;
|
|
|
|
for (auto *MI : ElementChain) {
|
|
if (isMovRegOpcode(MI->getOpcode()))
|
|
continue;
|
|
|
|
if (isSubImmOpcode(MI->getOpcode())) {
|
|
if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
|
|
return false;
|
|
FoundSub = true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n";
|
|
for (auto *MI : ElementChain)
|
|
dbgs() << " - " << *MI);
|
|
ToRemove.insert(ElementChain.begin(), ElementChain.end());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateLiveOuts() const {
|
|
// Collect Q-regs that are live in the exit blocks. We don't collect scalars
|
|
// because they won't be affected by lane predication.
|
|
const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
|
|
SmallSet<Register, 2> LiveOuts;
|
|
SmallVector<MachineBasicBlock*, 2> ExitBlocks;
|
|
ML.getExitBlocks(ExitBlocks);
|
|
for (auto *MBB : ExitBlocks)
|
|
for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins())
|
|
if (QPRs->contains(RegMask.PhysReg))
|
|
LiveOuts.insert(RegMask.PhysReg);
|
|
|
|
// Collect the instructions in the loop body that define the live-out values.
|
|
SmallPtrSet<MachineInstr*, 2> LiveMIs;
|
|
MachineBasicBlock *MBB = ML.getHeader();
|
|
for (auto Reg : LiveOuts)
|
|
if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg))
|
|
LiveMIs.insert(MI);
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n";
|
|
for (auto *MI : LiveMIs)
|
|
dbgs() << " - " << *MI);
|
|
// We've already validated that any VPT predication within the loop will be
|
|
// equivalent when we perform the predication transformation; so we know that
|
|
// any VPT predicated instruction is predicated upon VCTP. Any live-out
|
|
// instruction needs to be predicated, so check this here.
|
|
for (auto *MI : LiveMIs) {
|
|
int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
|
|
if (PIdx == -1 || MI->getOperand(PIdx+1).getReg() != ARM::VPR)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) {
|
|
if (Revert)
|
|
return;
|
|
|
|
if (!End->getOperand(1).isMBB())
|
|
report_fatal_error("Expected LoopEnd to target basic block");
|
|
|
|
// TODO Maybe there's cases where the target doesn't have to be the header,
|
|
// but for now be safe and revert.
|
|
if (End->getOperand(1).getMBB() != ML.getHeader()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n");
|
|
Revert = true;
|
|
return;
|
|
}
|
|
|
|
// The WLS and LE instructions have 12-bits for the label offset. WLS
|
|
// requires a positive offset, while LE uses negative.
|
|
if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
|
|
!BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
|
|
Revert = true;
|
|
return;
|
|
}
|
|
|
|
if (Start->getOpcode() == ARM::t2WhileLoopStart &&
|
|
(BBUtils->getOffsetOf(Start) >
|
|
BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
|
|
!BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
|
|
Revert = true;
|
|
return;
|
|
}
|
|
|
|
InsertPt = Revert ? nullptr : isSafeToDefineLR();
|
|
if (!InsertPt) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
|
|
Revert = true;
|
|
return;
|
|
} else
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt);
|
|
|
|
if (!IsTailPredicationLegal()) {
|
|
LLVM_DEBUG(if (!VCTP)
|
|
dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
|
|
dbgs() << "ARM Loops: Tail-predication is not valid.\n");
|
|
return;
|
|
}
|
|
|
|
assert(ML.getBlocks().size() == 1 &&
|
|
"Shouldn't be processing a loop with more than one block");
|
|
CannotTailPredicate = !ValidateTailPredicate(InsertPt);
|
|
LLVM_DEBUG(if (CannotTailPredicate)
|
|
dbgs() << "ARM Loops: Couldn't validate tail predicate.\n");
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
|
|
if (CannotTailPredicate)
|
|
return false;
|
|
|
|
// Only support a single vctp.
|
|
if (isVCTP(MI) && VCTP)
|
|
return false;
|
|
|
|
// Start a new vpt block when we discover a vpt.
|
|
if (MI->getOpcode() == ARM::MVE_VPST) {
|
|
VPTBlocks.emplace_back(MI, CurrentPredicate);
|
|
CurrentBlock = &VPTBlocks.back();
|
|
return true;
|
|
} else if (isVCTP(MI))
|
|
VCTP = MI;
|
|
else if (MI->getOpcode() == ARM::MVE_VPSEL ||
|
|
MI->getOpcode() == ARM::MVE_VPNOT)
|
|
return false;
|
|
|
|
// TODO: Allow VPSEL and VPNOT, we currently cannot because:
|
|
// 1) It will use the VPR as a predicate operand, but doesn't have to be
|
|
// instead a VPT block, which means we can assert while building up
|
|
// the VPT block because we don't find another VPST to being a new
|
|
// one.
|
|
// 2) VPSEL still requires a VPR operand even after tail predicating,
|
|
// which means we can't remove it unless there is another
|
|
// instruction, such as vcmp, that can provide the VPR def.
|
|
|
|
bool IsUse = false;
|
|
bool IsDef = false;
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != ARM::VPR)
|
|
continue;
|
|
|
|
if (MO.isDef()) {
|
|
CurrentPredicate.insert(MI);
|
|
IsDef = true;
|
|
} else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) {
|
|
CurrentBlock->addInst(MI, CurrentPredicate);
|
|
IsUse = true;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we find a vpr def that is not already predicated on the vctp, we've
|
|
// got disjoint predicates that may not be equivalent when we do the
|
|
// conversion.
|
|
if (IsDef && !IsUse && VCTP && !isVCTP(MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI);
|
|
return false;
|
|
}
|
|
|
|
uint64_t Flags = MCID.TSFlags;
|
|
if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
|
|
return true;
|
|
|
|
// If we find an instruction that has been marked as not valid for tail
|
|
// predication, only allow the instruction if it's contained within a valid
|
|
// VPT block.
|
|
if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
|
|
return false;
|
|
}
|
|
|
|
// If the instruction is already explicitly predicated, then the conversion
|
|
// will be fine, but ensure that all memory operations are predicated.
|
|
return !IsUse && MI->mayLoadOrStore() ? false : true;
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
|
|
const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
|
|
if (!ST.hasLOB())
|
|
return false;
|
|
|
|
MF = &mf;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
|
|
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
RDA = &getAnalysis<ReachingDefAnalysis>();
|
|
MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
|
|
MRI = &MF->getRegInfo();
|
|
TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
|
|
TRI = ST.getRegisterInfo();
|
|
BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
|
|
BBUtils->computeAllBlockSizes();
|
|
BBUtils->adjustBBOffsetsAfter(&MF->front());
|
|
|
|
bool Changed = false;
|
|
for (auto ML : *MLI) {
|
|
if (!ML->getParentLoop())
|
|
Changed |= ProcessLoop(ML);
|
|
}
|
|
Changed |= RevertNonLoops();
|
|
return Changed;
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
|
|
|
|
bool Changed = false;
|
|
|
|
// Process inner loops first.
|
|
for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
|
|
Changed |= ProcessLoop(*I);
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
|
|
if (auto *Preheader = ML->getLoopPreheader())
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML))
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
for (auto *MBB : ML->getBlocks())
|
|
dbgs() << " - " << MBB->getName() << "\n";
|
|
);
|
|
|
|
// Search the given block for a loop start instruction. If one isn't found,
|
|
// and there's only one predecessor block, search that one too.
|
|
std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
|
|
[&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
|
|
for (auto &MI : *MBB) {
|
|
if (isLoopStart(MI))
|
|
return &MI;
|
|
}
|
|
if (MBB->pred_size() == 1)
|
|
return SearchForStart(*MBB->pred_begin());
|
|
return nullptr;
|
|
};
|
|
|
|
LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI);
|
|
// Search the preheader for the start intrinsic.
|
|
// FIXME: I don't see why we shouldn't be supporting multiple predecessors
|
|
// with potentially multiple set.loop.iterations, so we need to enable this.
|
|
if (auto *Preheader = ML->getLoopPreheader())
|
|
LoLoop.Start = SearchForStart(Preheader);
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
|
|
LoLoop.Start = SearchForStart(Preheader);
|
|
else
|
|
return false;
|
|
|
|
// Find the low-overhead loop components and decide whether or not to fall
|
|
// back to a normal loop. Also look for a vctp instructions and decide
|
|
// whether we can convert that predicate using tail predication.
|
|
for (auto *MBB : reverse(ML->getBlocks())) {
|
|
for (auto &MI : *MBB) {
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
else if (MI.getOpcode() == ARM::t2LoopDec)
|
|
LoLoop.Dec = &MI;
|
|
else if (MI.getOpcode() == ARM::t2LoopEnd)
|
|
LoLoop.End = &MI;
|
|
else if (isLoopStart(MI))
|
|
LoLoop.Start = &MI;
|
|
else if (MI.getDesc().isCall()) {
|
|
// TODO: Though the call will require LE to execute again, does this
|
|
// mean we should revert? Always executing LE hopefully should be
|
|
// faster than performing a sub,cmp,br or even subs,br.
|
|
LoLoop.Revert = true;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
|
|
} else {
|
|
// Record VPR defs and build up their corresponding vpt blocks.
|
|
// Check we know how to tail predicate any mve instructions.
|
|
LoLoop.AnalyseMVEInst(&MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(LoLoop.dump());
|
|
if (!LoLoop.FoundAllComponents()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the only instruction using LoopDec is LoopEnd.
|
|
// TODO: Check for copy chains that really have no effect.
|
|
SmallPtrSet<MachineInstr*, 2> Uses;
|
|
RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
|
|
if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
|
|
LoLoop.Revert = true;
|
|
}
|
|
LoLoop.CheckLegality(BBUtils.get());
|
|
Expand(LoLoop);
|
|
return true;
|
|
}
|
|
|
|
// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
|
|
// beq that branches to the exit branch.
|
|
// TODO: We could also try to generate a cbz if the value in LR is also in
|
|
// another low register.
|
|
void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(ARM::t2CMPri));
|
|
MIB.add(MI->getOperand(0));
|
|
MIB.addImm(0);
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(ARM::NoRegister);
|
|
|
|
MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
|
|
unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
|
|
ARM::tBcc : ARM::t2Bcc;
|
|
|
|
MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
|
|
MIB.add(MI->getOperand(1)); // branch target
|
|
MIB.addImm(ARMCC::EQ); // condition code
|
|
MIB.addReg(ARM::CPSR);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *Last = &MBB->back();
|
|
SmallPtrSet<MachineInstr*, 1> Ignore;
|
|
if (Last->getOpcode() == ARM::t2LoopEnd)
|
|
Ignore.insert(Last);
|
|
|
|
// If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
|
|
bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(ARM::t2SUBri));
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(MI->getOperand(1));
|
|
MIB.add(MI->getOperand(2));
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(0);
|
|
|
|
if (SetFlags) {
|
|
MIB.addReg(ARM::CPSR);
|
|
MIB->getOperand(5).setIsDef(true);
|
|
} else
|
|
MIB.addReg(0);
|
|
|
|
MI->eraseFromParent();
|
|
return SetFlags;
|
|
}
|
|
|
|
// Generate a subs, or sub and cmp, and a branch instead of an LE.
|
|
void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
// Create cmp
|
|
if (!SkipCmp) {
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(ARM::t2CMPri));
|
|
MIB.addReg(ARM::LR);
|
|
MIB.addImm(0);
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(ARM::NoRegister);
|
|
}
|
|
|
|
MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
|
|
unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
|
|
ARM::tBcc : ARM::t2Bcc;
|
|
|
|
// Create bne
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
|
|
MIB.add(MI->getOperand(1)); // branch target
|
|
MIB.addImm(ARMCC::NE); // condition code
|
|
MIB.addReg(ARM::CPSR);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Perform dead code elimation on the loop iteration count setup expression.
|
|
// If we are tail-predicating, the number of elements to be processed is the
|
|
// operand of the VCTP instruction in the vector body, see getCount(), which is
|
|
// register $r3 in this example:
|
|
//
|
|
// $lr = big-itercount-expression
|
|
// ..
|
|
// t2DoLoopStart renamable $lr
|
|
// vector.body:
|
|
// ..
|
|
// $vpr = MVE_VCTP32 renamable $r3
|
|
// renamable $lr = t2LoopDec killed renamable $lr, 1
|
|
// t2LoopEnd renamable $lr, %vector.body
|
|
// tB %end
|
|
//
|
|
// What we would like achieve here is to replace the do-loop start pseudo
|
|
// instruction t2DoLoopStart with:
|
|
//
|
|
// $lr = MVE_DLSTP_32 killed renamable $r3
|
|
//
|
|
// Thus, $r3 which defines the number of elements, is written to $lr,
|
|
// and then we want to delete the whole chain that used to define $lr,
|
|
// see the comment below how this chain could look like.
|
|
//
|
|
void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
|
|
if (!LoLoop.IsTailPredicationLegal())
|
|
return;
|
|
|
|
if (auto *Def = RDA->getReachingMIDef(LoLoop.Start,
|
|
LoLoop.Start->getOperand(0).getReg())) {
|
|
SmallPtrSet<MachineInstr*, 4> Remove;
|
|
SmallPtrSet<MachineInstr*, 4> Ignore = { LoLoop.Start, LoLoop.Dec,
|
|
LoLoop.End, LoLoop.InsertPt };
|
|
SmallVector<MachineInstr*, 4> Chain = { Def };
|
|
while (!Chain.empty()) {
|
|
MachineInstr *MI = Chain.back();
|
|
Chain.pop_back();
|
|
|
|
// If an instruction is conditionally executed, we assume here that this
|
|
// an IT-block with just this single instruction in it, otherwise we
|
|
// continue and can't perform dead-code elimination on it. This will
|
|
// capture most cases, because the loop iteration count expression
|
|
// that performs a round-up to next multiple of the vector length will
|
|
// look like this:
|
|
//
|
|
// %mull = ..
|
|
// %0 = add i32 %mul, 3
|
|
// %1 = icmp slt i32 %mul, 4
|
|
// %smin = select i1 %1, i32 %mul, i32 4
|
|
// %2 = sub i32 %0, %smin
|
|
// %3 = lshr i32 %2, 2
|
|
// %4 = add nuw nsw i32 %3, 1
|
|
//
|
|
// There can be a select instruction, checking if we need to execute only
|
|
// 1 vector iteration (in this examples that means 4 elements). Thus,
|
|
// we conditionally execute one instructions to materialise the iteration
|
|
// count.
|
|
MachineInstr *IT = nullptr;
|
|
if (TII->getPredicate(*MI) != ARMCC::AL) {
|
|
auto PrevMI = std::prev(MI->getIterator());
|
|
auto NextMI = std::next(MI->getIterator());
|
|
|
|
if (PrevMI->getOpcode() == ARM::t2IT &&
|
|
TII->getPredicate(*NextMI) == ARMCC::AL)
|
|
IT = &*PrevMI;
|
|
else
|
|
// We can't analyse IT-blocks with multiple statements. Be
|
|
// conservative here: clear the list, and don't remove any statements
|
|
// at all.
|
|
return;
|
|
}
|
|
|
|
if (RDA->isSafeToRemove(MI, Remove, Ignore)) {
|
|
for (auto &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
|
|
continue;
|
|
if (auto *Op = RDA->getReachingMIDef(MI, MO.getReg()))
|
|
Chain.push_back(Op);
|
|
}
|
|
Ignore.insert(MI);
|
|
|
|
if (IT)
|
|
Remove.insert(IT);
|
|
}
|
|
}
|
|
LoLoop.ToRemove.insert(Remove.begin(), Remove.end());
|
|
}
|
|
}
|
|
|
|
MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
|
|
// When using tail-predication, try to delete the dead code that was used to
|
|
// calculate the number of loop iterations.
|
|
IterationCountDCE(LoLoop);
|
|
|
|
MachineInstr *InsertPt = LoLoop.InsertPt;
|
|
MachineInstr *Start = LoLoop.Start;
|
|
MachineBasicBlock *MBB = InsertPt->getParent();
|
|
bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
|
|
unsigned Opc = LoLoop.getStartOpcode();
|
|
MachineOperand &Count = LoLoop.getCount();
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc));
|
|
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(Count);
|
|
if (!IsDo)
|
|
MIB.add(Start->getOperand(1));
|
|
|
|
// If we're inserting at a mov lr, then remove it as it's redundant.
|
|
if (InsertPt != Start)
|
|
LoLoop.ToRemove.insert(InsertPt);
|
|
LoLoop.ToRemove.insert(Start);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
|
|
return &*MIB;
|
|
}
|
|
|
|
void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
|
|
auto RemovePredicate = [](MachineInstr *MI) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
|
|
if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
|
|
assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
|
|
"Expected Then predicate!");
|
|
MI->getOperand(PIdx).setImm(ARMVCC::None);
|
|
MI->getOperand(PIdx+1).setReg(0);
|
|
} else
|
|
llvm_unreachable("trying to unpredicate a non-predicated instruction");
|
|
};
|
|
|
|
// There are a few scenarios which we have to fix up:
|
|
// 1) A VPT block with is only predicated by the vctp and has no internal vpr
|
|
// defs.
|
|
// 2) A VPT block which is only predicated by the vctp but has an internal
|
|
// vpr def.
|
|
// 3) A VPT block which is predicated upon the vctp as well as another vpr
|
|
// def.
|
|
// 4) A VPT block which is not predicated upon a vctp, but contains it and
|
|
// all instructions within the block are predicated upon in.
|
|
|
|
for (auto &Block : LoLoop.getVPTBlocks()) {
|
|
SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
|
|
if (Block.HasNonUniformPredicate()) {
|
|
PredicatedMI *Divergent = Block.getDivergent();
|
|
if (isVCTP(Divergent->MI)) {
|
|
// The vctp will be removed, so the size of the vpt block needs to be
|
|
// modified.
|
|
uint64_t Size = getARMVPTBlockMask(Block.size() - 1);
|
|
Block.getVPST()->getOperand(0).setImm(Size);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n");
|
|
} else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
|
|
// The VPT block has a non-uniform predicate but it's entry is guarded
|
|
// only by a vctp, which means we:
|
|
// - Need to remove the original vpst.
|
|
// - Then need to unpredicate any following instructions, until
|
|
// we come across the divergent vpr def.
|
|
// - Insert a new vpst to predicate the instruction(s) that following
|
|
// the divergent vpr def.
|
|
// TODO: We could be producing more VPT blocks than necessary and could
|
|
// fold the newly created one into a proceeding one.
|
|
for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()),
|
|
E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I)
|
|
RemovePredicate(&*I);
|
|
|
|
unsigned Size = 0;
|
|
auto E = MachineBasicBlock::reverse_iterator(Divergent->MI);
|
|
auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI);
|
|
MachineInstr *InsertAt = nullptr;
|
|
while (I != E) {
|
|
InsertAt = &*I;
|
|
++Size;
|
|
++I;
|
|
}
|
|
MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt,
|
|
InsertAt->getDebugLoc(),
|
|
TII->get(ARM::MVE_VPST));
|
|
MIB.addImm(getARMVPTBlockMask(Size));
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
|
|
LoLoop.ToRemove.insert(Block.getVPST());
|
|
}
|
|
} else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
|
|
// A vpt block which is only predicated upon vctp and has no internal vpr
|
|
// defs:
|
|
// - Remove vpst.
|
|
// - Unpredicate the remaining instructions.
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
|
|
LoLoop.ToRemove.insert(Block.getVPST());
|
|
for (auto &PredMI : Insts)
|
|
RemovePredicate(PredMI.MI);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP);
|
|
LoLoop.ToRemove.insert(LoLoop.VCTP);
|
|
}
|
|
|
|
void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
|
|
|
|
// Combine the LoopDec and LoopEnd instructions into LE(TP).
|
|
auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
|
|
MachineInstr *End = LoLoop.End;
|
|
MachineBasicBlock *MBB = End->getParent();
|
|
unsigned Opc = LoLoop.IsTailPredicationLegal() ?
|
|
ARM::MVE_LETP : ARM::t2LEUpdate;
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
|
|
TII->get(Opc));
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(End->getOperand(0));
|
|
MIB.add(End->getOperand(1));
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
|
|
LoLoop.Dec->eraseFromParent();
|
|
End->eraseFromParent();
|
|
return &*MIB;
|
|
};
|
|
|
|
// TODO: We should be able to automatically remove these branches before we
|
|
// get here - probably by teaching analyzeBranch about the pseudo
|
|
// instructions.
|
|
// If there is an unconditional branch, after I, that just branches to the
|
|
// next block, remove it.
|
|
auto RemoveDeadBranch = [](MachineInstr *I) {
|
|
MachineBasicBlock *BB = I->getParent();
|
|
MachineInstr *Terminator = &BB->instr_back();
|
|
if (Terminator->isUnconditionalBranch() && I != Terminator) {
|
|
MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
|
|
if (BB->isLayoutSuccessor(Succ)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
|
|
Terminator->eraseFromParent();
|
|
}
|
|
}
|
|
};
|
|
|
|
if (LoLoop.Revert) {
|
|
if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
|
|
RevertWhile(LoLoop.Start);
|
|
else
|
|
LoLoop.Start->eraseFromParent();
|
|
bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
|
|
RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
|
|
} else {
|
|
LoLoop.Start = ExpandLoopStart(LoLoop);
|
|
RemoveDeadBranch(LoLoop.Start);
|
|
LoLoop.End = ExpandLoopEnd(LoLoop);
|
|
RemoveDeadBranch(LoLoop.End);
|
|
if (LoLoop.IsTailPredicationLegal())
|
|
ConvertVPTBlocks(LoLoop);
|
|
for (auto *I : LoLoop.ToRemove) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
|
|
DFS.ProcessLoop();
|
|
const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
|
|
for (auto *MBB : PostOrder) {
|
|
recomputeLiveIns(*MBB);
|
|
// FIXME: For some reason, the live-in print order is non-deterministic for
|
|
// our tests and I can't out why... So just sort them.
|
|
MBB->sortUniqueLiveIns();
|
|
}
|
|
|
|
for (auto *MBB : reverse(PostOrder))
|
|
recomputeLivenessFlags(*MBB);
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::RevertNonLoops() {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
|
|
bool Changed = false;
|
|
|
|
for (auto &MBB : *MF) {
|
|
SmallVector<MachineInstr*, 4> Starts;
|
|
SmallVector<MachineInstr*, 4> Decs;
|
|
SmallVector<MachineInstr*, 4> Ends;
|
|
|
|
for (auto &I : MBB) {
|
|
if (isLoopStart(I))
|
|
Starts.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopDec)
|
|
Decs.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopEnd)
|
|
Ends.push_back(&I);
|
|
}
|
|
|
|
if (Starts.empty() && Decs.empty() && Ends.empty())
|
|
continue;
|
|
|
|
Changed = true;
|
|
|
|
for (auto *Start : Starts) {
|
|
if (Start->getOpcode() == ARM::t2WhileLoopStart)
|
|
RevertWhile(Start);
|
|
else
|
|
Start->eraseFromParent();
|
|
}
|
|
for (auto *Dec : Decs)
|
|
RevertLoopDec(Dec);
|
|
|
|
for (auto *End : Ends)
|
|
RevertLoopEnd(End);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *llvm::createARMLowOverheadLoopsPass() {
|
|
return new ARMLowOverheadLoops();
|
|
}
|