llvm-project/llvm/lib/Target/ARM/MVEVPTOptimisationsPass.cpp

891 lines
32 KiB
C++

//===-- MVEVPTOptimisationsPass.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass does a few optimisations related to Tail predicated loops
/// and MVE VPT blocks before register allocation is performed. For VPT blocks
/// the goal is to maximize the sizes of the blocks that will be created by the
/// MVE VPT Block Insertion pass (which runs after register allocation). For
/// tail predicated loops we transform the loop into something that will
/// hopefully make the backend ARMLowOverheadLoops pass's job easier.
///
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MVETailPredUtils.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "arm-mve-vpt-opts"
static cl::opt<bool>
MergeEndDec("arm-enable-merge-loopenddec", cl::Hidden,
cl::desc("Enable merging Loop End and Dec instructions."),
cl::init(true));
namespace {
class MVEVPTOptimisations : public MachineFunctionPass {
public:
static char ID;
const Thumb2InstrInfo *TII;
MachineRegisterInfo *MRI;
MVEVPTOptimisations() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &Fn) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return "ARM MVE TailPred and VPT Optimisation Pass";
}
private:
bool MergeLoopEnd(MachineLoop *ML);
bool ConvertTailPredLoop(MachineLoop *ML, MachineDominatorTree *DT);
MachineInstr &ReplaceRegisterUseWithVPNOT(MachineBasicBlock &MBB,
MachineInstr &Instr,
MachineOperand &User,
Register Target);
bool ReduceOldVCCRValueUses(MachineBasicBlock &MBB);
bool ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB);
bool ReplaceConstByVPNOTs(MachineBasicBlock &MBB, MachineDominatorTree *DT);
bool ConvertVPSEL(MachineBasicBlock &MBB);
};
char MVEVPTOptimisations::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(MVEVPTOptimisations, DEBUG_TYPE,
"ARM MVE TailPred and VPT Optimisations pass", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(MVEVPTOptimisations, DEBUG_TYPE,
"ARM MVE TailPred and VPT Optimisations pass", false, false)
static MachineInstr *LookThroughCOPY(MachineInstr *MI,
MachineRegisterInfo *MRI) {
while (MI && MI->getOpcode() == TargetOpcode::COPY &&
MI->getOperand(1).getReg().isVirtual())
MI = MRI->getVRegDef(MI->getOperand(1).getReg());
return MI;
}
// Given a loop ML, this attempts to find the t2LoopEnd, t2LoopDec and
// corresponding PHI that make up a low overhead loop. Only handles 'do' loops
// at the moment, returning a t2DoLoopStart in LoopStart.
static bool findLoopComponents(MachineLoop *ML, MachineRegisterInfo *MRI,
MachineInstr *&LoopStart, MachineInstr *&LoopPhi,
MachineInstr *&LoopDec, MachineInstr *&LoopEnd) {
MachineBasicBlock *Header = ML->getHeader();
MachineBasicBlock *Latch = ML->getLoopLatch();
if (!Header || !Latch) {
LLVM_DEBUG(dbgs() << " no Loop Latch or Header\n");
return false;
}
// Find the loop end from the terminators.
LoopEnd = nullptr;
for (auto &T : Latch->terminators()) {
if (T.getOpcode() == ARM::t2LoopEnd && T.getOperand(1).getMBB() == Header) {
LoopEnd = &T;
break;
}
if (T.getOpcode() == ARM::t2LoopEndDec &&
T.getOperand(2).getMBB() == Header) {
LoopEnd = &T;
break;
}
}
if (!LoopEnd) {
LLVM_DEBUG(dbgs() << " no LoopEnd\n");
return false;
}
LLVM_DEBUG(dbgs() << " found loop end: " << *LoopEnd);
// Find the dec from the use of the end. There may be copies between
// instructions. We expect the loop to loop like:
// $vs = t2DoLoopStart ...
// loop:
// $vp = phi [ $vs ], [ $vd ]
// ...
// $vd = t2LoopDec $vp
// ...
// t2LoopEnd $vd, loop
if (LoopEnd->getOpcode() == ARM::t2LoopEndDec)
LoopDec = LoopEnd;
else {
LoopDec =
LookThroughCOPY(MRI->getVRegDef(LoopEnd->getOperand(0).getReg()), MRI);
if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) {
LLVM_DEBUG(dbgs() << " didn't find LoopDec where we expected!\n");
return false;
}
}
LLVM_DEBUG(dbgs() << " found loop dec: " << *LoopDec);
LoopPhi =
LookThroughCOPY(MRI->getVRegDef(LoopDec->getOperand(1).getReg()), MRI);
if (!LoopPhi || LoopPhi->getOpcode() != TargetOpcode::PHI ||
LoopPhi->getNumOperands() != 5 ||
(LoopPhi->getOperand(2).getMBB() != Latch &&
LoopPhi->getOperand(4).getMBB() != Latch)) {
LLVM_DEBUG(dbgs() << " didn't find PHI where we expected!\n");
return false;
}
LLVM_DEBUG(dbgs() << " found loop phi: " << *LoopPhi);
Register StartReg = LoopPhi->getOperand(2).getMBB() == Latch
? LoopPhi->getOperand(3).getReg()
: LoopPhi->getOperand(1).getReg();
LoopStart = LookThroughCOPY(MRI->getVRegDef(StartReg), MRI);
if (!LoopStart || LoopStart->getOpcode() != ARM::t2DoLoopStart) {
LLVM_DEBUG(dbgs() << " didn't find Start where we expected!\n");
return false;
}
LLVM_DEBUG(dbgs() << " found loop start: " << *LoopStart);
return true;
}
// This function converts loops with t2LoopEnd and t2LoopEnd instructions into
// a single t2LoopEndDec instruction. To do that it needs to make sure that LR
// will be valid to be used for the low overhead loop, which means nothing else
// is using LR (especially calls) and there are no superfluous copies in the
// loop. The t2LoopEndDec is a branching terminator that produces a value (the
// decrement) around the loop edge, which means we need to be careful that they
// will be valid to allocate without any spilling.
bool MVEVPTOptimisations::MergeLoopEnd(MachineLoop *ML) {
if (!MergeEndDec)
return false;
LLVM_DEBUG(dbgs() << "MergeLoopEnd on loop " << ML->getHeader()->getName()
<< "\n");
MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec;
if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd))
return false;
// Check if there is an illegal instruction (a call) in the low overhead loop
// and if so revert it now before we get any further.
for (MachineBasicBlock *MBB : ML->blocks()) {
for (MachineInstr &MI : *MBB) {
if (MI.isCall()) {
LLVM_DEBUG(dbgs() << "Found call in loop, reverting: " << MI);
RevertDoLoopStart(LoopStart, TII);
RevertLoopDec(LoopDec, TII);
RevertLoopEnd(LoopEnd, TII);
return true;
}
}
}
// Remove any copies from the loop, to ensure the phi that remains is both
// simpler and contains no extra uses. Because t2LoopEndDec is a terminator
// that cannot spill, we need to be careful what remains in the loop.
Register PhiReg = LoopPhi->getOperand(0).getReg();
Register DecReg = LoopDec->getOperand(0).getReg();
Register StartReg = LoopStart->getOperand(0).getReg();
// Ensure the uses are expected, and collect any copies we want to remove.
SmallVector<MachineInstr *, 4> Copies;
auto CheckUsers = [&Copies](Register BaseReg,
ArrayRef<MachineInstr *> ExpectedUsers,
MachineRegisterInfo *MRI) {
SmallVector<Register, 4> Worklist;
Worklist.push_back(BaseReg);
while (!Worklist.empty()) {
Register Reg = Worklist.pop_back_val();
for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
if (count(ExpectedUsers, &MI))
continue;
if (MI.getOpcode() != TargetOpcode::COPY ||
!MI.getOperand(0).getReg().isVirtual()) {
LLVM_DEBUG(dbgs() << "Extra users of register found: " << MI);
return false;
}
Worklist.push_back(MI.getOperand(0).getReg());
Copies.push_back(&MI);
}
}
return true;
};
if (!CheckUsers(PhiReg, {LoopDec}, MRI) ||
!CheckUsers(DecReg, {LoopPhi, LoopEnd}, MRI) ||
!CheckUsers(StartReg, {LoopPhi}, MRI))
return false;
MRI->constrainRegClass(StartReg, &ARM::GPRlrRegClass);
MRI->constrainRegClass(PhiReg, &ARM::GPRlrRegClass);
MRI->constrainRegClass(DecReg, &ARM::GPRlrRegClass);
if (LoopPhi->getOperand(2).getMBB() == ML->getLoopLatch()) {
LoopPhi->getOperand(3).setReg(StartReg);
LoopPhi->getOperand(1).setReg(DecReg);
} else {
LoopPhi->getOperand(1).setReg(StartReg);
LoopPhi->getOperand(3).setReg(DecReg);
}
// Replace the loop dec and loop end as a single instruction.
MachineInstrBuilder MI =
BuildMI(*LoopEnd->getParent(), *LoopEnd, LoopEnd->getDebugLoc(),
TII->get(ARM::t2LoopEndDec), DecReg)
.addReg(PhiReg)
.add(LoopEnd->getOperand(1));
(void)MI;
LLVM_DEBUG(dbgs() << "Merged LoopDec and End into: " << *MI.getInstr());
LoopDec->eraseFromParent();
LoopEnd->eraseFromParent();
for (auto *MI : Copies)
MI->eraseFromParent();
return true;
}
// Convert t2DoLoopStart to t2DoLoopStartTP if the loop contains VCTP
// instructions. This keeps the VCTP count reg operand on the t2DoLoopStartTP
// instruction, making the backend ARMLowOverheadLoops passes job of finding the
// VCTP operand much simpler.
bool MVEVPTOptimisations::ConvertTailPredLoop(MachineLoop *ML,
MachineDominatorTree *DT) {
LLVM_DEBUG(dbgs() << "ConvertTailPredLoop on loop "
<< ML->getHeader()->getName() << "\n");
// Find some loop components including the LoopEnd/Dec/Start, and any VCTP's
// in the loop.
MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec;
if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd))
return false;
if (LoopDec != LoopEnd)
return false;
SmallVector<MachineInstr *, 4> VCTPs;
for (MachineBasicBlock *BB : ML->blocks())
for (MachineInstr &MI : *BB)
if (isVCTP(&MI))
VCTPs.push_back(&MI);
if (VCTPs.empty()) {
LLVM_DEBUG(dbgs() << " no VCTPs\n");
return false;
}
// Check all VCTPs are the same.
MachineInstr *FirstVCTP = *VCTPs.begin();
for (MachineInstr *VCTP : VCTPs) {
LLVM_DEBUG(dbgs() << " with VCTP " << *VCTP);
if (VCTP->getOpcode() != FirstVCTP->getOpcode() ||
VCTP->getOperand(0).getReg() != FirstVCTP->getOperand(0).getReg()) {
LLVM_DEBUG(dbgs() << " VCTP's are not identical\n");
return false;
}
}
// Check for the register being used can be setup before the loop. We expect
// this to be:
// $vx = ...
// loop:
// $vp = PHI [ $vx ], [ $vd ]
// ..
// $vpr = VCTP $vp
// ..
// $vd = t2SUBri $vp, #n
// ..
Register CountReg = FirstVCTP->getOperand(1).getReg();
if (!CountReg.isVirtual()) {
LLVM_DEBUG(dbgs() << " cannot determine VCTP PHI\n");
return false;
}
MachineInstr *Phi = LookThroughCOPY(MRI->getVRegDef(CountReg), MRI);
if (!Phi || Phi->getOpcode() != TargetOpcode::PHI ||
Phi->getNumOperands() != 5 ||
(Phi->getOperand(2).getMBB() != ML->getLoopLatch() &&
Phi->getOperand(4).getMBB() != ML->getLoopLatch())) {
LLVM_DEBUG(dbgs() << " cannot determine VCTP Count\n");
return false;
}
CountReg = Phi->getOperand(2).getMBB() == ML->getLoopLatch()
? Phi->getOperand(3).getReg()
: Phi->getOperand(1).getReg();
// Replace the t2DoLoopStart with the t2DoLoopStartTP, move it to the end of
// the preheader and add the new CountReg to it. We attempt to place it late
// in the preheader, but may need to move that earlier based on uses.
MachineBasicBlock *MBB = LoopStart->getParent();
MachineBasicBlock::iterator InsertPt = MBB->getFirstTerminator();
for (MachineInstr &Use :
MRI->use_instructions(LoopStart->getOperand(0).getReg()))
if ((InsertPt != MBB->end() && !DT->dominates(&*InsertPt, &Use)) ||
!DT->dominates(ML->getHeader(), Use.getParent())) {
LLVM_DEBUG(dbgs() << " InsertPt could not be a terminator!\n");
return false;
}
MachineInstrBuilder MI = BuildMI(*MBB, InsertPt, LoopStart->getDebugLoc(),
TII->get(ARM::t2DoLoopStartTP))
.add(LoopStart->getOperand(0))
.add(LoopStart->getOperand(1))
.addReg(CountReg);
(void)MI;
LLVM_DEBUG(dbgs() << "Replacing " << *LoopStart << " with "
<< *MI.getInstr());
MRI->constrainRegClass(CountReg, &ARM::rGPRRegClass);
LoopStart->eraseFromParent();
return true;
}
// Returns true if Opcode is any VCMP Opcode.
static bool IsVCMP(unsigned Opcode) { return VCMPOpcodeToVPT(Opcode) != 0; }
// Returns true if a VCMP with this Opcode can have its operands swapped.
// There is 2 kind of VCMP that can't have their operands swapped: Float VCMPs,
// and VCMPr instructions (since the r is always on the right).
static bool CanHaveSwappedOperands(unsigned Opcode) {
switch (Opcode) {
default:
return true;
case ARM::MVE_VCMPf32:
case ARM::MVE_VCMPf16:
case ARM::MVE_VCMPf32r:
case ARM::MVE_VCMPf16r:
case ARM::MVE_VCMPi8r:
case ARM::MVE_VCMPi16r:
case ARM::MVE_VCMPi32r:
case ARM::MVE_VCMPu8r:
case ARM::MVE_VCMPu16r:
case ARM::MVE_VCMPu32r:
case ARM::MVE_VCMPs8r:
case ARM::MVE_VCMPs16r:
case ARM::MVE_VCMPs32r:
return false;
}
}
// Returns the CondCode of a VCMP Instruction.
static ARMCC::CondCodes GetCondCode(MachineInstr &Instr) {
assert(IsVCMP(Instr.getOpcode()) && "Inst must be a VCMP");
return ARMCC::CondCodes(Instr.getOperand(3).getImm());
}
// Returns true if Cond is equivalent to a VPNOT instruction on the result of
// Prev. Cond and Prev must be VCMPs.
static bool IsVPNOTEquivalent(MachineInstr &Cond, MachineInstr &Prev) {
assert(IsVCMP(Cond.getOpcode()) && IsVCMP(Prev.getOpcode()));
// Opcodes must match.
if (Cond.getOpcode() != Prev.getOpcode())
return false;
MachineOperand &CondOP1 = Cond.getOperand(1), &CondOP2 = Cond.getOperand(2);
MachineOperand &PrevOP1 = Prev.getOperand(1), &PrevOP2 = Prev.getOperand(2);
// If the VCMP has the opposite condition with the same operands, we can
// replace it with a VPNOT
ARMCC::CondCodes ExpectedCode = GetCondCode(Cond);
ExpectedCode = ARMCC::getOppositeCondition(ExpectedCode);
if (ExpectedCode == GetCondCode(Prev))
if (CondOP1.isIdenticalTo(PrevOP1) && CondOP2.isIdenticalTo(PrevOP2))
return true;
// Check again with operands swapped if possible
if (!CanHaveSwappedOperands(Cond.getOpcode()))
return false;
ExpectedCode = ARMCC::getSwappedCondition(ExpectedCode);
return ExpectedCode == GetCondCode(Prev) && CondOP1.isIdenticalTo(PrevOP2) &&
CondOP2.isIdenticalTo(PrevOP1);
}
// Returns true if Instr writes to VCCR.
static bool IsWritingToVCCR(MachineInstr &Instr) {
if (Instr.getNumOperands() == 0)
return false;
MachineOperand &Dst = Instr.getOperand(0);
if (!Dst.isReg())
return false;
Register DstReg = Dst.getReg();
if (!DstReg.isVirtual())
return false;
MachineRegisterInfo &RegInfo = Instr.getMF()->getRegInfo();
const TargetRegisterClass *RegClass = RegInfo.getRegClassOrNull(DstReg);
return RegClass && (RegClass->getID() == ARM::VCCRRegClassID);
}
// Transforms
// <Instr that uses %A ('User' Operand)>
// Into
// %K = VPNOT %Target
// <Instr that uses %K ('User' Operand)>
// And returns the newly inserted VPNOT.
// This optimization is done in the hopes of preventing spills/reloads of VPR by
// reducing the number of VCCR values with overlapping lifetimes.
MachineInstr &MVEVPTOptimisations::ReplaceRegisterUseWithVPNOT(
MachineBasicBlock &MBB, MachineInstr &Instr, MachineOperand &User,
Register Target) {
Register NewResult = MRI->createVirtualRegister(MRI->getRegClass(Target));
MachineInstrBuilder MIBuilder =
BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
.addDef(NewResult)
.addReg(Target);
addUnpredicatedMveVpredNOp(MIBuilder);
// Make the user use NewResult instead, and clear its kill flag.
User.setReg(NewResult);
User.setIsKill(false);
LLVM_DEBUG(dbgs() << " Inserting VPNOT (for spill prevention): ";
MIBuilder.getInstr()->dump());
return *MIBuilder.getInstr();
}
// Moves a VPNOT before its first user if an instruction that uses Reg is found
// in-between the VPNOT and its user.
// Returns true if there is at least one user of the VPNOT in the block.
static bool MoveVPNOTBeforeFirstUser(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Iter,
Register Reg) {
assert(Iter->getOpcode() == ARM::MVE_VPNOT && "Not a VPNOT!");
assert(getVPTInstrPredicate(*Iter) == ARMVCC::None &&
"The VPNOT cannot be predicated");
MachineInstr &VPNOT = *Iter;
Register VPNOTResult = VPNOT.getOperand(0).getReg();
Register VPNOTOperand = VPNOT.getOperand(1).getReg();
// Whether the VPNOT will need to be moved, and whether we found a user of the
// VPNOT.
bool MustMove = false, HasUser = false;
MachineOperand *VPNOTOperandKiller = nullptr;
for (; Iter != MBB.end(); ++Iter) {
if (MachineOperand *MO =
Iter->findRegisterUseOperand(VPNOTOperand, /*isKill*/ true)) {
// If we find the operand that kills the VPNOTOperand's result, save it.
VPNOTOperandKiller = MO;
}
if (Iter->findRegisterUseOperandIdx(Reg) != -1) {
MustMove = true;
continue;
}
if (Iter->findRegisterUseOperandIdx(VPNOTResult) == -1)
continue;
HasUser = true;
if (!MustMove)
break;
// Move the VPNOT right before Iter
LLVM_DEBUG(dbgs() << "Moving: "; VPNOT.dump(); dbgs() << " Before: ";
Iter->dump());
MBB.splice(Iter, &MBB, VPNOT.getIterator());
// If we move the instr, and its operand was killed earlier, remove the kill
// flag.
if (VPNOTOperandKiller)
VPNOTOperandKiller->setIsKill(false);
break;
}
return HasUser;
}
// This optimisation attempts to reduce the number of overlapping lifetimes of
// VCCR values by replacing uses of old VCCR values with VPNOTs. For example,
// this replaces
// %A:vccr = (something)
// %B:vccr = VPNOT %A
// %Foo = (some op that uses %B)
// %Bar = (some op that uses %A)
// With
// %A:vccr = (something)
// %B:vccr = VPNOT %A
// %Foo = (some op that uses %B)
// %TMP2:vccr = VPNOT %B
// %Bar = (some op that uses %A)
bool MVEVPTOptimisations::ReduceOldVCCRValueUses(MachineBasicBlock &MBB) {
MachineBasicBlock::iterator Iter = MBB.begin(), End = MBB.end();
SmallVector<MachineInstr *, 4> DeadInstructions;
bool Modified = false;
while (Iter != End) {
Register VCCRValue, OppositeVCCRValue;
// The first loop looks for 2 unpredicated instructions:
// %A:vccr = (instr) ; A is stored in VCCRValue
// %B:vccr = VPNOT %A ; B is stored in OppositeVCCRValue
for (; Iter != End; ++Iter) {
// We're only interested in unpredicated instructions that write to VCCR.
if (!IsWritingToVCCR(*Iter) ||
getVPTInstrPredicate(*Iter) != ARMVCC::None)
continue;
Register Dst = Iter->getOperand(0).getReg();
// If we already have a VCCRValue, and this is a VPNOT on VCCRValue, we've
// found what we were looking for.
if (VCCRValue && Iter->getOpcode() == ARM::MVE_VPNOT &&
Iter->findRegisterUseOperandIdx(VCCRValue) != -1) {
// Move the VPNOT closer to its first user if needed, and ignore if it
// has no users.
if (!MoveVPNOTBeforeFirstUser(MBB, Iter, VCCRValue))
continue;
OppositeVCCRValue = Dst;
++Iter;
break;
}
// Else, just set VCCRValue.
VCCRValue = Dst;
}
// If the first inner loop didn't find anything, stop here.
if (Iter == End)
break;
assert(VCCRValue && OppositeVCCRValue &&
"VCCRValue and OppositeVCCRValue shouldn't be empty if the loop "
"stopped before the end of the block!");
assert(VCCRValue != OppositeVCCRValue &&
"VCCRValue should not be equal to OppositeVCCRValue!");
// LastVPNOTResult always contains the same value as OppositeVCCRValue.
Register LastVPNOTResult = OppositeVCCRValue;
// This second loop tries to optimize the remaining instructions.
for (; Iter != End; ++Iter) {
bool IsInteresting = false;
if (MachineOperand *MO = Iter->findRegisterUseOperand(VCCRValue)) {
IsInteresting = true;
// - If the instruction is a VPNOT, it can be removed, and we can just
// replace its uses with LastVPNOTResult.
// - Else, insert a new VPNOT on LastVPNOTResult to recompute VCCRValue.
if (Iter->getOpcode() == ARM::MVE_VPNOT) {
Register Result = Iter->getOperand(0).getReg();
MRI->replaceRegWith(Result, LastVPNOTResult);
DeadInstructions.push_back(&*Iter);
Modified = true;
LLVM_DEBUG(dbgs()
<< "Replacing all uses of '" << printReg(Result)
<< "' with '" << printReg(LastVPNOTResult) << "'\n");
} else {
MachineInstr &VPNOT =
ReplaceRegisterUseWithVPNOT(MBB, *Iter, *MO, LastVPNOTResult);
Modified = true;
LastVPNOTResult = VPNOT.getOperand(0).getReg();
std::swap(VCCRValue, OppositeVCCRValue);
LLVM_DEBUG(dbgs() << "Replacing use of '" << printReg(VCCRValue)
<< "' with '" << printReg(LastVPNOTResult)
<< "' in instr: " << *Iter);
}
} else {
// If the instr uses OppositeVCCRValue, make it use LastVPNOTResult
// instead as they contain the same value.
if (MachineOperand *MO =
Iter->findRegisterUseOperand(OppositeVCCRValue)) {
IsInteresting = true;
// This is pointless if LastVPNOTResult == OppositeVCCRValue.
if (LastVPNOTResult != OppositeVCCRValue) {
LLVM_DEBUG(dbgs() << "Replacing usage of '"
<< printReg(OppositeVCCRValue) << "' with '"
<< printReg(LastVPNOTResult) << " for instr: ";
Iter->dump());
MO->setReg(LastVPNOTResult);
Modified = true;
}
MO->setIsKill(false);
}
// If this is an unpredicated VPNOT on
// LastVPNOTResult/OppositeVCCRValue, we can act like we inserted it.
if (Iter->getOpcode() == ARM::MVE_VPNOT &&
getVPTInstrPredicate(*Iter) == ARMVCC::None) {
Register VPNOTOperand = Iter->getOperand(1).getReg();
if (VPNOTOperand == LastVPNOTResult ||
VPNOTOperand == OppositeVCCRValue) {
IsInteresting = true;
std::swap(VCCRValue, OppositeVCCRValue);
LastVPNOTResult = Iter->getOperand(0).getReg();
}
}
}
// If this instruction was not interesting, and it writes to VCCR, stop.
if (!IsInteresting && IsWritingToVCCR(*Iter))
break;
}
}
for (MachineInstr *DeadInstruction : DeadInstructions)
DeadInstruction->eraseFromParent();
return Modified;
}
// This optimisation replaces VCMPs with VPNOTs when they are equivalent.
bool MVEVPTOptimisations::ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB) {
SmallVector<MachineInstr *, 4> DeadInstructions;
// The last VCMP that we have seen and that couldn't be replaced.
// This is reset when an instruction that writes to VCCR/VPR is found, or when
// a VCMP is replaced with a VPNOT.
// We'll only replace VCMPs with VPNOTs when this is not null, and when the
// current VCMP is the opposite of PrevVCMP.
MachineInstr *PrevVCMP = nullptr;
// If we find an instruction that kills the result of PrevVCMP, we save the
// operand here to remove the kill flag in case we need to use PrevVCMP's
// result.
MachineOperand *PrevVCMPResultKiller = nullptr;
for (MachineInstr &Instr : MBB.instrs()) {
if (PrevVCMP) {
if (MachineOperand *MO = Instr.findRegisterUseOperand(
PrevVCMP->getOperand(0).getReg(), /*isKill*/ true)) {
// If we come accross the instr that kills PrevVCMP's result, record it
// so we can remove the kill flag later if we need to.
PrevVCMPResultKiller = MO;
}
}
// Ignore predicated instructions.
if (getVPTInstrPredicate(Instr) != ARMVCC::None)
continue;
// Only look at VCMPs
if (!IsVCMP(Instr.getOpcode())) {
// If the instruction writes to VCCR, forget the previous VCMP.
if (IsWritingToVCCR(Instr))
PrevVCMP = nullptr;
continue;
}
if (!PrevVCMP || !IsVPNOTEquivalent(Instr, *PrevVCMP)) {
PrevVCMP = &Instr;
continue;
}
// The register containing the result of the VCMP that we're going to
// replace.
Register PrevVCMPResultReg = PrevVCMP->getOperand(0).getReg();
// Build a VPNOT to replace the VCMP, reusing its operands.
MachineInstrBuilder MIBuilder =
BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
.add(Instr.getOperand(0))
.addReg(PrevVCMPResultReg);
addUnpredicatedMveVpredNOp(MIBuilder);
LLVM_DEBUG(dbgs() << "Inserting VPNOT (to replace VCMP): ";
MIBuilder.getInstr()->dump(); dbgs() << " Removed VCMP: ";
Instr.dump());
// If we found an instruction that uses, and kills PrevVCMP's result,
// remove the kill flag.
if (PrevVCMPResultKiller)
PrevVCMPResultKiller->setIsKill(false);
// Finally, mark the old VCMP for removal and reset
// PrevVCMP/PrevVCMPResultKiller.
DeadInstructions.push_back(&Instr);
PrevVCMP = nullptr;
PrevVCMPResultKiller = nullptr;
}
for (MachineInstr *DeadInstruction : DeadInstructions)
DeadInstruction->eraseFromParent();
return !DeadInstructions.empty();
}
bool MVEVPTOptimisations::ReplaceConstByVPNOTs(MachineBasicBlock &MBB,
MachineDominatorTree *DT) {
// Scan through the block, looking for instructions that use constants moves
// into VPR that are the negative of one another. These are expected to be
// COPY's to VCCRRegClass, from a t2MOVi or t2MOVi16. The last seen constant
// mask is kept it or and VPNOT's of it are added or reused as we scan through
// the function.
unsigned LastVPTImm = 0;
Register LastVPTReg = 0;
SmallSet<MachineInstr *, 4> DeadInstructions;
for (MachineInstr &Instr : MBB.instrs()) {
// Look for predicated MVE instructions.
int PIdx = llvm::findFirstVPTPredOperandIdx(Instr);
if (PIdx == -1)
continue;
Register VPR = Instr.getOperand(PIdx + 1).getReg();
if (!VPR.isVirtual())
continue;
// From that we are looking for an instruction like %11:vccr = COPY %9:rgpr.
MachineInstr *Copy = MRI->getVRegDef(VPR);
if (!Copy || Copy->getOpcode() != TargetOpcode::COPY ||
!Copy->getOperand(1).getReg().isVirtual() ||
MRI->getRegClass(Copy->getOperand(1).getReg()) == &ARM::VCCRRegClass) {
LastVPTReg = 0;
continue;
}
Register GPR = Copy->getOperand(1).getReg();
// Find the Immediate used by the copy.
auto getImm = [&](Register GPR) -> unsigned {
MachineInstr *Def = MRI->getVRegDef(GPR);
if (Def && (Def->getOpcode() == ARM::t2MOVi ||
Def->getOpcode() == ARM::t2MOVi16))
return Def->getOperand(1).getImm();
return -1U;
};
unsigned Imm = getImm(GPR);
if (Imm == -1U) {
LastVPTReg = 0;
continue;
}
unsigned NotImm = ~Imm & 0xffff;
if (LastVPTReg != 0 && LastVPTReg != VPR && LastVPTImm == Imm) {
Instr.getOperand(PIdx + 1).setReg(LastVPTReg);
if (MRI->use_empty(VPR)) {
DeadInstructions.insert(Copy);
if (MRI->hasOneUse(GPR))
DeadInstructions.insert(MRI->getVRegDef(GPR));
}
LLVM_DEBUG(dbgs() << "Reusing predicate: in " << Instr);
} else if (LastVPTReg != 0 && LastVPTImm == NotImm) {
// We have found the not of a previous constant. Create a VPNot of the
// earlier predicate reg and use it instead of the copy.
Register NewVPR = MRI->createVirtualRegister(&ARM::VCCRRegClass);
auto VPNot = BuildMI(MBB, &Instr, Instr.getDebugLoc(),
TII->get(ARM::MVE_VPNOT), NewVPR)
.addReg(LastVPTReg);
addUnpredicatedMveVpredNOp(VPNot);
// Use the new register and check if the def is now dead.
Instr.getOperand(PIdx + 1).setReg(NewVPR);
if (MRI->use_empty(VPR)) {
DeadInstructions.insert(Copy);
if (MRI->hasOneUse(GPR))
DeadInstructions.insert(MRI->getVRegDef(GPR));
}
LLVM_DEBUG(dbgs() << "Adding VPNot: " << *VPNot << " to replace use at "
<< Instr);
VPR = NewVPR;
}
LastVPTImm = Imm;
LastVPTReg = VPR;
}
for (MachineInstr *DI : DeadInstructions)
DI->eraseFromParent();
return !DeadInstructions.empty();
}
// Replace VPSEL with a predicated VMOV in blocks with a VCTP. This is a
// somewhat blunt approximation to allow tail predicated with vpsel
// instructions. We turn a vselect into a VPSEL in ISEL, but they have slightly
// different semantics under tail predication. Until that is modelled we just
// convert to a VMOVT (via a predicated VORR) instead.
bool MVEVPTOptimisations::ConvertVPSEL(MachineBasicBlock &MBB) {
bool HasVCTP = false;
SmallVector<MachineInstr *, 4> DeadInstructions;
for (MachineInstr &MI : MBB.instrs()) {
if (isVCTP(&MI)) {
HasVCTP = true;
continue;
}
if (!HasVCTP || MI.getOpcode() != ARM::MVE_VPSEL)
continue;
MachineInstrBuilder MIBuilder =
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(ARM::MVE_VORR))
.add(MI.getOperand(0))
.add(MI.getOperand(1))
.add(MI.getOperand(1))
.addImm(ARMVCC::Then)
.add(MI.getOperand(4))
.add(MI.getOperand(2));
// Silence unused variable warning in release builds.
(void)MIBuilder;
LLVM_DEBUG(dbgs() << "Replacing VPSEL: "; MI.dump();
dbgs() << " with VMOVT: "; MIBuilder.getInstr()->dump());
DeadInstructions.push_back(&MI);
}
for (MachineInstr *DeadInstruction : DeadInstructions)
DeadInstruction->eraseFromParent();
return !DeadInstructions.empty();
}
bool MVEVPTOptimisations::runOnMachineFunction(MachineFunction &Fn) {
const ARMSubtarget &STI =
static_cast<const ARMSubtarget &>(Fn.getSubtarget());
if (!STI.isThumb2() || !STI.hasLOB())
return false;
TII = static_cast<const Thumb2InstrInfo *>(STI.getInstrInfo());
MRI = &Fn.getRegInfo();
MachineLoopInfo *MLI = &getAnalysis<MachineLoopInfo>();
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
LLVM_DEBUG(dbgs() << "********** ARM MVE VPT Optimisations **********\n"
<< "********** Function: " << Fn.getName() << '\n');
bool Modified = false;
for (MachineLoop *ML : MLI->getBase().getLoopsInPreorder()) {
Modified |= MergeLoopEnd(ML);
Modified |= ConvertTailPredLoop(ML, DT);
}
for (MachineBasicBlock &MBB : Fn) {
Modified |= ReplaceConstByVPNOTs(MBB, DT);
Modified |= ReplaceVCMPsByVPNOTs(MBB);
Modified |= ReduceOldVCCRValueUses(MBB);
Modified |= ConvertVPSEL(MBB);
}
LLVM_DEBUG(dbgs() << "**************************************\n");
return Modified;
}
/// createMVEVPTOptimisationsPass
FunctionPass *llvm::createMVEVPTOptimisationsPass() {
return new MVEVPTOptimisations();
}