forked from OSchip/llvm-project
942 lines
31 KiB
C++
942 lines
31 KiB
C++
//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Implements the AMDGPU specific subclass of TargetSubtarget.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "AMDGPUCallLowering.h"
|
|
#include "AMDGPUInstructionSelector.h"
|
|
#include "AMDGPULegalizerInfo.h"
|
|
#include "AMDGPURegisterBankInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-subtarget"
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#define AMDGPUSubtarget GCNSubtarget
|
|
#include "AMDGPUGenSubtargetInfo.inc"
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#undef AMDGPUSubtarget
|
|
#include "R600GenSubtargetInfo.inc"
|
|
|
|
static cl::opt<bool> DisablePowerSched(
|
|
"amdgpu-disable-power-sched",
|
|
cl::desc("Disable scheduling to minimize mAI power bursts"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> EnableVGPRIndexMode(
|
|
"amdgpu-vgpr-index-mode",
|
|
cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> EnableFlatScratch(
|
|
"amdgpu-enable-flat-scratch",
|
|
cl::desc("Use flat scratch instructions"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
|
|
cl::desc("Enable the use of AA during codegen."),
|
|
cl::init(true));
|
|
|
|
GCNSubtarget::~GCNSubtarget() = default;
|
|
|
|
R600Subtarget &
|
|
R600Subtarget::initializeSubtargetDependencies(const Triple &TT,
|
|
StringRef GPU, StringRef FS) {
|
|
SmallString<256> FullFS("+promote-alloca,");
|
|
FullFS += FS;
|
|
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
|
|
|
|
HasMulU24 = getGeneration() >= EVERGREEN;
|
|
HasMulI24 = hasCaymanISA();
|
|
|
|
return *this;
|
|
}
|
|
|
|
GCNSubtarget &
|
|
GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
|
|
StringRef GPU, StringRef FS) {
|
|
// Determine default and user-specified characteristics
|
|
//
|
|
// We want to be able to turn these off, but making this a subtarget feature
|
|
// for SI has the unhelpful behavior that it unsets everything else if you
|
|
// disable it.
|
|
//
|
|
// Similarly we want enable-prt-strict-null to be on by default and not to
|
|
// unset everything else if it is disabled
|
|
|
|
// Assuming ECC is enabled is the conservative default.
|
|
SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,+sram-ecc,+xnack,");
|
|
|
|
if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA.
|
|
FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
|
|
|
|
FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
|
|
|
|
// Disable mutually exclusive bits.
|
|
if (FS.find_lower("+wavefrontsize") != StringRef::npos) {
|
|
if (FS.find_lower("wavefrontsize16") == StringRef::npos)
|
|
FullFS += "-wavefrontsize16,";
|
|
if (FS.find_lower("wavefrontsize32") == StringRef::npos)
|
|
FullFS += "-wavefrontsize32,";
|
|
if (FS.find_lower("wavefrontsize64") == StringRef::npos)
|
|
FullFS += "-wavefrontsize64,";
|
|
}
|
|
|
|
FullFS += FS;
|
|
|
|
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
|
|
|
|
// We don't support FP64 for EG/NI atm.
|
|
assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
|
|
|
|
// Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es
|
|
// on VI and newer hardware to avoid assertion failures due to missing ADDR64
|
|
// variants of MUBUF instructions.
|
|
if (!hasAddr64() && !FS.contains("flat-for-global")) {
|
|
FlatForGlobal = true;
|
|
}
|
|
|
|
// Set defaults if needed.
|
|
if (MaxPrivateElementSize == 0)
|
|
MaxPrivateElementSize = 4;
|
|
|
|
if (LDSBankCount == 0)
|
|
LDSBankCount = 32;
|
|
|
|
if (TT.getArch() == Triple::amdgcn) {
|
|
if (LocalMemorySize == 0)
|
|
LocalMemorySize = 32768;
|
|
|
|
// Do something sensible for unspecified target.
|
|
if (!HasMovrel && !HasVGPRIndexMode)
|
|
HasMovrel = true;
|
|
}
|
|
|
|
// Don't crash on invalid devices.
|
|
if (WavefrontSizeLog2 == 0)
|
|
WavefrontSizeLog2 = 5;
|
|
|
|
HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
|
|
|
|
// Disable XNACK on targets where it is not enabled by default unless it is
|
|
// explicitly requested.
|
|
if (!FS.contains("+xnack") && DoesNotSupportXNACK && EnableXNACK) {
|
|
ToggleFeature(AMDGPU::FeatureXNACK);
|
|
EnableXNACK = false;
|
|
}
|
|
|
|
// ECC is on by default, but turn it off if the hardware doesn't support it
|
|
// anyway. This matters for the gfx9 targets with d16 loads, but don't support
|
|
// ECC.
|
|
if (DoesNotSupportSRAMECC && EnableSRAMECC) {
|
|
ToggleFeature(AMDGPU::FeatureSRAMECC);
|
|
EnableSRAMECC = false;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) :
|
|
TargetTriple(TT),
|
|
Has16BitInsts(false),
|
|
HasMadMixInsts(false),
|
|
HasMadMacF32Insts(false),
|
|
HasDsSrc2Insts(false),
|
|
HasSDWA(false),
|
|
HasVOP3PInsts(false),
|
|
HasMulI24(true),
|
|
HasMulU24(true),
|
|
HasInv2PiInlineImm(false),
|
|
HasFminFmaxLegacy(true),
|
|
EnablePromoteAlloca(false),
|
|
HasTrigReducedRange(false),
|
|
MaxWavesPerEU(10),
|
|
LocalMemorySize(0),
|
|
WavefrontSizeLog2(0)
|
|
{ }
|
|
|
|
GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
|
|
const GCNTargetMachine &TM) :
|
|
AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
|
|
AMDGPUSubtarget(TT),
|
|
TargetTriple(TT),
|
|
Gen(TT.getOS() == Triple::AMDHSA ? SEA_ISLANDS : SOUTHERN_ISLANDS),
|
|
InstrItins(getInstrItineraryForCPU(GPU)),
|
|
LDSBankCount(0),
|
|
MaxPrivateElementSize(0),
|
|
|
|
FastFMAF32(false),
|
|
FastDenormalF32(false),
|
|
HalfRate64Ops(false),
|
|
|
|
FlatForGlobal(false),
|
|
AutoWaitcntBeforeBarrier(false),
|
|
UnalignedScratchAccess(false),
|
|
UnalignedAccessMode(false),
|
|
|
|
HasApertureRegs(false),
|
|
EnableXNACK(false),
|
|
DoesNotSupportXNACK(false),
|
|
EnableCuMode(false),
|
|
TrapHandler(false),
|
|
|
|
EnableLoadStoreOpt(false),
|
|
EnableUnsafeDSOffsetFolding(false),
|
|
EnableSIScheduler(false),
|
|
EnableDS128(false),
|
|
EnablePRTStrictNull(false),
|
|
DumpCode(false),
|
|
|
|
FP64(false),
|
|
GCN3Encoding(false),
|
|
CIInsts(false),
|
|
GFX8Insts(false),
|
|
GFX9Insts(false),
|
|
GFX10Insts(false),
|
|
GFX10_3Insts(false),
|
|
GFX7GFX8GFX9Insts(false),
|
|
SGPRInitBug(false),
|
|
HasSMemRealTime(false),
|
|
HasIntClamp(false),
|
|
HasFmaMixInsts(false),
|
|
HasMovrel(false),
|
|
HasVGPRIndexMode(false),
|
|
HasScalarStores(false),
|
|
HasScalarAtomics(false),
|
|
HasSDWAOmod(false),
|
|
HasSDWAScalar(false),
|
|
HasSDWASdst(false),
|
|
HasSDWAMac(false),
|
|
HasSDWAOutModsVOPC(false),
|
|
HasDPP(false),
|
|
HasDPP8(false),
|
|
HasR128A16(false),
|
|
HasGFX10A16(false),
|
|
HasG16(false),
|
|
HasNSAEncoding(false),
|
|
GFX10_BEncoding(false),
|
|
HasDLInsts(false),
|
|
HasDot1Insts(false),
|
|
HasDot2Insts(false),
|
|
HasDot3Insts(false),
|
|
HasDot4Insts(false),
|
|
HasDot5Insts(false),
|
|
HasDot6Insts(false),
|
|
HasMAIInsts(false),
|
|
HasPkFmacF16Inst(false),
|
|
HasAtomicFaddInsts(false),
|
|
EnableSRAMECC(false),
|
|
DoesNotSupportSRAMECC(false),
|
|
HasNoSdstCMPX(false),
|
|
HasVscnt(false),
|
|
HasGetWaveIdInst(false),
|
|
HasSMemTimeInst(false),
|
|
HasRegisterBanking(false),
|
|
HasVOP3Literal(false),
|
|
HasNoDataDepHazard(false),
|
|
FlatAddressSpace(false),
|
|
FlatInstOffsets(false),
|
|
FlatGlobalInsts(false),
|
|
FlatScratchInsts(false),
|
|
ScalarFlatScratchInsts(false),
|
|
AddNoCarryInsts(false),
|
|
HasUnpackedD16VMem(false),
|
|
LDSMisalignedBug(false),
|
|
HasMFMAInlineLiteralBug(false),
|
|
UnalignedBufferAccess(false),
|
|
UnalignedDSAccess(false),
|
|
|
|
ScalarizeGlobal(false),
|
|
|
|
HasVcmpxPermlaneHazard(false),
|
|
HasVMEMtoScalarWriteHazard(false),
|
|
HasSMEMtoVectorWriteHazard(false),
|
|
HasInstFwdPrefetchBug(false),
|
|
HasVcmpxExecWARHazard(false),
|
|
HasLdsBranchVmemWARHazard(false),
|
|
HasNSAtoVMEMBug(false),
|
|
HasOffset3fBug(false),
|
|
HasFlatSegmentOffsetBug(false),
|
|
HasImageStoreD16Bug(false),
|
|
HasImageGather4D16Bug(false),
|
|
|
|
FeatureDisable(false),
|
|
InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
|
|
TLInfo(TM, *this),
|
|
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
|
|
MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
|
|
CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
|
|
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
|
|
Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
|
|
RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
|
|
InstSelector.reset(new AMDGPUInstructionSelector(
|
|
*this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
|
|
}
|
|
|
|
bool GCNSubtarget::enableFlatScratch() const {
|
|
return EnableFlatScratch && hasFlatScratchInsts();
|
|
}
|
|
|
|
unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
|
|
if (getGeneration() < GFX10)
|
|
return 1;
|
|
|
|
switch (Opcode) {
|
|
case AMDGPU::V_LSHLREV_B64:
|
|
case AMDGPU::V_LSHLREV_B64_gfx10:
|
|
case AMDGPU::V_LSHL_B64:
|
|
case AMDGPU::V_LSHRREV_B64:
|
|
case AMDGPU::V_LSHRREV_B64_gfx10:
|
|
case AMDGPU::V_LSHR_B64:
|
|
case AMDGPU::V_ASHRREV_I64:
|
|
case AMDGPU::V_ASHRREV_I64_gfx10:
|
|
case AMDGPU::V_ASHR_I64:
|
|
return 1;
|
|
}
|
|
|
|
return 2;
|
|
}
|
|
|
|
unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
|
|
const Function &F) const {
|
|
if (NWaves == 1)
|
|
return getLocalMemorySize();
|
|
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
|
|
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
|
|
if (!WorkGroupsPerCu)
|
|
return 0;
|
|
unsigned MaxWaves = getMaxWavesPerEU();
|
|
return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
|
|
}
|
|
|
|
// FIXME: Should return min,max range.
|
|
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
|
|
const Function &F) const {
|
|
const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
|
|
const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
|
|
if (!MaxWorkGroupsPerCu)
|
|
return 0;
|
|
|
|
const unsigned WaveSize = getWavefrontSize();
|
|
|
|
// FIXME: Do we need to account for alignment requirement of LDS rounding the
|
|
// size up?
|
|
// Compute restriction based on LDS usage
|
|
unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
|
|
|
|
// This can be queried with more LDS than is possible, so just assume the
|
|
// worst.
|
|
if (NumGroups == 0)
|
|
return 1;
|
|
|
|
NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
|
|
|
|
// Round to the number of waves.
|
|
const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize;
|
|
unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
|
|
|
|
// Clamp to the maximum possible number of waves.
|
|
MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
|
|
|
|
// FIXME: Needs to be a multiple of the group size?
|
|
//MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
|
|
|
|
assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
|
|
"computed invalid occupancy");
|
|
return MaxWaves;
|
|
}
|
|
|
|
unsigned
|
|
AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
|
|
const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
|
|
switch (CC) {
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_LS:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_ES:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
return std::make_pair(1, getWavefrontSize());
|
|
default:
|
|
return std::make_pair(1u, getMaxFlatWorkGroupSize());
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
|
|
const Function &F) const {
|
|
// Default minimum/maximum flat work group sizes.
|
|
std::pair<unsigned, unsigned> Default =
|
|
getDefaultFlatWorkGroupSize(F.getCallingConv());
|
|
|
|
// Requested minimum/maximum flat work group sizes.
|
|
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
|
|
F, "amdgpu-flat-work-group-size", Default);
|
|
|
|
// Make sure requested minimum is less than requested maximum.
|
|
if (Requested.first > Requested.second)
|
|
return Default;
|
|
|
|
// Make sure requested values do not violate subtarget's specifications.
|
|
if (Requested.first < getMinFlatWorkGroupSize())
|
|
return Default;
|
|
if (Requested.second > getMaxFlatWorkGroupSize())
|
|
return Default;
|
|
|
|
return Requested;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
|
|
const Function &F) const {
|
|
// Default minimum/maximum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
|
|
|
|
// Default/requested minimum/maximum flat work group sizes.
|
|
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
|
|
|
|
// If minimum/maximum flat work group sizes were explicitly requested using
|
|
// "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
|
|
// number of waves per execution unit to values implied by requested
|
|
// minimum/maximum flat work group sizes.
|
|
unsigned MinImpliedByFlatWorkGroupSize =
|
|
getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
|
|
Default.first = MinImpliedByFlatWorkGroupSize;
|
|
bool RequestedFlatWorkGroupSize =
|
|
F.hasFnAttribute("amdgpu-flat-work-group-size");
|
|
|
|
// Requested minimum/maximum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
|
|
F, "amdgpu-waves-per-eu", Default, true);
|
|
|
|
// Make sure requested minimum is less than requested maximum.
|
|
if (Requested.second && Requested.first > Requested.second)
|
|
return Default;
|
|
|
|
// Make sure requested values do not violate subtarget's specifications.
|
|
if (Requested.first < getMinWavesPerEU() ||
|
|
Requested.second > getMaxWavesPerEU())
|
|
return Default;
|
|
|
|
// Make sure requested values are compatible with values implied by requested
|
|
// minimum/maximum flat work group sizes.
|
|
if (RequestedFlatWorkGroupSize &&
|
|
Requested.first < MinImpliedByFlatWorkGroupSize)
|
|
return Default;
|
|
|
|
return Requested;
|
|
}
|
|
|
|
static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
|
|
auto Node = Kernel.getMetadata("reqd_work_group_size");
|
|
if (Node && Node->getNumOperands() == 3)
|
|
return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
|
|
return std::numeric_limits<unsigned>::max();
|
|
}
|
|
|
|
unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
|
|
unsigned Dimension) const {
|
|
unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
|
|
if (ReqdSize != std::numeric_limits<unsigned>::max())
|
|
return ReqdSize - 1;
|
|
return getFlatWorkGroupSizes(Kernel).second - 1;
|
|
}
|
|
|
|
bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
|
|
Function *Kernel = I->getParent()->getParent();
|
|
unsigned MinSize = 0;
|
|
unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
|
|
bool IdQuery = false;
|
|
|
|
// If reqd_work_group_size is present it narrows value down.
|
|
if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
const Function *F = CI->getCalledFunction();
|
|
if (F) {
|
|
unsigned Dim = UINT_MAX;
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_workitem_id_x:
|
|
case Intrinsic::r600_read_tidig_x:
|
|
IdQuery = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::r600_read_local_size_x:
|
|
Dim = 0;
|
|
break;
|
|
case Intrinsic::amdgcn_workitem_id_y:
|
|
case Intrinsic::r600_read_tidig_y:
|
|
IdQuery = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::r600_read_local_size_y:
|
|
Dim = 1;
|
|
break;
|
|
case Intrinsic::amdgcn_workitem_id_z:
|
|
case Intrinsic::r600_read_tidig_z:
|
|
IdQuery = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::r600_read_local_size_z:
|
|
Dim = 2;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (Dim <= 3) {
|
|
unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
|
|
if (ReqdSize != std::numeric_limits<unsigned>::max())
|
|
MinSize = MaxSize = ReqdSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MaxSize)
|
|
return false;
|
|
|
|
// Range metadata is [Lo, Hi). For ID query we need to pass max size
|
|
// as Hi. For size query we need to pass Hi + 1.
|
|
if (IdQuery)
|
|
MinSize = 0;
|
|
else
|
|
++MaxSize;
|
|
|
|
MDBuilder MDB(I->getContext());
|
|
MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
|
|
APInt(32, MaxSize));
|
|
I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
|
|
return true;
|
|
}
|
|
|
|
uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
|
|
Align &MaxAlign) const {
|
|
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
|
|
F.getCallingConv() == CallingConv::SPIR_KERNEL);
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
uint64_t ExplicitArgBytes = 0;
|
|
MaxAlign = Align(1);
|
|
|
|
for (const Argument &Arg : F.args()) {
|
|
const bool IsByRef = Arg.hasByRefAttr();
|
|
Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
|
|
MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
|
|
if (!Alignment)
|
|
Alignment = DL.getABITypeAlign(ArgTy);
|
|
|
|
uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
|
|
ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
|
|
MaxAlign = max(MaxAlign, Alignment);
|
|
}
|
|
|
|
return ExplicitArgBytes;
|
|
}
|
|
|
|
unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
|
|
Align &MaxAlign) const {
|
|
uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
|
|
|
|
unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
|
|
|
|
uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
|
|
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
|
|
if (ImplicitBytes != 0) {
|
|
const Align Alignment = getAlignmentForImplicitArgPtr();
|
|
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
|
|
}
|
|
|
|
// Being able to dereference past the end is useful for emitting scalar loads.
|
|
return alignTo(TotalSize, 4);
|
|
}
|
|
|
|
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
|
|
const TargetMachine &TM) :
|
|
R600GenSubtargetInfo(TT, GPU, /*TuneCPU*/GPU, FS),
|
|
AMDGPUSubtarget(TT),
|
|
InstrInfo(*this),
|
|
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
|
|
FMA(false),
|
|
CaymanISA(false),
|
|
CFALUBug(false),
|
|
HasVertexCache(false),
|
|
R600ALUInst(false),
|
|
FP64(false),
|
|
TexVTXClauseSize(0),
|
|
Gen(R600),
|
|
TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)),
|
|
InstrItins(getInstrItineraryForCPU(GPU)) { }
|
|
|
|
void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
|
|
unsigned NumRegionInstrs) const {
|
|
// Track register pressure so the scheduler can try to decrease
|
|
// pressure once register usage is above the threshold defined by
|
|
// SIRegisterInfo::getRegPressureSetLimit()
|
|
Policy.ShouldTrackPressure = true;
|
|
|
|
// Enabling both top down and bottom up scheduling seems to give us less
|
|
// register spills than just using one of these approaches on its own.
|
|
Policy.OnlyTopDown = false;
|
|
Policy.OnlyBottomUp = false;
|
|
|
|
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
|
|
if (!enableSIScheduler())
|
|
Policy.ShouldTrackLaneMasks = true;
|
|
}
|
|
|
|
bool GCNSubtarget::hasMadF16() const {
|
|
return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16) != -1;
|
|
}
|
|
|
|
bool GCNSubtarget::useVGPRIndexMode() const {
|
|
return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
|
|
}
|
|
|
|
bool GCNSubtarget::useAA() const { return UseAA; }
|
|
|
|
unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
|
|
if (getGeneration() >= AMDGPUSubtarget::GFX10)
|
|
return getMaxWavesPerEU();
|
|
|
|
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
|
|
if (SGPRs <= 80)
|
|
return 10;
|
|
if (SGPRs <= 88)
|
|
return 9;
|
|
if (SGPRs <= 100)
|
|
return 8;
|
|
return 7;
|
|
}
|
|
if (SGPRs <= 48)
|
|
return 10;
|
|
if (SGPRs <= 56)
|
|
return 9;
|
|
if (SGPRs <= 64)
|
|
return 8;
|
|
if (SGPRs <= 72)
|
|
return 7;
|
|
if (SGPRs <= 80)
|
|
return 6;
|
|
return 5;
|
|
}
|
|
|
|
unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
|
|
unsigned MaxWaves = getMaxWavesPerEU();
|
|
unsigned Granule = getVGPRAllocGranule();
|
|
if (VGPRs < Granule)
|
|
return MaxWaves;
|
|
unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule;
|
|
return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves);
|
|
}
|
|
|
|
unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
if (getGeneration() >= AMDGPUSubtarget::GFX10)
|
|
return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
|
|
|
|
if (MFI.hasFlatScratchInit()) {
|
|
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
|
|
return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
|
|
if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
|
|
return 4; // FLAT_SCRATCH, VCC (in that order).
|
|
}
|
|
|
|
if (isXNACKEnabled())
|
|
return 4; // XNACK, VCC (in that order).
|
|
return 2; // VCC.
|
|
}
|
|
|
|
unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
|
|
unsigned NumSGPRs,
|
|
unsigned NumVGPRs) const {
|
|
unsigned Occupancy =
|
|
std::min(getMaxWavesPerEU(),
|
|
getOccupancyWithLocalMemSize(LDSSize, F));
|
|
if (NumSGPRs)
|
|
Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
|
|
if (NumVGPRs)
|
|
Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
|
|
return Occupancy;
|
|
}
|
|
|
|
unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
// Compute maximum number of SGPRs function can use using default/requested
|
|
// minimum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
|
|
unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
|
|
unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
|
|
|
|
// Check if maximum number of SGPRs was explicitly requested using
|
|
// "amdgpu-num-sgpr" attribute.
|
|
if (F.hasFnAttribute("amdgpu-num-sgpr")) {
|
|
unsigned Requested = AMDGPU::getIntegerAttribute(
|
|
F, "amdgpu-num-sgpr", MaxNumSGPRs);
|
|
|
|
// Make sure requested value does not violate subtarget's specifications.
|
|
if (Requested && (Requested <= getReservedNumSGPRs(MF)))
|
|
Requested = 0;
|
|
|
|
// If more SGPRs are required to support the input user/system SGPRs,
|
|
// increase to accommodate them.
|
|
//
|
|
// FIXME: This really ends up using the requested number of SGPRs + number
|
|
// of reserved special registers in total. Theoretically you could re-use
|
|
// the last input registers for these special registers, but this would
|
|
// require a lot of complexity to deal with the weird aliasing.
|
|
unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs();
|
|
if (Requested && Requested < InputNumSGPRs)
|
|
Requested = InputNumSGPRs;
|
|
|
|
// Make sure requested value is compatible with values implied by
|
|
// default/requested minimum/maximum number of waves per execution unit.
|
|
if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
|
|
Requested = 0;
|
|
if (WavesPerEU.second &&
|
|
Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
|
|
Requested = 0;
|
|
|
|
if (Requested)
|
|
MaxNumSGPRs = Requested;
|
|
}
|
|
|
|
if (hasSGPRInitBug())
|
|
MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
|
|
return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF),
|
|
MaxAddressableNumSGPRs);
|
|
}
|
|
|
|
unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
// Compute maximum number of VGPRs function can use using default/requested
|
|
// minimum number of waves per execution unit.
|
|
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
|
|
unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
|
|
|
|
// Check if maximum number of VGPRs was explicitly requested using
|
|
// "amdgpu-num-vgpr" attribute.
|
|
if (F.hasFnAttribute("amdgpu-num-vgpr")) {
|
|
unsigned Requested = AMDGPU::getIntegerAttribute(
|
|
F, "amdgpu-num-vgpr", MaxNumVGPRs);
|
|
|
|
// Make sure requested value is compatible with values implied by
|
|
// default/requested minimum/maximum number of waves per execution unit.
|
|
if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
|
|
Requested = 0;
|
|
if (WavesPerEU.second &&
|
|
Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
|
|
Requested = 0;
|
|
|
|
if (Requested)
|
|
MaxNumVGPRs = Requested;
|
|
}
|
|
|
|
return MaxNumVGPRs;
|
|
}
|
|
|
|
void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
|
|
int UseOpIdx, SDep &Dep) const {
|
|
if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
|
|
!Def->isInstr() || !Use->isInstr())
|
|
return;
|
|
|
|
MachineInstr *DefI = Def->getInstr();
|
|
MachineInstr *UseI = Use->getInstr();
|
|
|
|
if (DefI->isBundle()) {
|
|
const SIRegisterInfo *TRI = getRegisterInfo();
|
|
auto Reg = Dep.getReg();
|
|
MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
|
|
MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
|
|
unsigned Lat = 0;
|
|
for (++I; I != E && I->isBundledWithPred(); ++I) {
|
|
if (I->modifiesRegister(Reg, TRI))
|
|
Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
|
|
else if (Lat)
|
|
--Lat;
|
|
}
|
|
Dep.setLatency(Lat);
|
|
} else if (UseI->isBundle()) {
|
|
const SIRegisterInfo *TRI = getRegisterInfo();
|
|
auto Reg = Dep.getReg();
|
|
MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
|
|
MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
|
|
unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
|
|
for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
|
|
if (I->readsRegister(Reg, TRI))
|
|
break;
|
|
--Lat;
|
|
}
|
|
Dep.setLatency(Lat);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct FillMFMAShadowMutation : ScheduleDAGMutation {
|
|
const SIInstrInfo *TII;
|
|
|
|
ScheduleDAGMI *DAG;
|
|
|
|
FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
|
|
|
|
bool isSALU(const SUnit *SU) const {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
return MI && TII->isSALU(*MI) && !MI->isTerminator();
|
|
}
|
|
|
|
bool isVALU(const SUnit *SU) const {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
return MI && TII->isVALU(*MI);
|
|
}
|
|
|
|
bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const {
|
|
if (Pred->NodeNum < Succ->NodeNum)
|
|
return true;
|
|
|
|
SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred});
|
|
|
|
for (unsigned I = 0; I < Succs.size(); ++I) {
|
|
for (const SDep &SI : Succs[I]->Succs) {
|
|
const SUnit *SU = SI.getSUnit();
|
|
if (SU != Succs[I] && !llvm::is_contained(Succs, SU))
|
|
Succs.push_back(SU);
|
|
}
|
|
}
|
|
|
|
SmallPtrSet<const SUnit*, 32> Visited;
|
|
while (!Preds.empty()) {
|
|
const SUnit *SU = Preds.pop_back_val();
|
|
if (llvm::is_contained(Succs, SU))
|
|
return false;
|
|
Visited.insert(SU);
|
|
for (const SDep &SI : SU->Preds)
|
|
if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit()))
|
|
Preds.push_back(SI.getSUnit());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Link as much SALU intructions in chain as possible. Return the size
|
|
// of the chain. Links up to MaxChain instructions.
|
|
unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
|
|
SmallPtrSetImpl<SUnit *> &Visited) const {
|
|
SmallVector<SUnit *, 8> Worklist({To});
|
|
unsigned Linked = 0;
|
|
|
|
while (!Worklist.empty() && MaxChain-- > 0) {
|
|
SUnit *SU = Worklist.pop_back_val();
|
|
if (!Visited.insert(SU).second)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
|
|
dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
|
|
|
|
if (SU->addPred(SDep(From, SDep::Artificial), false))
|
|
++Linked;
|
|
|
|
for (SDep &SI : From->Succs) {
|
|
SUnit *SUv = SI.getSUnit();
|
|
if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU))
|
|
SUv->addPred(SDep(SU, SDep::Artificial), false);
|
|
}
|
|
|
|
for (SDep &SI : SU->Succs) {
|
|
SUnit *Succ = SI.getSUnit();
|
|
if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ))
|
|
Worklist.push_back(Succ);
|
|
}
|
|
}
|
|
|
|
return Linked;
|
|
}
|
|
|
|
void apply(ScheduleDAGInstrs *DAGInstrs) override {
|
|
const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
|
|
if (!ST.hasMAIInsts() || DisablePowerSched)
|
|
return;
|
|
DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
|
|
const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
|
|
if (!TSchedModel || DAG->SUnits.empty())
|
|
return;
|
|
|
|
// Scan for MFMA long latency instructions and try to add a dependency
|
|
// of available SALU instructions to give them a chance to fill MFMA
|
|
// shadow. That is desirable to fill MFMA shadow with SALU instructions
|
|
// rather than VALU to prevent power consumption bursts and throttle.
|
|
auto LastSALU = DAG->SUnits.begin();
|
|
auto E = DAG->SUnits.end();
|
|
SmallPtrSet<SUnit*, 32> Visited;
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
MachineInstr &MAI = *SU.getInstr();
|
|
if (!TII->isMAI(MAI) ||
|
|
MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32 ||
|
|
MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32)
|
|
continue;
|
|
|
|
unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
|
|
|
|
LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
|
|
dbgs() << "Need " << Lat
|
|
<< " instructions to cover latency.\n");
|
|
|
|
// Find up to Lat independent scalar instructions as early as
|
|
// possible such that they can be scheduled after this MFMA.
|
|
for ( ; Lat && LastSALU != E; ++LastSALU) {
|
|
if (Visited.count(&*LastSALU))
|
|
continue;
|
|
|
|
if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU))
|
|
continue;
|
|
|
|
Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void GCNSubtarget::getPostRAMutations(
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
|
|
Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
|
|
}
|
|
|
|
const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
|
|
if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
|
|
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
|
|
else
|
|
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
|
|
}
|
|
|
|
const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
|
|
if (TM.getTargetTriple().getArch() == Triple::amdgcn)
|
|
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
|
|
else
|
|
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
|
|
}
|