llvm-project/llvm/lib/Target/Mips/MipsISelLowering.h

570 lines
21 KiB
C++

//===-- MipsISelLowering.h - Mips DAG Lowering Interface --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H
#define LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H
#include "MCTargetDesc/MipsABIInfo.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetLowering.h"
#include <deque>
#include <string>
namespace llvm {
namespace MipsISD {
enum NodeType {
// Start the numbering from where ISD NodeType finishes.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
// Jump and link (call)
JmpLink,
// Tail call
TailCall,
// Get the Higher 16 bits from a 32-bit immediate
// No relation with Mips Hi register
Hi,
// Get the Lower 16 bits from a 32-bit immediate
// No relation with Mips Lo register
Lo,
// Handle gp_rel (small data/bss sections) relocation.
GPRel,
// Thread Pointer
ThreadPointer,
// Floating Point Branch Conditional
FPBrcond,
// Floating Point Compare
FPCmp,
// Floating Point Conditional Moves
CMovFP_T,
CMovFP_F,
// FP-to-int truncation node.
TruncIntFP,
// Return
Ret,
EH_RETURN,
// Node used to extract integer from accumulator.
MFHI,
MFLO,
// Node used to insert integers to accumulator.
MTLOHI,
// Mult nodes.
Mult,
Multu,
// MAdd/Sub nodes
MAdd,
MAddu,
MSub,
MSubu,
// DivRem(u)
DivRem,
DivRemU,
DivRem16,
DivRemU16,
BuildPairF64,
ExtractElementF64,
Wrapper,
DynAlloc,
Sync,
Ext,
Ins,
// EXTR.W instrinsic nodes.
EXTP,
EXTPDP,
EXTR_S_H,
EXTR_W,
EXTR_R_W,
EXTR_RS_W,
SHILO,
MTHLIP,
// DPA.W intrinsic nodes.
MULSAQ_S_W_PH,
MAQ_S_W_PHL,
MAQ_S_W_PHR,
MAQ_SA_W_PHL,
MAQ_SA_W_PHR,
DPAU_H_QBL,
DPAU_H_QBR,
DPSU_H_QBL,
DPSU_H_QBR,
DPAQ_S_W_PH,
DPSQ_S_W_PH,
DPAQ_SA_L_W,
DPSQ_SA_L_W,
DPA_W_PH,
DPS_W_PH,
DPAQX_S_W_PH,
DPAQX_SA_W_PH,
DPAX_W_PH,
DPSX_W_PH,
DPSQX_S_W_PH,
DPSQX_SA_W_PH,
MULSA_W_PH,
MULT,
MULTU,
MADD_DSP,
MADDU_DSP,
MSUB_DSP,
MSUBU_DSP,
// DSP shift nodes.
SHLL_DSP,
SHRA_DSP,
SHRL_DSP,
// DSP setcc and select_cc nodes.
SETCC_DSP,
SELECT_CC_DSP,
// Vector comparisons.
// These take a vector and return a boolean.
VALL_ZERO,
VANY_ZERO,
VALL_NONZERO,
VANY_NONZERO,
// These take a vector and return a vector bitmask.
VCEQ,
VCLE_S,
VCLE_U,
VCLT_S,
VCLT_U,
// Element-wise vector max/min.
VSMAX,
VSMIN,
VUMAX,
VUMIN,
// Vector Shuffle with mask as an operand
VSHF, // Generic shuffle
SHF, // 4-element set shuffle.
ILVEV, // Interleave even elements
ILVOD, // Interleave odd elements
ILVL, // Interleave left elements
ILVR, // Interleave right elements
PCKEV, // Pack even elements
PCKOD, // Pack odd elements
// Vector Lane Copy
INSVE, // Copy element from one vector to another
// Combined (XOR (OR $a, $b), -1)
VNOR,
// Extended vector element extraction
VEXTRACT_SEXT_ELT,
VEXTRACT_ZEXT_ELT,
// Load/Store Left/Right nodes.
LWL = ISD::FIRST_TARGET_MEMORY_OPCODE,
LWR,
SWL,
SWR,
LDL,
LDR,
SDL,
SDR
};
}
//===--------------------------------------------------------------------===//
// TargetLowering Implementation
//===--------------------------------------------------------------------===//
class MipsFunctionInfo;
class MipsSubtarget;
class MipsCCState;
class MipsTargetLowering : public TargetLowering {
bool isMicroMips;
public:
explicit MipsTargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
static const MipsTargetLowering *create(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
void LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
/// LowerOperation - Provide custom lowering hooks for some operations.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const override;
/// getTargetNodeName - This method returns the name of a target specific
// DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
/// getSetCCResultType - get the ISD::SETCC result ValueType
EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const override;
struct LTStr {
bool operator()(const char *S1, const char *S2) const {
return strcmp(S1, S2) < 0;
}
};
void HandleByVal(CCState *, unsigned &, unsigned) const override;
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
protected:
SDValue getGlobalReg(SelectionDAG &DAG, EVT Ty) const;
// This method creates the following nodes, which are necessary for
// computing a local symbol's address:
//
// (add (load (wrapper $gp, %got(sym)), %lo(sym))
template <class NodeTy>
SDValue getAddrLocal(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG,
bool IsN32OrN64) const {
unsigned GOTFlag = IsN32OrN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
getTargetNode(N, Ty, DAG, GOTFlag));
SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
MachinePointerInfo::getGOT(), false, false,
false, 0);
unsigned LoFlag = IsN32OrN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty,
getTargetNode(N, Ty, DAG, LoFlag));
return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
}
// This method creates the following nodes, which are necessary for
// computing a global symbol's address:
//
// (load (wrapper $gp, %got(sym)))
template <class NodeTy>
SDValue getAddrGlobal(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG,
unsigned Flag, SDValue Chain,
const MachinePointerInfo &PtrInfo) const {
SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
getTargetNode(N, Ty, DAG, Flag));
return DAG.getLoad(Ty, DL, Chain, Tgt, PtrInfo, false, false, false, 0);
}
// This method creates the following nodes, which are necessary for
// computing a global symbol's address in large-GOT mode:
//
// (load (wrapper (add %hi(sym), $gp), %lo(sym)))
template <class NodeTy>
SDValue getAddrGlobalLargeGOT(NodeTy *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned HiFlag,
unsigned LoFlag, SDValue Chain,
const MachinePointerInfo &PtrInfo) const {
SDValue Hi =
DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(N, Ty, DAG, HiFlag));
Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
getTargetNode(N, Ty, DAG, LoFlag));
return DAG.getLoad(Ty, DL, Chain, Wrapper, PtrInfo, false, false, false,
0);
}
// This method creates the following nodes, which are necessary for
// computing a symbol's address in non-PIC mode:
//
// (add %hi(sym), %lo(sym))
template <class NodeTy>
SDValue getAddrNonPIC(NodeTy *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG) const {
SDValue Hi = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_HI);
SDValue Lo = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_LO);
return DAG.getNode(ISD::ADD, DL, Ty,
DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
}
// This method creates the following nodes, which are necessary for
// computing a symbol's address using gp-relative addressing:
//
// (add $gp, %gp_rel(sym))
template <class NodeTy>
SDValue getAddrGPRel(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG) const {
assert(Ty == MVT::i32);
SDValue GPRel = getTargetNode(N, Ty, DAG, MipsII::MO_GPREL);
return DAG.getNode(ISD::ADD, DL, Ty,
DAG.getRegister(Mips::GP, Ty),
DAG.getNode(MipsISD::GPRel, DL, DAG.getVTList(Ty),
GPRel));
}
/// This function fills Ops, which is the list of operands that will later
/// be used when a function call node is created. It also generates
/// copyToReg nodes to set up argument registers.
virtual void
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
SDValue Chain) const;
protected:
SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSTORE(SDValue Op, SelectionDAG &DAG) const;
// Subtarget Info
const MipsSubtarget &Subtarget;
// Cache the ABI from the TargetMachine, we use it everywhere.
const MipsABIInfo &ABI;
private:
// Create a TargetGlobalAddress node.
SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetExternalSymbol node.
SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetBlockAddress node.
SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetJumpTable node.
SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetConstantPool node.
SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Lower Operand helpers
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
TargetLowering::CallLoweringInfo &CLI) const;
// Lower Operand specifics
SDValue lowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFABS(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG& DAG) const;
SDValue lowerShiftRightParts(SDValue Op, SelectionDAG& DAG,
bool IsSRA) const;
SDValue lowerADD(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
/// isEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization.
virtual bool
isEligibleForTailCallOptimization(const CCState &CCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo &FI) const = 0;
/// copyByValArg - Copy argument registers which were used to pass a byval
/// argument to the stack. Create a stack frame object for the byval
/// argument.
void copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
SmallVectorImpl<SDValue> &InVals,
const Argument *FuncArg, unsigned FirstReg,
unsigned LastReg, const CCValAssign &VA,
MipsCCState &State) const;
/// passByValArg - Pass a byval argument in registers or on stack.
void passByValArg(SDValue Chain, SDLoc DL,
std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
unsigned FirstReg, unsigned LastReg,
const ISD::ArgFlagsTy &Flags, bool isLittle,
const CCValAssign &VA) const;
/// writeVarArgRegs - Write variable function arguments passed in registers
/// to the stack. Also create a stack frame object for the first variable
/// argument.
void writeVarArgRegs(std::vector<SDValue> &OutChains, SDValue Chain,
SDLoc DL, SelectionDAG &DAG, CCState &State) const;
SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue passArgOnStack(SDValue StackPtr, unsigned Offset, SDValue Chain,
SDValue Arg, SDLoc DL, bool IsTailCall,
SelectionDAG &DAG) const;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const override;
bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const override;
// Inline asm support
ConstraintType
getConstraintType(const std::string &Constraint) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const override;
/// This function parses registers that appear in inline-asm constraints.
/// It returns pair (0, 0) on failure.
std::pair<unsigned, const TargetRegisterClass *>
parseRegForInlineAsmConstraint(StringRef C, MVT VT) const;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
const std::string &Constraint,
MVT VT) const override;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
/// true it means one of the asm constraint of the inline asm instruction
/// being processed is 'm'.
void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
unsigned getInlineAsmMemConstraint(
const std::string &ConstraintCode) const override {
if (ConstraintCode == "R")
return InlineAsm::Constraint_R;
else if (ConstraintCode == "ZC")
return InlineAsm::Constraint_ZC;
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const override;
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
unsigned getJumpTableEncoding() const override;
/// Emit a sign-extension using sll/sra, seb, or seh appropriately.
MachineBasicBlock *emitSignExtendToI32InReg(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size, unsigned DstReg,
unsigned SrcRec) const;
MachineBasicBlock *emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode, bool Nand = false) const;
MachineBasicBlock *emitAtomicBinaryPartword(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
bool Nand = false) const;
MachineBasicBlock *emitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size) const;
MachineBasicBlock *emitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size) const;
MachineBasicBlock *emitSEL_D(MachineInstr *MI, MachineBasicBlock *BB) const;
MachineBasicBlock *emitPseudoSELECT(MachineInstr *MI,
MachineBasicBlock *BB, bool isFPCmp,
unsigned Opc) const;
};
/// Create MipsTargetLowering objects.
const MipsTargetLowering *
createMips16TargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
const MipsTargetLowering *
createMipsSETargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
namespace Mips {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
}
}
#endif