llvm-project/lldb/source/Symbol/SymbolFile.cpp

256 lines
8.5 KiB
C++

//===-- SymbolFile.cpp ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/TypeSystem.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-private.h"
#include <future>
using namespace lldb_private;
using namespace lldb;
void SymbolFile::PreloadSymbols() {
// No-op for most implementations.
}
std::recursive_mutex &SymbolFile::GetModuleMutex() const {
return GetObjectFile()->GetModule()->GetMutex();
}
ObjectFile *SymbolFile::GetMainObjectFile() {
return m_objfile_sp->GetModule()->GetObjectFile();
}
SymbolFile *SymbolFile::FindPlugin(ObjectFileSP objfile_sp) {
std::unique_ptr<SymbolFile> best_symfile_up;
if (objfile_sp != nullptr) {
// We need to test the abilities of this section list. So create what it
// would be with this new objfile_sp.
lldb::ModuleSP module_sp(objfile_sp->GetModule());
if (module_sp) {
// Default to the main module section list.
ObjectFile *module_obj_file = module_sp->GetObjectFile();
if (module_obj_file != objfile_sp.get()) {
// Make sure the main object file's sections are created
module_obj_file->GetSectionList();
objfile_sp->CreateSections(*module_sp->GetUnifiedSectionList());
}
}
// TODO: Load any plug-ins in the appropriate plug-in search paths and
// iterate over all of them to find the best one for the job.
uint32_t best_symfile_abilities = 0;
SymbolFileCreateInstance create_callback;
for (uint32_t idx = 0;
(create_callback = PluginManager::GetSymbolFileCreateCallbackAtIndex(
idx)) != nullptr;
++idx) {
std::unique_ptr<SymbolFile> curr_symfile_up(create_callback(objfile_sp));
if (curr_symfile_up) {
const uint32_t sym_file_abilities = curr_symfile_up->GetAbilities();
if (sym_file_abilities > best_symfile_abilities) {
best_symfile_abilities = sym_file_abilities;
best_symfile_up.reset(curr_symfile_up.release());
// If any symbol file parser has all of the abilities, then we should
// just stop looking.
if ((kAllAbilities & sym_file_abilities) == kAllAbilities)
break;
}
}
}
if (best_symfile_up) {
// Let the winning symbol file parser initialize itself more completely
// now that it has been chosen
best_symfile_up->InitializeObject();
}
}
return best_symfile_up.release();
}
llvm::Expected<TypeSystem &>
SymbolFile::GetTypeSystemForLanguage(lldb::LanguageType language) {
auto type_system_or_err =
m_objfile_sp->GetModule()->GetTypeSystemForLanguage(language);
if (type_system_or_err) {
type_system_or_err->SetSymbolFile(this);
}
return type_system_or_err;
}
uint32_t SymbolFile::ResolveSymbolContext(const FileSpec &file_spec,
uint32_t line, bool check_inlines,
lldb::SymbolContextItem resolve_scope,
SymbolContextList &sc_list) {
return 0;
}
uint32_t
SymbolFile::FindGlobalVariables(ConstString name,
const CompilerDeclContext *parent_decl_ctx,
uint32_t max_matches, VariableList &variables) {
return 0;
}
uint32_t SymbolFile::FindGlobalVariables(const RegularExpression &regex,
uint32_t max_matches,
VariableList &variables) {
return 0;
}
uint32_t SymbolFile::FindFunctions(ConstString name,
const CompilerDeclContext *parent_decl_ctx,
lldb::FunctionNameType name_type_mask,
bool include_inlines, bool append,
SymbolContextList &sc_list) {
if (!append)
sc_list.Clear();
return 0;
}
uint32_t SymbolFile::FindFunctions(const RegularExpression &regex,
bool include_inlines, bool append,
SymbolContextList &sc_list) {
if (!append)
sc_list.Clear();
return 0;
}
void SymbolFile::GetMangledNamesForFunction(
const std::string &scope_qualified_name,
std::vector<ConstString> &mangled_names) {
return;
}
uint32_t SymbolFile::FindTypes(
ConstString name, const CompilerDeclContext *parent_decl_ctx,
bool append, uint32_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types) {
if (!append)
types.Clear();
return 0;
}
size_t SymbolFile::FindTypes(llvm::ArrayRef<CompilerContext> pattern,
LanguageSet languages, bool append,
TypeMap &types) {
if (!append)
types.Clear();
return 0;
}
void SymbolFile::AssertModuleLock() {
// The code below is too expensive to leave enabled in release builds. It's
// enabled in debug builds or when the correct macro is set.
#if defined(LLDB_CONFIGURATION_DEBUG)
// We assert that we have to module lock by trying to acquire the lock from a
// different thread. Note that we must abort if the result is true to
// guarantee correctness.
assert(std::async(std::launch::async,
[this] { return this->GetModuleMutex().try_lock(); })
.get() == false &&
"Module is not locked");
#endif
}
uint32_t SymbolFile::GetNumCompileUnits() {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
if (!m_compile_units) {
// Create an array of compile unit shared pointers -- which will each
// remain NULL until someone asks for the actual compile unit information.
m_compile_units.emplace(CalculateNumCompileUnits());
}
return m_compile_units->size();
}
CompUnitSP SymbolFile::GetCompileUnitAtIndex(uint32_t idx) {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
uint32_t num = GetNumCompileUnits();
if (idx >= num)
return nullptr;
lldb::CompUnitSP &cu_sp = (*m_compile_units)[idx];
if (!cu_sp)
cu_sp = ParseCompileUnitAtIndex(idx);
return cu_sp;
}
void SymbolFile::SetCompileUnitAtIndex(uint32_t idx, const CompUnitSP &cu_sp) {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
const size_t num_compile_units = GetNumCompileUnits();
assert(idx < num_compile_units);
(void)num_compile_units;
// Fire off an assertion if this compile unit already exists for now. The
// partial parsing should take care of only setting the compile unit
// once, so if this assertion fails, we need to make sure that we don't
// have a race condition, or have a second parse of the same compile
// unit.
assert((*m_compile_units)[idx] == nullptr);
(*m_compile_units)[idx] = cu_sp;
}
Symtab *SymbolFile::GetSymtab() {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
if (m_symtab)
return m_symtab;
// Fetch the symtab from the main object file.
m_symtab = GetMainObjectFile()->GetSymtab();
// Then add our symbols to it.
if (m_symtab)
AddSymbols(*m_symtab);
return m_symtab;
}
void SymbolFile::SectionFileAddressesChanged() {
ObjectFile *module_objfile = GetMainObjectFile();
ObjectFile *symfile_objfile = GetObjectFile();
if (symfile_objfile != module_objfile)
symfile_objfile->SectionFileAddressesChanged();
if (m_symtab)
m_symtab->SectionFileAddressesChanged();
}
void SymbolFile::Dump(Stream &s) {
s.Format("SymbolFile {0} ({1})\n", GetPluginName(),
GetMainObjectFile()->GetFileSpec());
s.PutCString("Types:\n");
m_type_list.Dump(&s, /*show_context*/ false);
s.PutChar('\n');
s.PutCString("Compile units:\n");
if (m_compile_units) {
for (const CompUnitSP &cu_sp : *m_compile_units) {
// We currently only dump the compile units that have been parsed
if (cu_sp)
cu_sp->Dump(&s, /*show_context*/ false);
}
}
s.PutChar('\n');
if (Symtab *symtab = GetSymtab())
symtab->Dump(&s, nullptr, eSortOrderNone);
}
SymbolFile::RegisterInfoResolver::~RegisterInfoResolver() = default;