forked from OSchip/llvm-project
1666 lines
59 KiB
C++
1666 lines
59 KiB
C++
//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Nick Lewycky and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Path-sensitive optimizer. In a branch where x == y, replace uses of
|
|
// x with y. Permits further optimization, such as the elimination of
|
|
// the unreachable call:
|
|
//
|
|
// void test(int *p, int *q)
|
|
// {
|
|
// if (p != q)
|
|
// return;
|
|
//
|
|
// if (*p != *q)
|
|
// foo(); // unreachable
|
|
// }
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass focusses on four properties; equals, not equals, less-than
|
|
// and less-than-or-equals-to. The greater-than forms are also held just
|
|
// to allow walking from a lesser node to a greater one. These properties
|
|
// are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
|
|
//
|
|
// These relationships define a graph between values of the same type. Each
|
|
// Value is stored in a map table that retrieves the associated Node. This
|
|
// is how EQ relationships are stored; the map contains pointers to the
|
|
// same node. The node contains a most canonical Value* form and the list of
|
|
// known relationships.
|
|
//
|
|
// If two nodes are known to be inequal, then they will contain pointers to
|
|
// each other with an "NE" relationship. If node getNode(%x) is less than
|
|
// getNode(%y), then the %x node will contain <%y, GT> and %y will contain
|
|
// <%x, LT>. This allows us to tie nodes together into a graph like this:
|
|
//
|
|
// %a < %b < %c < %d
|
|
//
|
|
// with four nodes representing the properties. The InequalityGraph provides
|
|
// querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
|
|
// To find a relationship, we start with one of the nodes any binary search
|
|
// through its list to find where the relationships with the second node start.
|
|
// Then we iterate through those to find the first relationship that dominates
|
|
// our context node.
|
|
//
|
|
// To create these properties, we wait until a branch or switch instruction
|
|
// implies that a particular value is true (or false). The VRPSolver is
|
|
// responsible for analyzing the variable and seeing what new inferences
|
|
// can be made from each property. For example:
|
|
//
|
|
// %P = seteq int* %ptr, null
|
|
// %a = or bool %P, %Q
|
|
// br bool %a label %cond_true, label %cond_false
|
|
//
|
|
// For the true branch, the VRPSolver will start with %a EQ true and look at
|
|
// the definition of %a and find that it can infer that %P and %Q are both
|
|
// true. From %P being true, it can infer that %ptr NE null. For the false
|
|
// branch it can't infer anything from the "or" instruction.
|
|
//
|
|
// Besides branches, we can also infer properties from instruction that may
|
|
// have undefined behaviour in certain cases. For example, the dividend of
|
|
// a division may never be zero. After the division instruction, we may assume
|
|
// that the dividend is not equal to zero.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "predsimplify"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/ET-Forest.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumVarsReplaced, "Number of argument substitutions");
|
|
STATISTIC(NumInstruction , "Number of instructions removed");
|
|
STATISTIC(NumSimple , "Number of simple replacements");
|
|
STATISTIC(NumBlocks , "Number of blocks marked unreachable");
|
|
|
|
namespace {
|
|
// SLT SGT ULT UGT EQ
|
|
// 0 1 0 1 0 -- GT 10
|
|
// 0 1 0 1 1 -- GE 11
|
|
// 0 1 1 0 0 -- SGTULT 12
|
|
// 0 1 1 0 1 -- SGEULE 13
|
|
// 0 1 1 1 0 -- SGTUNE 14
|
|
// 0 1 1 1 1 -- SGEUANY 15
|
|
// 1 0 0 1 0 -- SLTUGT 18
|
|
// 1 0 0 1 1 -- SLEUGE 19
|
|
// 1 0 1 0 0 -- LT 20
|
|
// 1 0 1 0 1 -- LE 21
|
|
// 1 0 1 1 0 -- SLTUNE 22
|
|
// 1 0 1 1 1 -- SLEUANY 23
|
|
// 1 1 0 1 0 -- SNEUGT 26
|
|
// 1 1 0 1 1 -- SANYUGE 27
|
|
// 1 1 1 0 0 -- SNEULT 28
|
|
// 1 1 1 0 1 -- SANYULE 29
|
|
// 1 1 1 1 0 -- NE 30
|
|
enum LatticeBits {
|
|
EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
|
|
};
|
|
enum LatticeVal {
|
|
GT = SGT_BIT | UGT_BIT,
|
|
GE = GT | EQ_BIT,
|
|
LT = SLT_BIT | ULT_BIT,
|
|
LE = LT | EQ_BIT,
|
|
NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
|
|
SGTULT = SGT_BIT | ULT_BIT,
|
|
SGEULE = SGTULT | EQ_BIT,
|
|
SLTUGT = SLT_BIT | UGT_BIT,
|
|
SLEUGE = SLTUGT | EQ_BIT,
|
|
SNEULT = SLT_BIT | SGT_BIT | ULT_BIT,
|
|
SNEUGT = SLT_BIT | SGT_BIT | UGT_BIT,
|
|
SLTUNE = SLT_BIT | ULT_BIT | UGT_BIT,
|
|
SGTUNE = SGT_BIT | ULT_BIT | UGT_BIT,
|
|
SLEUANY = SLT_BIT | ULT_BIT | UGT_BIT | EQ_BIT,
|
|
SGEUANY = SGT_BIT | ULT_BIT | UGT_BIT | EQ_BIT,
|
|
SANYULE = SLT_BIT | SGT_BIT | ULT_BIT | EQ_BIT,
|
|
SANYUGE = SLT_BIT | SGT_BIT | UGT_BIT | EQ_BIT
|
|
};
|
|
|
|
static bool validPredicate(LatticeVal LV) {
|
|
switch (LV) {
|
|
case GT: case GE: case LT: case LE: case NE:
|
|
case SGTULT: case SGTUNE: case SGEULE:
|
|
case SLTUGT: case SLTUNE: case SLEUGE:
|
|
case SNEULT: case SNEUGT:
|
|
case SLEUANY: case SGEUANY: case SANYULE: case SANYUGE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// reversePredicate - reverse the direction of the inequality
|
|
static LatticeVal reversePredicate(LatticeVal LV) {
|
|
unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
|
|
if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
|
|
reverse |= (SLT_BIT|SGT_BIT);
|
|
|
|
if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
|
|
reverse |= (ULT_BIT|UGT_BIT);
|
|
|
|
LatticeVal Rev = static_cast<LatticeVal>(reverse);
|
|
assert(validPredicate(Rev) && "Failed reversing predicate.");
|
|
return Rev;
|
|
}
|
|
|
|
/// The InequalityGraph stores the relationships between values.
|
|
/// Each Value in the graph is assigned to a Node. Nodes are pointer
|
|
/// comparable for equality. The caller is expected to maintain the logical
|
|
/// consistency of the system.
|
|
///
|
|
/// The InequalityGraph class may invalidate Node*s after any mutator call.
|
|
/// @brief The InequalityGraph stores the relationships between values.
|
|
class VISIBILITY_HIDDEN InequalityGraph {
|
|
ETNode *TreeRoot;
|
|
|
|
InequalityGraph(); // DO NOT IMPLEMENT
|
|
InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
|
|
public:
|
|
explicit InequalityGraph(ETNode *TreeRoot) : TreeRoot(TreeRoot) {}
|
|
|
|
class Node;
|
|
|
|
/// This is a StrictWeakOrdering predicate that sorts ETNodes by how many
|
|
/// children they have. With this, you can iterate through a list sorted by
|
|
/// this operation and the first matching entry is the most specific match
|
|
/// for your basic block. The order provided is total; ETNodes with the
|
|
/// same number of children are sorted by pointer address.
|
|
struct VISIBILITY_HIDDEN OrderByDominance {
|
|
bool operator()(const ETNode *LHS, const ETNode *RHS) const {
|
|
unsigned LHS_spread = LHS->getDFSNumOut() - LHS->getDFSNumIn();
|
|
unsigned RHS_spread = RHS->getDFSNumOut() - RHS->getDFSNumIn();
|
|
if (LHS_spread != RHS_spread) return LHS_spread < RHS_spread;
|
|
else return LHS < RHS;
|
|
}
|
|
};
|
|
|
|
/// An Edge is contained inside a Node making one end of the edge implicit
|
|
/// and contains a pointer to the other end. The edge contains a lattice
|
|
/// value specifying the relationship between the two nodes. Further, there
|
|
/// is an ETNode specifying which subtree of the dominator the edge applies.
|
|
class VISIBILITY_HIDDEN Edge {
|
|
public:
|
|
Edge(unsigned T, LatticeVal V, ETNode *ST)
|
|
: To(T), LV(V), Subtree(ST) {}
|
|
|
|
unsigned To;
|
|
LatticeVal LV;
|
|
ETNode *Subtree;
|
|
|
|
bool operator<(const Edge &edge) const {
|
|
if (To != edge.To) return To < edge.To;
|
|
else return OrderByDominance()(Subtree, edge.Subtree);
|
|
}
|
|
bool operator<(unsigned to) const {
|
|
return To < to;
|
|
}
|
|
};
|
|
|
|
/// A single node in the InequalityGraph. This stores the canonical Value
|
|
/// for the node, as well as the relationships with the neighbours.
|
|
///
|
|
/// Because the lists are intended to be used for traversal, it is invalid
|
|
/// for the node to list itself in LessEqual or GreaterEqual lists. The
|
|
/// fact that a node is equal to itself is implied, and may be checked
|
|
/// with pointer comparison.
|
|
/// @brief A single node in the InequalityGraph.
|
|
class VISIBILITY_HIDDEN Node {
|
|
friend class InequalityGraph;
|
|
|
|
typedef SmallVector<Edge, 4> RelationsType;
|
|
RelationsType Relations;
|
|
|
|
Value *Canonical;
|
|
|
|
// TODO: can this idea improve performance?
|
|
//friend class std::vector<Node>;
|
|
//Node(Node &N) { RelationsType.swap(N.RelationsType); }
|
|
|
|
public:
|
|
typedef RelationsType::iterator iterator;
|
|
typedef RelationsType::const_iterator const_iterator;
|
|
|
|
Node(Value *V) : Canonical(V) {}
|
|
|
|
private:
|
|
#ifndef NDEBUG
|
|
public:
|
|
virtual ~Node() {}
|
|
virtual void dump() const {
|
|
dump(*cerr.stream());
|
|
}
|
|
private:
|
|
void dump(std::ostream &os) const {
|
|
os << *getValue() << ":\n";
|
|
for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
|
|
static const std::string names[32] =
|
|
{ "000000", "000001", "000002", "000003", "000004", "000005",
|
|
"000006", "000007", "000008", "000009", " >", " >=",
|
|
" s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
|
|
" s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
|
|
"000024", "000025", " u>", " u>=", " u<", " u<=",
|
|
" !=", "000031" };
|
|
os << " " << names[NI->LV] << " " << NI->To
|
|
<< "(" << NI->Subtree << ")\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
iterator begin() { return Relations.begin(); }
|
|
iterator end() { return Relations.end(); }
|
|
const_iterator begin() const { return Relations.begin(); }
|
|
const_iterator end() const { return Relations.end(); }
|
|
|
|
iterator find(unsigned n, ETNode *Subtree) {
|
|
iterator E = end();
|
|
for (iterator I = std::lower_bound(begin(), E, n);
|
|
I != E && I->To == n; ++I) {
|
|
if (Subtree->DominatedBy(I->Subtree))
|
|
return I;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
const_iterator find(unsigned n, ETNode *Subtree) const {
|
|
const_iterator E = end();
|
|
for (const_iterator I = std::lower_bound(begin(), E, n);
|
|
I != E && I->To == n; ++I) {
|
|
if (Subtree->DominatedBy(I->Subtree))
|
|
return I;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
Value *getValue() const
|
|
{
|
|
return Canonical;
|
|
}
|
|
|
|
/// Updates the lattice value for a given node. Create a new entry if
|
|
/// one doesn't exist, otherwise it merges the values. The new lattice
|
|
/// value must not be inconsistent with any previously existing value.
|
|
void update(unsigned n, LatticeVal R, ETNode *Subtree) {
|
|
assert(validPredicate(R) && "Invalid predicate.");
|
|
iterator I = find(n, Subtree);
|
|
if (I == end()) {
|
|
Edge edge(n, R, Subtree);
|
|
iterator Insert = std::lower_bound(begin(), end(), edge);
|
|
Relations.insert(Insert, edge);
|
|
} else {
|
|
LatticeVal LV = static_cast<LatticeVal>(I->LV & R);
|
|
assert(validPredicate(LV) && "Invalid union of lattice values.");
|
|
if (LV != I->LV) {
|
|
if (Subtree == I->Subtree)
|
|
I->LV = LV;
|
|
else {
|
|
assert(Subtree->DominatedBy(I->Subtree) &&
|
|
"Find returned subtree that doesn't apply.");
|
|
|
|
Edge edge(n, R, Subtree);
|
|
iterator Insert = std::lower_bound(begin(), end(), edge);
|
|
Relations.insert(Insert, edge);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
private:
|
|
struct VISIBILITY_HIDDEN NodeMapEdge {
|
|
Value *V;
|
|
unsigned index;
|
|
ETNode *Subtree;
|
|
|
|
NodeMapEdge(Value *V, unsigned index, ETNode *Subtree)
|
|
: V(V), index(index), Subtree(Subtree) {}
|
|
|
|
bool operator==(const NodeMapEdge &RHS) const {
|
|
return V == RHS.V &&
|
|
Subtree == RHS.Subtree;
|
|
}
|
|
|
|
bool operator<(const NodeMapEdge &RHS) const {
|
|
if (V != RHS.V) return V < RHS.V;
|
|
return OrderByDominance()(Subtree, RHS.Subtree);
|
|
}
|
|
|
|
bool operator<(Value *RHS) const {
|
|
return V < RHS;
|
|
}
|
|
};
|
|
|
|
typedef std::vector<NodeMapEdge> NodeMapType;
|
|
NodeMapType NodeMap;
|
|
|
|
std::vector<Node> Nodes;
|
|
|
|
std::vector<std::pair<ConstantInt *, unsigned> > Constants;
|
|
void initializeConstant(Constant *C, unsigned index) {
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(C);
|
|
if (!CI) return;
|
|
|
|
// XXX: instead of O(n) calls to addInequality, just find the 2, 3 or 4
|
|
// nodes that are nearest less than or greater than (signed or unsigned).
|
|
for (std::vector<std::pair<ConstantInt *, unsigned> >::iterator
|
|
I = Constants.begin(), E = Constants.end(); I != E; ++I) {
|
|
ConstantInt *Other = I->first;
|
|
if (CI->getType() == Other->getType()) {
|
|
unsigned lv = 0;
|
|
|
|
if (CI->getZExtValue() < Other->getZExtValue())
|
|
lv |= ULT_BIT;
|
|
else
|
|
lv |= UGT_BIT;
|
|
|
|
if (CI->getSExtValue() < Other->getSExtValue())
|
|
lv |= SLT_BIT;
|
|
else
|
|
lv |= SGT_BIT;
|
|
|
|
LatticeVal LV = static_cast<LatticeVal>(lv);
|
|
assert(validPredicate(LV) && "Not a valid predicate.");
|
|
if (!isRelatedBy(index, I->second, TreeRoot, LV))
|
|
addInequality(index, I->second, TreeRoot, LV);
|
|
}
|
|
}
|
|
Constants.push_back(std::make_pair(CI, index));
|
|
}
|
|
|
|
public:
|
|
/// node - returns the node object at a given index retrieved from getNode.
|
|
/// Index zero is reserved and may not be passed in here. The pointer
|
|
/// returned is valid until the next call to newNode or getOrInsertNode.
|
|
Node *node(unsigned index) {
|
|
assert(index != 0 && "Zero index is reserved for not found.");
|
|
assert(index <= Nodes.size() && "Index out of range.");
|
|
return &Nodes[index-1];
|
|
}
|
|
|
|
/// Returns the node currently representing Value V, or zero if no such
|
|
/// node exists.
|
|
unsigned getNode(Value *V, ETNode *Subtree) {
|
|
NodeMapType::iterator E = NodeMap.end();
|
|
NodeMapEdge Edge(V, 0, Subtree);
|
|
NodeMapType::iterator I = std::lower_bound(NodeMap.begin(), E, Edge);
|
|
while (I != E && I->V == V) {
|
|
if (Subtree->DominatedBy(I->Subtree))
|
|
return I->index;
|
|
++I;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getOrInsertNode - always returns a valid node index, creating a node
|
|
/// to match the Value if needed.
|
|
unsigned getOrInsertNode(Value *V, ETNode *Subtree) {
|
|
if (unsigned n = getNode(V, Subtree))
|
|
return n;
|
|
else
|
|
return newNode(V);
|
|
}
|
|
|
|
/// newNode - creates a new node for a given Value and returns the index.
|
|
unsigned newNode(Value *V) {
|
|
Nodes.push_back(Node(V));
|
|
|
|
NodeMapEdge MapEntry = NodeMapEdge(V, Nodes.size(), TreeRoot);
|
|
assert(!std::binary_search(NodeMap.begin(), NodeMap.end(), MapEntry) &&
|
|
"Attempt to create a duplicate Node.");
|
|
NodeMap.insert(std::lower_bound(NodeMap.begin(), NodeMap.end(),
|
|
MapEntry), MapEntry);
|
|
|
|
#if 1
|
|
// This is the missing piece to turn on VRP.
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
initializeConstant(C, MapEntry.index);
|
|
#endif
|
|
|
|
return MapEntry.index;
|
|
}
|
|
|
|
/// If the Value is in the graph, return the canonical form. Otherwise,
|
|
/// return the original Value.
|
|
Value *canonicalize(Value *V, ETNode *Subtree) {
|
|
if (isa<Constant>(V)) return V;
|
|
|
|
if (unsigned n = getNode(V, Subtree))
|
|
return node(n)->getValue();
|
|
else
|
|
return V;
|
|
}
|
|
|
|
/// isRelatedBy - true iff n1 op n2
|
|
bool isRelatedBy(unsigned n1, unsigned n2, ETNode *Subtree, LatticeVal LV) {
|
|
if (n1 == n2) return LV & EQ_BIT;
|
|
|
|
Node *N1 = node(n1);
|
|
Node::iterator I = N1->find(n2, Subtree), E = N1->end();
|
|
if (I != E) return (I->LV & LV) == I->LV;
|
|
|
|
return false;
|
|
}
|
|
|
|
// The add* methods assume that your input is logically valid and may
|
|
// assertion-fail or infinitely loop if you attempt a contradiction.
|
|
|
|
void addEquality(unsigned n, Value *V, ETNode *Subtree) {
|
|
assert(canonicalize(node(n)->getValue(), Subtree) == node(n)->getValue()
|
|
&& "Node's 'canonical' choice isn't best within this subtree.");
|
|
|
|
// Suppose that we are given "%x -> node #1 (%y)". The problem is that
|
|
// we may already have "%z -> node #2 (%x)" somewhere above us in the
|
|
// graph. We need to find those edges and add "%z -> node #1 (%y)"
|
|
// to keep the lookups canonical.
|
|
|
|
std::vector<Value *> ToRepoint;
|
|
ToRepoint.push_back(V);
|
|
|
|
if (unsigned Conflict = getNode(V, Subtree)) {
|
|
// XXX: NodeMap.size() exceeds 68000 entries compiling kimwitu++!
|
|
// This adds 57 seconds to the otherwise 3 second build. Unacceptable.
|
|
//
|
|
// IDEA: could we iterate 1..Nodes.size() calling getNode? It's
|
|
// O(n log n) but kimwitu++ only has about 300 nodes.
|
|
for (NodeMapType::iterator I = NodeMap.begin(), E = NodeMap.end();
|
|
I != E; ++I) {
|
|
if (I->index == Conflict && Subtree->DominatedBy(I->Subtree))
|
|
ToRepoint.push_back(I->V);
|
|
}
|
|
}
|
|
|
|
for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
|
|
VE = ToRepoint.end(); VI != VE; ++VI) {
|
|
Value *V = *VI;
|
|
|
|
// XXX: review this code. This may be doing too many insertions.
|
|
NodeMapEdge Edge(V, n, Subtree);
|
|
NodeMapType::iterator E = NodeMap.end();
|
|
NodeMapType::iterator I = std::lower_bound(NodeMap.begin(), E, Edge);
|
|
if (I == E || I->V != V || I->Subtree != Subtree) {
|
|
// New Value
|
|
NodeMap.insert(I, Edge);
|
|
} else if (I != E && I->V == V && I->Subtree == Subtree) {
|
|
// Update best choice
|
|
I->index = n;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
Node *N = node(n);
|
|
if (isa<Constant>(V)) {
|
|
if (isa<Constant>(N->getValue())) {
|
|
assert(V == N->getValue() && "Constant equals different constant?");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// addInequality - Sets n1 op n2.
|
|
/// It is also an error to call this on an inequality that is already true.
|
|
void addInequality(unsigned n1, unsigned n2, ETNode *Subtree,
|
|
LatticeVal LV1) {
|
|
assert(n1 != n2 && "A node can't be inequal to itself.");
|
|
|
|
if (LV1 != NE)
|
|
assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
|
|
"Contradictory inequality.");
|
|
|
|
Node *N1 = node(n1);
|
|
Node *N2 = node(n2);
|
|
|
|
// Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
|
|
// add %a < %n2 too. This keeps the graph fully connected.
|
|
if (LV1 != NE) {
|
|
// Someone with a head for this sort of logic, please review this.
|
|
// Given that %x SLTUGT %y and %a SLEUANY %x, what is the relationship
|
|
// between %a and %y? I believe the below code is correct, but I don't
|
|
// think it's the most efficient solution.
|
|
|
|
unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
|
|
unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
|
|
for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I) {
|
|
if (I->LV != NE && I->To != n2) {
|
|
ETNode *Local_Subtree = NULL;
|
|
if (Subtree->DominatedBy(I->Subtree))
|
|
Local_Subtree = Subtree;
|
|
else if (I->Subtree->DominatedBy(Subtree))
|
|
Local_Subtree = I->Subtree;
|
|
|
|
if (Local_Subtree) {
|
|
unsigned new_relationship = 0;
|
|
LatticeVal ILV = reversePredicate(I->LV);
|
|
unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
|
|
unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
|
|
|
|
if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
|
|
new_relationship |= ILV_s;
|
|
|
|
if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
|
|
new_relationship |= ILV_u;
|
|
|
|
if (new_relationship) {
|
|
if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
|
|
new_relationship |= (SLT_BIT|SGT_BIT);
|
|
if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
|
|
new_relationship |= (ULT_BIT|UGT_BIT);
|
|
if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
|
|
new_relationship |= EQ_BIT;
|
|
|
|
LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
|
|
|
|
node(I->To)->update(n2, NewLV, Local_Subtree);
|
|
N2->update(I->To, reversePredicate(NewLV), Local_Subtree);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Node::iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
|
|
if (I->LV != NE && I->To != n1) {
|
|
ETNode *Local_Subtree = NULL;
|
|
if (Subtree->DominatedBy(I->Subtree))
|
|
Local_Subtree = Subtree;
|
|
else if (I->Subtree->DominatedBy(Subtree))
|
|
Local_Subtree = I->Subtree;
|
|
|
|
if (Local_Subtree) {
|
|
unsigned new_relationship = 0;
|
|
unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
|
|
unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
|
|
|
|
if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
|
|
new_relationship |= ILV_s;
|
|
|
|
if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
|
|
new_relationship |= ILV_u;
|
|
|
|
if (new_relationship) {
|
|
if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
|
|
new_relationship |= (SLT_BIT|SGT_BIT);
|
|
if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
|
|
new_relationship |= (ULT_BIT|UGT_BIT);
|
|
if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
|
|
new_relationship |= EQ_BIT;
|
|
|
|
LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
|
|
|
|
N1->update(I->To, NewLV, Local_Subtree);
|
|
node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
N1->update(n2, LV1, Subtree);
|
|
N2->update(n1, reversePredicate(LV1), Subtree);
|
|
}
|
|
|
|
/// Removes a Value from the graph, but does not delete any nodes. As this
|
|
/// method does not delete Nodes, V may not be the canonical choice for
|
|
/// a node with any relationships. It is invalid to call newNode on a Value
|
|
/// that has been removed.
|
|
void remove(Value *V) {
|
|
for (unsigned i = 0; i < NodeMap.size();) {
|
|
NodeMapType::iterator I = NodeMap.begin()+i;
|
|
assert((node(I->index)->getValue() != V || node(I->index)->begin() ==
|
|
node(I->index)->end()) && "Tried to delete in-use node.");
|
|
if (I->V == V) {
|
|
#ifndef NDEBUG
|
|
if (node(I->index)->getValue() == V)
|
|
node(I->index)->Canonical = NULL;
|
|
#endif
|
|
NodeMap.erase(I);
|
|
} else ++i;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
virtual ~InequalityGraph() {}
|
|
virtual void dump() {
|
|
dump(*cerr.stream());
|
|
}
|
|
|
|
void dump(std::ostream &os) {
|
|
std::set<Node *> VisitedNodes;
|
|
for (NodeMapType::const_iterator I = NodeMap.begin(), E = NodeMap.end();
|
|
I != E; ++I) {
|
|
Node *N = node(I->index);
|
|
os << *I->V << " == " << I->index << "(" << I->Subtree << ")\n";
|
|
if (VisitedNodes.insert(N).second) {
|
|
os << I->index << ". ";
|
|
if (!N->getValue()) os << "(deleted node)\n";
|
|
else N->dump(os);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/// UnreachableBlocks keeps tracks of blocks that are for one reason or
|
|
/// another discovered to be unreachable. This is used to cull the graph when
|
|
/// analyzing instructions, and to mark blocks with the "unreachable"
|
|
/// terminator instruction after the function has executed.
|
|
class VISIBILITY_HIDDEN UnreachableBlocks {
|
|
private:
|
|
std::vector<BasicBlock *> DeadBlocks;
|
|
|
|
public:
|
|
/// mark - mark a block as dead
|
|
void mark(BasicBlock *BB) {
|
|
std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
|
|
std::vector<BasicBlock *>::iterator I =
|
|
std::lower_bound(DeadBlocks.begin(), E, BB);
|
|
|
|
if (I == E || *I != BB) DeadBlocks.insert(I, BB);
|
|
}
|
|
|
|
/// isDead - returns whether a block is known to be dead already
|
|
bool isDead(BasicBlock *BB) {
|
|
std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
|
|
std::vector<BasicBlock *>::iterator I =
|
|
std::lower_bound(DeadBlocks.begin(), E, BB);
|
|
|
|
return I != E && *I == BB;
|
|
}
|
|
|
|
/// kill - replace the dead blocks' terminator with an UnreachableInst.
|
|
bool kill() {
|
|
bool modified = false;
|
|
for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
|
|
E = DeadBlocks.end(); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
|
|
DOUT << "unreachable block: " << BB->getName() << "\n";
|
|
|
|
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
|
SI != SE; ++SI) {
|
|
BasicBlock *Succ = *SI;
|
|
Succ->removePredecessor(BB);
|
|
}
|
|
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
|
|
TI->eraseFromParent();
|
|
new UnreachableInst(BB);
|
|
++NumBlocks;
|
|
modified = true;
|
|
}
|
|
DeadBlocks.clear();
|
|
return modified;
|
|
}
|
|
};
|
|
|
|
/// VRPSolver keeps track of how changes to one variable affect other
|
|
/// variables, and forwards changes along to the InequalityGraph. It
|
|
/// also maintains the correct choice for "canonical" in the IG.
|
|
/// @brief VRPSolver calculates inferences from a new relationship.
|
|
class VISIBILITY_HIDDEN VRPSolver {
|
|
private:
|
|
struct Operation {
|
|
Value *LHS, *RHS;
|
|
ICmpInst::Predicate Op;
|
|
|
|
Instruction *Context;
|
|
};
|
|
std::deque<Operation> WorkList;
|
|
|
|
InequalityGraph &IG;
|
|
UnreachableBlocks &UB;
|
|
ETForest *Forest;
|
|
ETNode *Top;
|
|
BasicBlock *TopBB;
|
|
Instruction *TopInst;
|
|
bool &modified;
|
|
|
|
typedef InequalityGraph::Node Node;
|
|
|
|
/// IdomI - Determines whether one Instruction dominates another.
|
|
bool IdomI(Instruction *I1, Instruction *I2) const {
|
|
BasicBlock *BB1 = I1->getParent(),
|
|
*BB2 = I2->getParent();
|
|
if (BB1 == BB2) {
|
|
if (isa<TerminatorInst>(I1)) return false;
|
|
if (isa<TerminatorInst>(I2)) return true;
|
|
if (isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
|
|
if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
|
|
|
|
for (BasicBlock::const_iterator I = BB1->begin(), E = BB1->end();
|
|
I != E; ++I) {
|
|
if (&*I == I1) return true;
|
|
if (&*I == I2) return false;
|
|
}
|
|
assert(!"Instructions not found in parent BasicBlock?");
|
|
} else {
|
|
return Forest->properlyDominates(BB1, BB2);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if V1 is a better canonical value than V2.
|
|
bool compare(Value *V1, Value *V2) const {
|
|
if (isa<Constant>(V1))
|
|
return !isa<Constant>(V2);
|
|
else if (isa<Constant>(V2))
|
|
return false;
|
|
else if (isa<Argument>(V1))
|
|
return !isa<Argument>(V2);
|
|
else if (isa<Argument>(V2))
|
|
return false;
|
|
|
|
Instruction *I1 = dyn_cast<Instruction>(V1);
|
|
Instruction *I2 = dyn_cast<Instruction>(V2);
|
|
|
|
if (!I1 || !I2)
|
|
return V1->getNumUses() < V2->getNumUses();
|
|
|
|
return IdomI(I1, I2);
|
|
}
|
|
|
|
// below - true if the Instruction is dominated by the current context
|
|
// block or instruction
|
|
bool below(Instruction *I) {
|
|
if (TopInst)
|
|
return IdomI(TopInst, I);
|
|
else {
|
|
ETNode *Node = Forest->getNodeForBlock(I->getParent());
|
|
return Node == Top || Node->DominatedBy(Top);
|
|
}
|
|
}
|
|
|
|
bool makeEqual(Value *V1, Value *V2) {
|
|
DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
|
|
|
|
if (V1 == V2) return true;
|
|
|
|
if (isa<Constant>(V1) && isa<Constant>(V2))
|
|
return false;
|
|
|
|
unsigned n1 = IG.getNode(V1, Top), n2 = IG.getNode(V2, Top);
|
|
|
|
if (n1 && n2) {
|
|
if (n1 == n2) return true;
|
|
if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
|
|
}
|
|
|
|
if (n1) assert(V1 == IG.node(n1)->getValue() && "Value isn't canonical.");
|
|
if (n2) assert(V2 == IG.node(n2)->getValue() && "Value isn't canonical.");
|
|
|
|
if (compare(V2, V1)) { std::swap(V1, V2); std::swap(n1, n2); }
|
|
|
|
assert(!isa<Constant>(V2) && "Tried to remove a constant.");
|
|
|
|
SetVector<unsigned> Remove;
|
|
if (n2) Remove.insert(n2);
|
|
|
|
if (n1 && n2) {
|
|
// Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
|
|
// We can't just merge %x and %y because the relationship with %z would
|
|
// be EQ and that's invalid. What we're doing is looking for any nodes
|
|
// %z such that %x <= %z and %y >= %z, and vice versa.
|
|
//
|
|
// Also handle %a <= %b and %c <= %a when adding %b <= %c.
|
|
|
|
Node *N1 = IG.node(n1);
|
|
Node::iterator end = N1->end();
|
|
for (unsigned i = 0; i < Remove.size(); ++i) {
|
|
Node *N = IG.node(Remove[i]);
|
|
Value *V = N->getValue();
|
|
for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
|
|
if (I->LV & EQ_BIT) {
|
|
if (Top == I->Subtree || Top->DominatedBy(I->Subtree)) {
|
|
Node::iterator NI = N1->find(I->To, Top);
|
|
if (NI != end) {
|
|
if (!(NI->LV & EQ_BIT)) return false;
|
|
if (isRelatedBy(V, IG.node(NI->To)->getValue(),
|
|
ICmpInst::ICMP_NE))
|
|
return false;
|
|
Remove.insert(NI->To);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if one of the nodes about to be removed is actually a better
|
|
// canonical choice than n1.
|
|
unsigned orig_n1 = n1;
|
|
std::vector<unsigned>::iterator DontRemove = Remove.end();
|
|
for (std::vector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
|
|
E = Remove.end(); I != E; ++I) {
|
|
unsigned n = *I;
|
|
Value *V = IG.node(n)->getValue();
|
|
if (compare(V, V1)) {
|
|
V1 = V;
|
|
n1 = n;
|
|
DontRemove = I;
|
|
}
|
|
}
|
|
if (DontRemove != Remove.end()) {
|
|
unsigned n = *DontRemove;
|
|
Remove.remove(n);
|
|
Remove.insert(orig_n1);
|
|
}
|
|
}
|
|
|
|
// We'd like to allow makeEqual on two values to perform a simple
|
|
// substitution without every creating nodes in the IG whenever possible.
|
|
//
|
|
// The first iteration through this loop operates on V2 before going
|
|
// through the Remove list and operating on those too. If all of the
|
|
// iterations performed simple replacements then we exit early.
|
|
bool exitEarly = true;
|
|
unsigned i = 0;
|
|
for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
|
|
if (i) R = IG.node(Remove[i])->getValue(); // skip n2.
|
|
|
|
// Try to replace the whole instruction. If we can, we're done.
|
|
Instruction *I2 = dyn_cast<Instruction>(R);
|
|
if (I2 && below(I2)) {
|
|
std::vector<Instruction *> ToNotify;
|
|
for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
|
|
UI != UE;) {
|
|
Use &TheUse = UI.getUse();
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser()))
|
|
ToNotify.push_back(I);
|
|
}
|
|
|
|
DOUT << "Simply removing " << *I2
|
|
<< ", replacing with " << *V1 << "\n";
|
|
I2->replaceAllUsesWith(V1);
|
|
// leave it dead; it'll get erased later.
|
|
++NumInstruction;
|
|
modified = true;
|
|
|
|
for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
|
|
IE = ToNotify.end(); II != IE; ++II) {
|
|
opsToDef(*II);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, replace all dominated uses.
|
|
for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
|
|
UI != UE;) {
|
|
Use &TheUse = UI.getUse();
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
|
|
if (below(I)) {
|
|
TheUse.set(V1);
|
|
modified = true;
|
|
++NumVarsReplaced;
|
|
opsToDef(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If that killed the instruction, stop here.
|
|
if (I2 && isInstructionTriviallyDead(I2)) {
|
|
DOUT << "Killed all uses of " << *I2
|
|
<< ", replacing with " << *V1 << "\n";
|
|
continue;
|
|
}
|
|
|
|
// If we make it to here, then we will need to create a node for N1.
|
|
// Otherwise, we can skip out early!
|
|
exitEarly = false;
|
|
}
|
|
|
|
if (exitEarly) return true;
|
|
|
|
// Create N1.
|
|
// XXX: this should call newNode, but instead the node might be created
|
|
// in isRelatedBy. That's also a fixme.
|
|
if (!n1) n1 = IG.getOrInsertNode(V1, Top);
|
|
|
|
// Migrate relationships from removed nodes to N1.
|
|
Node *N1 = IG.node(n1);
|
|
for (std::vector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
|
|
I != E; ++I) {
|
|
unsigned n = *I;
|
|
Node *N = IG.node(n);
|
|
for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
|
|
if (Top == NI->Subtree || NI->Subtree->DominatedBy(Top)) {
|
|
if (NI->To == n1) {
|
|
assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
|
|
continue;
|
|
}
|
|
if (Remove.count(NI->To))
|
|
continue;
|
|
|
|
IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
|
|
N1->update(NI->To, NI->LV, Top);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Point V2 (and all items in Remove) to N1.
|
|
if (!n2)
|
|
IG.addEquality(n1, V2, Top);
|
|
else {
|
|
for (std::vector<unsigned>::iterator I = Remove.begin(),
|
|
E = Remove.end(); I != E; ++I) {
|
|
IG.addEquality(n1, IG.node(*I)->getValue(), Top);
|
|
}
|
|
}
|
|
|
|
// If !Remove.empty() then V2 = Remove[0]->getValue().
|
|
// Even when Remove is empty, we still want to process V2.
|
|
i = 0;
|
|
for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
|
|
if (i) R = IG.node(Remove[i])->getValue(); // skip n2.
|
|
|
|
if (Instruction *I2 = dyn_cast<Instruction>(R)) defToOps(I2);
|
|
for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
|
|
UI != UE;) {
|
|
Use &TheUse = UI.getUse();
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
|
|
opsToDef(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
|
|
/// Requires that the lattice value be valid; does not accept ICMP_EQ.
|
|
static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
|
|
switch (Pred) {
|
|
case ICmpInst::ICMP_EQ:
|
|
assert(!"No matching lattice value.");
|
|
return static_cast<LatticeVal>(EQ_BIT);
|
|
default:
|
|
assert(!"Invalid 'icmp' predicate.");
|
|
case ICmpInst::ICMP_NE:
|
|
return NE;
|
|
case ICmpInst::ICMP_UGT:
|
|
return SNEUGT;
|
|
case ICmpInst::ICMP_UGE:
|
|
return SANYUGE;
|
|
case ICmpInst::ICMP_ULT:
|
|
return SNEULT;
|
|
case ICmpInst::ICMP_ULE:
|
|
return SANYULE;
|
|
case ICmpInst::ICMP_SGT:
|
|
return SGTUNE;
|
|
case ICmpInst::ICMP_SGE:
|
|
return SGEUANY;
|
|
case ICmpInst::ICMP_SLT:
|
|
return SLTUNE;
|
|
case ICmpInst::ICMP_SLE:
|
|
return SLEUANY;
|
|
}
|
|
}
|
|
|
|
public:
|
|
VRPSolver(InequalityGraph &IG, UnreachableBlocks &UB, ETForest *Forest,
|
|
bool &modified, BasicBlock *TopBB)
|
|
: IG(IG),
|
|
UB(UB),
|
|
Forest(Forest),
|
|
Top(Forest->getNodeForBlock(TopBB)),
|
|
TopBB(TopBB),
|
|
TopInst(NULL),
|
|
modified(modified) {}
|
|
|
|
VRPSolver(InequalityGraph &IG, UnreachableBlocks &UB, ETForest *Forest,
|
|
bool &modified, Instruction *TopInst)
|
|
: IG(IG),
|
|
UB(UB),
|
|
Forest(Forest),
|
|
TopInst(TopInst),
|
|
modified(modified)
|
|
{
|
|
TopBB = TopInst->getParent();
|
|
Top = Forest->getNodeForBlock(TopBB);
|
|
}
|
|
|
|
bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
|
|
if (Constant *C1 = dyn_cast<Constant>(V1))
|
|
if (Constant *C2 = dyn_cast<Constant>(V2))
|
|
return ConstantExpr::getCompare(Pred, C1, C2) ==
|
|
ConstantInt::getTrue();
|
|
|
|
// XXX: this is lousy. If we're passed a Constant, then we might miss
|
|
// some relationships if it isn't in the IG because the relationships
|
|
// added by initializeConstant are missing.
|
|
if (isa<Constant>(V1)) IG.getOrInsertNode(V1, Top);
|
|
if (isa<Constant>(V2)) IG.getOrInsertNode(V2, Top);
|
|
|
|
if (unsigned n1 = IG.getNode(V1, Top))
|
|
if (unsigned n2 = IG.getNode(V2, Top)) {
|
|
if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
|
|
Pred == ICmpInst::ICMP_ULE ||
|
|
Pred == ICmpInst::ICMP_UGE ||
|
|
Pred == ICmpInst::ICMP_SLE ||
|
|
Pred == ICmpInst::ICMP_SGE;
|
|
if (Pred == ICmpInst::ICMP_EQ) return false;
|
|
return IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// add - adds a new property to the work queue
|
|
void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
|
|
Instruction *I = NULL) {
|
|
DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
|
|
if (I) DOUT << " context: " << *I;
|
|
else DOUT << " default context";
|
|
DOUT << "\n";
|
|
|
|
WorkList.push_back(Operation());
|
|
Operation &O = WorkList.back();
|
|
O.LHS = V1, O.RHS = V2, O.Op = Pred, O.Context = I;
|
|
}
|
|
|
|
/// defToOps - Given an instruction definition that we've learned something
|
|
/// new about, find any new relationships between its operands.
|
|
void defToOps(Instruction *I) {
|
|
Instruction *NewContext = below(I) ? I : TopInst;
|
|
Value *Canonical = IG.canonicalize(I, Top);
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
|
|
const Type *Ty = BO->getType();
|
|
assert(!Ty->isFPOrFPVector() && "Float in work queue!");
|
|
|
|
Value *Op0 = IG.canonicalize(BO->getOperand(0), Top);
|
|
Value *Op1 = IG.canonicalize(BO->getOperand(1), Top);
|
|
|
|
// TODO: "and bool true, %x" EQ %y then %x EQ %y.
|
|
|
|
switch (BO->getOpcode()) {
|
|
case Instruction::And: {
|
|
// "and int %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
|
|
// "and bool %a, %b" EQ true then %a EQ true and %b EQ true
|
|
ConstantInt *CI = ConstantInt::getAllOnesValue(Ty);
|
|
if (Canonical == CI) {
|
|
add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
|
|
add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
|
|
}
|
|
} break;
|
|
case Instruction::Or: {
|
|
// "or int %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
|
|
// "or bool %a, %b" EQ false then %a EQ false and %b EQ false
|
|
Constant *Zero = Constant::getNullValue(Ty);
|
|
if (Canonical == Zero) {
|
|
add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
|
|
add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
|
|
}
|
|
} break;
|
|
case Instruction::Xor: {
|
|
// "xor bool true, %a" EQ true then %a EQ false
|
|
// "xor bool true, %a" EQ false then %a EQ true
|
|
// "xor bool false, %a" EQ true then %a EQ true
|
|
// "xor bool false, %a" EQ false then %a EQ false
|
|
// "xor int %c, %a" EQ %c then %a EQ 0
|
|
// "xor int %c, %a" NE %c then %a NE 0
|
|
// 1. Repeat all of the above, with order of operands reversed.
|
|
Value *LHS = Op0;
|
|
Value *RHS = Op1;
|
|
if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
|
|
|
|
ConstantInt *CB, *A;
|
|
if ((CB = dyn_cast<ConstantInt>(Canonical)) &&
|
|
CB->getType() == Type::BoolTy) {
|
|
if ((A = dyn_cast<ConstantInt>(LHS)) &&
|
|
A->getType() == Type::BoolTy)
|
|
add(RHS, ConstantInt::get(A->getBoolValue() ^
|
|
CB->getBoolValue()),
|
|
ICmpInst::ICMP_EQ, NewContext);
|
|
}
|
|
if (Canonical == LHS) {
|
|
if (isa<ConstantInt>(Canonical))
|
|
add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
|
|
NewContext);
|
|
} else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
|
|
add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
|
|
NewContext);
|
|
}
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
|
|
// "icmp ult int %a, int %y" EQ true then %a u< y
|
|
// etc.
|
|
|
|
if (Canonical == ConstantInt::getTrue()) {
|
|
add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
|
|
NewContext);
|
|
} else if (Canonical == ConstantInt::getFalse()) {
|
|
add(IC->getOperand(0), IC->getOperand(1),
|
|
ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
|
|
}
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
if (I->getType()->isFPOrFPVector()) return;
|
|
|
|
// Given: "%a = select bool %x, int %b, int %c"
|
|
// %a EQ %b and %b NE %c then %x EQ true
|
|
// %a EQ %c and %b NE %c then %x EQ false
|
|
|
|
Value *True = SI->getTrueValue();
|
|
Value *False = SI->getFalseValue();
|
|
if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
|
|
if (Canonical == IG.canonicalize(True, Top) ||
|
|
isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
|
|
add(SI->getCondition(), ConstantInt::getTrue(),
|
|
ICmpInst::ICMP_EQ, NewContext);
|
|
else if (Canonical == IG.canonicalize(False, Top) ||
|
|
isRelatedBy(I, True, ICmpInst::ICMP_NE))
|
|
add(SI->getCondition(), ConstantInt::getFalse(),
|
|
ICmpInst::ICMP_EQ, NewContext);
|
|
}
|
|
}
|
|
// TODO: CastInst "%a = cast ... %b" where %a is EQ or NE a constant.
|
|
}
|
|
|
|
/// opsToDef - A new relationship was discovered involving one of this
|
|
/// instruction's operands. Find any new relationship involving the
|
|
/// definition.
|
|
void opsToDef(Instruction *I) {
|
|
Instruction *NewContext = below(I) ? I : TopInst;
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
|
|
Value *Op0 = IG.canonicalize(BO->getOperand(0), Top);
|
|
Value *Op1 = IG.canonicalize(BO->getOperand(1), Top);
|
|
|
|
if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
|
|
if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
|
|
add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
|
|
ICmpInst::ICMP_EQ, NewContext);
|
|
return;
|
|
}
|
|
|
|
// "%y = and bool true, %x" then %x EQ %y.
|
|
// "%y = or bool false, %x" then %x EQ %y.
|
|
if (BO->getOpcode() == Instruction::Or) {
|
|
Constant *Zero = Constant::getNullValue(BO->getType());
|
|
if (Op0 == Zero) {
|
|
add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
|
|
return;
|
|
} else if (Op1 == Zero) {
|
|
add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
|
|
return;
|
|
}
|
|
} else if (BO->getOpcode() == Instruction::And) {
|
|
Constant *AllOnes = ConstantInt::getAllOnesValue(BO->getType());
|
|
if (Op0 == AllOnes) {
|
|
add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
|
|
return;
|
|
} else if (Op1 == AllOnes) {
|
|
add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// "%x = add int %y, %z" and %x EQ %y then %z EQ 0
|
|
// "%x = mul int %y, %z" and %x EQ %y then %z EQ 1
|
|
// 1. Repeat all of the above, with order of operands reversed.
|
|
// "%x = udiv int %y, %z" and %x EQ %y then %z EQ 1
|
|
|
|
Value *Known = Op0, *Unknown = Op1;
|
|
if (Known != BO) std::swap(Known, Unknown);
|
|
if (Known == BO) {
|
|
const Type *Ty = BO->getType();
|
|
assert(!Ty->isFPOrFPVector() && "Float in work queue!");
|
|
|
|
switch (BO->getOpcode()) {
|
|
default: break;
|
|
case Instruction::Xor:
|
|
case Instruction::Or:
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
add(Unknown, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ, NewContext);
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
if (Unknown == Op0) break; // otherwise, fallthrough
|
|
case Instruction::And:
|
|
case Instruction::Mul:
|
|
Constant *One = NULL;
|
|
if (isa<ConstantInt>(Unknown))
|
|
One = ConstantInt::get(Ty, 1);
|
|
else if (isa<ConstantInt>(Unknown) &&
|
|
Unknown->getType() == Type::BoolTy)
|
|
One = ConstantInt::getTrue();
|
|
|
|
if (One) add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TODO: "%a = add int %b, 1" and %b > %z then %a >= %z.
|
|
|
|
} else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
|
|
// "%a = icmp ult %b, %c" and %b u< %c then %a EQ true
|
|
// "%a = icmp ult %b, %c" and %b u>= %c then %a EQ false
|
|
// etc.
|
|
|
|
Value *Op0 = IG.canonicalize(IC->getOperand(0), Top);
|
|
Value *Op1 = IG.canonicalize(IC->getOperand(1), Top);
|
|
|
|
ICmpInst::Predicate Pred = IC->getPredicate();
|
|
if (isRelatedBy(Op0, Op1, Pred)) {
|
|
add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext);
|
|
} else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred))) {
|
|
add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext);
|
|
}
|
|
|
|
// TODO: make the predicate more strict, if possible.
|
|
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
// Given: "%a = select bool %x, int %b, int %c"
|
|
// %x EQ true then %a EQ %b
|
|
// %x EQ false then %a EQ %c
|
|
// %b EQ %c then %a EQ %b
|
|
|
|
Value *Canonical = IG.canonicalize(SI->getCondition(), Top);
|
|
if (Canonical == ConstantInt::getTrue()) {
|
|
add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
|
|
} else if (Canonical == ConstantInt::getFalse()) {
|
|
add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
|
|
} else if (IG.canonicalize(SI->getTrueValue(), Top) ==
|
|
IG.canonicalize(SI->getFalseValue(), Top)) {
|
|
add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
|
|
}
|
|
}
|
|
// TODO: CastInst "%a = cast ... %b" where %b is EQ or NE a constant.
|
|
}
|
|
|
|
/// solve - process the work queue
|
|
/// Return false if a logical contradiction occurs.
|
|
void solve() {
|
|
//DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
|
|
while (!WorkList.empty()) {
|
|
//DOUT << "WorkList size: " << WorkList.size() << "\n";
|
|
|
|
Operation &O = WorkList.front();
|
|
if (O.Context) {
|
|
TopInst = O.Context;
|
|
Top = Forest->getNodeForBlock(TopInst->getParent());
|
|
}
|
|
O.LHS = IG.canonicalize(O.LHS, Top);
|
|
O.RHS = IG.canonicalize(O.RHS, Top);
|
|
|
|
assert(O.LHS == IG.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
|
|
assert(O.RHS == IG.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
|
|
|
|
DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
|
|
if (O.Context) DOUT << " context: " << *O.Context;
|
|
else DOUT << " default context";
|
|
DOUT << "\n";
|
|
|
|
DEBUG(IG.dump());
|
|
|
|
// TODO: actually check the constants and add to UB.
|
|
if (isa<Constant>(O.LHS) && isa<Constant>(O.RHS)) {
|
|
WorkList.pop_front();
|
|
continue;
|
|
}
|
|
|
|
if (O.Op == ICmpInst::ICMP_EQ) {
|
|
if (!makeEqual(O.LHS, O.RHS))
|
|
UB.mark(TopBB);
|
|
} else {
|
|
LatticeVal LV = cmpInstToLattice(O.Op);
|
|
|
|
if ((LV & EQ_BIT) &&
|
|
isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
|
|
if (!makeEqual(O.LHS, O.RHS))
|
|
UB.mark(TopBB);
|
|
} else {
|
|
if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
|
|
DOUT << "inequality contradiction!\n";
|
|
WorkList.pop_front();
|
|
continue;
|
|
}
|
|
|
|
unsigned n1 = IG.getOrInsertNode(O.LHS, Top);
|
|
unsigned n2 = IG.getOrInsertNode(O.RHS, Top);
|
|
|
|
if (n1 == n2) {
|
|
if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
|
|
O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
|
|
UB.mark(TopBB);
|
|
|
|
WorkList.pop_front();
|
|
continue;
|
|
}
|
|
|
|
if (IG.isRelatedBy(n1, n2, Top, LV)) {
|
|
WorkList.pop_front();
|
|
continue;
|
|
}
|
|
|
|
IG.addInequality(n1, n2, Top, LV);
|
|
|
|
if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) defToOps(I1);
|
|
if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
|
|
for (Value::use_iterator UI = O.LHS->use_begin(),
|
|
UE = O.LHS->use_end(); UI != UE;) {
|
|
Use &TheUse = UI.getUse();
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
|
|
opsToDef(I);
|
|
}
|
|
}
|
|
}
|
|
if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) defToOps(I2);
|
|
if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
|
|
for (Value::use_iterator UI = O.RHS->use_begin(),
|
|
UE = O.RHS->use_end(); UI != UE;) {
|
|
Use &TheUse = UI.getUse();
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
|
|
opsToDef(I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
WorkList.pop_front();
|
|
}
|
|
}
|
|
};
|
|
|
|
/// PredicateSimplifier - This class is a simplifier that replaces
|
|
/// one equivalent variable with another. It also tracks what
|
|
/// can't be equal and will solve setcc instructions when possible.
|
|
/// @brief Root of the predicate simplifier optimization.
|
|
class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
|
|
DominatorTree *DT;
|
|
ETForest *Forest;
|
|
bool modified;
|
|
InequalityGraph *IG;
|
|
UnreachableBlocks UB;
|
|
|
|
std::vector<DominatorTree::Node *> WorkList;
|
|
|
|
public:
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequiredID(BreakCriticalEdgesID);
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<ETForest>();
|
|
}
|
|
|
|
private:
|
|
/// Forwards - Adds new properties into PropertySet and uses them to
|
|
/// simplify instructions. Because new properties sometimes apply to
|
|
/// a transition from one BasicBlock to another, this will use the
|
|
/// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
|
|
/// basic block with the new PropertySet.
|
|
/// @brief Performs abstract execution of the program.
|
|
class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
|
|
friend class InstVisitor<Forwards>;
|
|
PredicateSimplifier *PS;
|
|
DominatorTree::Node *DTNode;
|
|
|
|
public:
|
|
InequalityGraph &IG;
|
|
UnreachableBlocks &UB;
|
|
|
|
Forwards(PredicateSimplifier *PS, DominatorTree::Node *DTNode)
|
|
: PS(PS), DTNode(DTNode), IG(*PS->IG), UB(PS->UB) {}
|
|
|
|
void visitTerminatorInst(TerminatorInst &TI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
void visitSwitchInst(SwitchInst &SI);
|
|
|
|
void visitAllocaInst(AllocaInst &AI);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
|
|
void visitBinaryOperator(BinaryOperator &BO);
|
|
};
|
|
|
|
// Used by terminator instructions to proceed from the current basic
|
|
// block to the next. Verifies that "current" dominates "next",
|
|
// then calls visitBasicBlock.
|
|
void proceedToSuccessors(DominatorTree::Node *Current) {
|
|
for (DominatorTree::Node::iterator I = Current->begin(),
|
|
E = Current->end(); I != E; ++I) {
|
|
WorkList.push_back(*I);
|
|
}
|
|
}
|
|
|
|
void proceedToSuccessor(DominatorTree::Node *Next) {
|
|
WorkList.push_back(Next);
|
|
}
|
|
|
|
// Visits each instruction in the basic block.
|
|
void visitBasicBlock(DominatorTree::Node *Node) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
ETNode *ET = Forest->getNodeForBlock(BB);
|
|
DOUT << "Entering Basic Block: " << BB->getName() << " (" << ET << ")\n";
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
|
|
visitInstruction(I++, Node, ET);
|
|
}
|
|
}
|
|
|
|
// Tries to simplify each Instruction and add new properties to
|
|
// the PropertySet.
|
|
void visitInstruction(Instruction *I, DominatorTree::Node *DT, ETNode *ET) {
|
|
DOUT << "Considering instruction " << *I << "\n";
|
|
DEBUG(IG->dump());
|
|
|
|
// Sometimes instructions are killed in earlier analysis.
|
|
if (isInstructionTriviallyDead(I)) {
|
|
++NumSimple;
|
|
modified = true;
|
|
IG->remove(I);
|
|
I->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Try to replace the whole instruction.
|
|
Value *V = IG->canonicalize(I, ET);
|
|
assert(V == I && "Late instruction canonicalization.");
|
|
if (V != I) {
|
|
modified = true;
|
|
++NumInstruction;
|
|
DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
|
|
IG->remove(I);
|
|
I->replaceAllUsesWith(V);
|
|
I->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Try to substitute operands.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
Value *Oper = I->getOperand(i);
|
|
Value *V = IG->canonicalize(Oper, ET);
|
|
assert(V == Oper && "Late operand canonicalization.");
|
|
if (V != Oper) {
|
|
modified = true;
|
|
++NumVarsReplaced;
|
|
DOUT << "Resolving " << *I;
|
|
I->setOperand(i, V);
|
|
DOUT << " into " << *I;
|
|
}
|
|
}
|
|
|
|
DOUT << "push (%" << I->getParent()->getName() << ")\n";
|
|
Forwards visit(this, DT);
|
|
visit.visit(*I);
|
|
DOUT << "pop (%" << I->getParent()->getName() << ")\n";
|
|
}
|
|
};
|
|
|
|
bool PredicateSimplifier::runOnFunction(Function &F) {
|
|
DT = &getAnalysis<DominatorTree>();
|
|
Forest = &getAnalysis<ETForest>();
|
|
|
|
Forest->updateDFSNumbers(); // XXX: should only act when numbers are out of date
|
|
|
|
DOUT << "Entering Function: " << F.getName() << "\n";
|
|
|
|
modified = false;
|
|
BasicBlock *RootBlock = &F.getEntryBlock();
|
|
IG = new InequalityGraph(Forest->getNodeForBlock(RootBlock));
|
|
WorkList.push_back(DT->getRootNode());
|
|
|
|
do {
|
|
DominatorTree::Node *DTNode = WorkList.back();
|
|
WorkList.pop_back();
|
|
if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
|
|
} while (!WorkList.empty());
|
|
|
|
delete IG;
|
|
|
|
modified |= UB.kill();
|
|
|
|
return modified;
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
|
|
PS->proceedToSuccessors(DTNode);
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
|
|
if (BI.isUnconditional()) {
|
|
PS->proceedToSuccessors(DTNode);
|
|
return;
|
|
}
|
|
|
|
Value *Condition = BI.getCondition();
|
|
BasicBlock *TrueDest = BI.getSuccessor(0);
|
|
BasicBlock *FalseDest = BI.getSuccessor(1);
|
|
|
|
if (isa<Constant>(Condition) || TrueDest == FalseDest) {
|
|
PS->proceedToSuccessors(DTNode);
|
|
return;
|
|
}
|
|
|
|
for (DominatorTree::Node::iterator I = DTNode->begin(), E = DTNode->end();
|
|
I != E; ++I) {
|
|
BasicBlock *Dest = (*I)->getBlock();
|
|
DOUT << "Branch thinking about %" << Dest->getName()
|
|
<< "(" << PS->Forest->getNodeForBlock(Dest) << ")\n";
|
|
|
|
if (Dest == TrueDest) {
|
|
DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n";
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, Dest);
|
|
VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ);
|
|
VRP.solve();
|
|
DEBUG(IG.dump());
|
|
} else if (Dest == FalseDest) {
|
|
DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, Dest);
|
|
VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ);
|
|
VRP.solve();
|
|
DEBUG(IG.dump());
|
|
}
|
|
|
|
PS->proceedToSuccessor(*I);
|
|
}
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
|
|
Value *Condition = SI.getCondition();
|
|
|
|
// Set the EQProperty in each of the cases BBs, and the NEProperties
|
|
// in the default BB.
|
|
|
|
for (DominatorTree::Node::iterator I = DTNode->begin(), E = DTNode->end();
|
|
I != E; ++I) {
|
|
BasicBlock *BB = (*I)->getBlock();
|
|
DOUT << "Switch thinking about BB %" << BB->getName()
|
|
<< "(" << PS->Forest->getNodeForBlock(BB) << ")\n";
|
|
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, BB);
|
|
if (BB == SI.getDefaultDest()) {
|
|
for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
|
|
if (SI.getSuccessor(i) != BB)
|
|
VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
|
|
VRP.solve();
|
|
} else if (ConstantInt *CI = SI.findCaseDest(BB)) {
|
|
VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
|
|
VRP.solve();
|
|
}
|
|
PS->proceedToSuccessor(*I);
|
|
}
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &AI);
|
|
VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE);
|
|
VRP.solve();
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
|
|
Value *Ptr = LI.getPointerOperand();
|
|
// avoid "load uint* null" -> null NE null.
|
|
if (isa<Constant>(Ptr)) return;
|
|
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &LI);
|
|
VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
|
|
VRP.solve();
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
|
|
Value *Ptr = SI.getPointerOperand();
|
|
if (isa<Constant>(Ptr)) return;
|
|
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &SI);
|
|
VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
|
|
VRP.solve();
|
|
}
|
|
|
|
void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
|
|
Instruction::BinaryOps ops = BO.getOpcode();
|
|
|
|
switch (ops) {
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv: {
|
|
Value *Divisor = BO.getOperand(1);
|
|
VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &BO);
|
|
VRP.add(Constant::getNullValue(Divisor->getType()), Divisor,
|
|
ICmpInst::ICMP_NE);
|
|
VRP.solve();
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
RegisterPass<PredicateSimplifier> X("predsimplify",
|
|
"Predicate Simplifier");
|
|
}
|
|
|
|
FunctionPass *llvm::createPredicateSimplifierPass() {
|
|
return new PredicateSimplifier();
|
|
}
|