forked from OSchip/llvm-project
10549 lines
381 KiB
C++
10549 lines
381 KiB
C++
//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ASTContext interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "CXXABI.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/ASTTypeTraits.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/AttrIterator.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Comment.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclContextInternals.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclOpenMP.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExternalASTSource.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/MangleNumberingContext.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/RawCommentList.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/UnresolvedSet.h"
|
|
#include "clang/AST/VTableBuilder.h"
|
|
#include "clang/Basic/AddressSpaces.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/CommentOptions.h"
|
|
#include "clang/Basic/ExceptionSpecificationType.h"
|
|
#include "clang/Basic/FixedPoint.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/Linkage.h"
|
|
#include "clang/Basic/ObjCRuntime.h"
|
|
#include "clang/Basic/SanitizerBlacklist.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TargetCXXABI.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/XRayLists.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Support/Capacity.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace clang;
|
|
|
|
unsigned ASTContext::NumImplicitDefaultConstructors;
|
|
unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
|
|
unsigned ASTContext::NumImplicitCopyConstructors;
|
|
unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
|
|
unsigned ASTContext::NumImplicitMoveConstructors;
|
|
unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
|
|
unsigned ASTContext::NumImplicitCopyAssignmentOperators;
|
|
unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
|
|
unsigned ASTContext::NumImplicitMoveAssignmentOperators;
|
|
unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
|
|
unsigned ASTContext::NumImplicitDestructors;
|
|
unsigned ASTContext::NumImplicitDestructorsDeclared;
|
|
|
|
enum FloatingRank {
|
|
Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
|
|
};
|
|
|
|
RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
|
|
if (!CommentsLoaded && ExternalSource) {
|
|
ExternalSource->ReadComments();
|
|
|
|
#ifndef NDEBUG
|
|
ArrayRef<RawComment *> RawComments = Comments.getComments();
|
|
assert(std::is_sorted(RawComments.begin(), RawComments.end(),
|
|
BeforeThanCompare<RawComment>(SourceMgr)));
|
|
#endif
|
|
|
|
CommentsLoaded = true;
|
|
}
|
|
|
|
assert(D);
|
|
|
|
// User can not attach documentation to implicit declarations.
|
|
if (D->isImplicit())
|
|
return nullptr;
|
|
|
|
// User can not attach documentation to implicit instantiations.
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
return nullptr;
|
|
}
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->isStaticDataMember() &&
|
|
VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
return nullptr;
|
|
}
|
|
|
|
if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
return nullptr;
|
|
}
|
|
|
|
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
|
|
TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
|
|
if (TSK == TSK_ImplicitInstantiation ||
|
|
TSK == TSK_Undeclared)
|
|
return nullptr;
|
|
}
|
|
|
|
if (const auto *ED = dyn_cast<EnumDecl>(D)) {
|
|
if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
return nullptr;
|
|
}
|
|
if (const auto *TD = dyn_cast<TagDecl>(D)) {
|
|
// When tag declaration (but not definition!) is part of the
|
|
// decl-specifier-seq of some other declaration, it doesn't get comment
|
|
if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
|
|
return nullptr;
|
|
}
|
|
// TODO: handle comments for function parameters properly.
|
|
if (isa<ParmVarDecl>(D))
|
|
return nullptr;
|
|
|
|
// TODO: we could look up template parameter documentation in the template
|
|
// documentation.
|
|
if (isa<TemplateTypeParmDecl>(D) ||
|
|
isa<NonTypeTemplateParmDecl>(D) ||
|
|
isa<TemplateTemplateParmDecl>(D))
|
|
return nullptr;
|
|
|
|
ArrayRef<RawComment *> RawComments = Comments.getComments();
|
|
|
|
// If there are no comments anywhere, we won't find anything.
|
|
if (RawComments.empty())
|
|
return nullptr;
|
|
|
|
// Find declaration location.
|
|
// For Objective-C declarations we generally don't expect to have multiple
|
|
// declarators, thus use declaration starting location as the "declaration
|
|
// location".
|
|
// For all other declarations multiple declarators are used quite frequently,
|
|
// so we use the location of the identifier as the "declaration location".
|
|
SourceLocation DeclLoc;
|
|
if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
|
|
isa<ObjCPropertyDecl>(D) ||
|
|
isa<RedeclarableTemplateDecl>(D) ||
|
|
isa<ClassTemplateSpecializationDecl>(D))
|
|
DeclLoc = D->getBeginLoc();
|
|
else {
|
|
DeclLoc = D->getLocation();
|
|
if (DeclLoc.isMacroID()) {
|
|
if (isa<TypedefDecl>(D)) {
|
|
// If location of the typedef name is in a macro, it is because being
|
|
// declared via a macro. Try using declaration's starting location as
|
|
// the "declaration location".
|
|
DeclLoc = D->getBeginLoc();
|
|
} else if (const auto *TD = dyn_cast<TagDecl>(D)) {
|
|
// If location of the tag decl is inside a macro, but the spelling of
|
|
// the tag name comes from a macro argument, it looks like a special
|
|
// macro like NS_ENUM is being used to define the tag decl. In that
|
|
// case, adjust the source location to the expansion loc so that we can
|
|
// attach the comment to the tag decl.
|
|
if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
|
|
TD->isCompleteDefinition())
|
|
DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the declaration doesn't map directly to a location in a file, we
|
|
// can't find the comment.
|
|
if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
|
|
return nullptr;
|
|
|
|
// Find the comment that occurs just after this declaration.
|
|
ArrayRef<RawComment *>::iterator Comment;
|
|
{
|
|
// When searching for comments during parsing, the comment we are looking
|
|
// for is usually among the last two comments we parsed -- check them
|
|
// first.
|
|
RawComment CommentAtDeclLoc(
|
|
SourceMgr, SourceRange(DeclLoc), LangOpts.CommentOpts, false);
|
|
BeforeThanCompare<RawComment> Compare(SourceMgr);
|
|
ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
|
|
bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
|
|
if (!Found && RawComments.size() >= 2) {
|
|
MaybeBeforeDecl--;
|
|
Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
|
|
}
|
|
|
|
if (Found) {
|
|
Comment = MaybeBeforeDecl + 1;
|
|
assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
|
|
&CommentAtDeclLoc, Compare));
|
|
} else {
|
|
// Slow path.
|
|
Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
|
|
&CommentAtDeclLoc, Compare);
|
|
}
|
|
}
|
|
|
|
// Decompose the location for the declaration and find the beginning of the
|
|
// file buffer.
|
|
std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
|
|
|
|
// First check whether we have a trailing comment.
|
|
if (Comment != RawComments.end() &&
|
|
((*Comment)->isDocumentation() || LangOpts.CommentOpts.ParseAllComments)
|
|
&& (*Comment)->isTrailingComment() &&
|
|
(isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
|
|
isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
|
|
std::pair<FileID, unsigned> CommentBeginDecomp
|
|
= SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
|
|
// Check that Doxygen trailing comment comes after the declaration, starts
|
|
// on the same line and in the same file as the declaration.
|
|
if (DeclLocDecomp.first == CommentBeginDecomp.first &&
|
|
SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
|
|
== SourceMgr.getLineNumber(CommentBeginDecomp.first,
|
|
CommentBeginDecomp.second)) {
|
|
return *Comment;
|
|
}
|
|
}
|
|
|
|
// The comment just after the declaration was not a trailing comment.
|
|
// Let's look at the previous comment.
|
|
if (Comment == RawComments.begin())
|
|
return nullptr;
|
|
--Comment;
|
|
|
|
// Check that we actually have a non-member Doxygen comment.
|
|
if (!((*Comment)->isDocumentation() ||
|
|
LangOpts.CommentOpts.ParseAllComments) ||
|
|
(*Comment)->isTrailingComment())
|
|
return nullptr;
|
|
|
|
// Decompose the end of the comment.
|
|
std::pair<FileID, unsigned> CommentEndDecomp
|
|
= SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
|
|
|
|
// If the comment and the declaration aren't in the same file, then they
|
|
// aren't related.
|
|
if (DeclLocDecomp.first != CommentEndDecomp.first)
|
|
return nullptr;
|
|
|
|
// Get the corresponding buffer.
|
|
bool Invalid = false;
|
|
const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
|
|
&Invalid).data();
|
|
if (Invalid)
|
|
return nullptr;
|
|
|
|
// Extract text between the comment and declaration.
|
|
StringRef Text(Buffer + CommentEndDecomp.second,
|
|
DeclLocDecomp.second - CommentEndDecomp.second);
|
|
|
|
// There should be no other declarations or preprocessor directives between
|
|
// comment and declaration.
|
|
if (Text.find_first_of(";{}#@") != StringRef::npos)
|
|
return nullptr;
|
|
|
|
return *Comment;
|
|
}
|
|
|
|
/// If we have a 'templated' declaration for a template, adjust 'D' to
|
|
/// refer to the actual template.
|
|
/// If we have an implicit instantiation, adjust 'D' to refer to template.
|
|
static const Decl *adjustDeclToTemplate(const Decl *D) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Is this function declaration part of a function template?
|
|
if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
|
|
return FTD;
|
|
|
|
// Nothing to do if function is not an implicit instantiation.
|
|
if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
|
|
return D;
|
|
|
|
// Function is an implicit instantiation of a function template?
|
|
if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
|
|
return FTD;
|
|
|
|
// Function is instantiated from a member definition of a class template?
|
|
if (const FunctionDecl *MemberDecl =
|
|
FD->getInstantiatedFromMemberFunction())
|
|
return MemberDecl;
|
|
|
|
return D;
|
|
}
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
// Static data member is instantiated from a member definition of a class
|
|
// template?
|
|
if (VD->isStaticDataMember())
|
|
if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
|
|
return MemberDecl;
|
|
|
|
return D;
|
|
}
|
|
if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
|
|
// Is this class declaration part of a class template?
|
|
if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
|
|
return CTD;
|
|
|
|
// Class is an implicit instantiation of a class template or partial
|
|
// specialization?
|
|
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
|
|
if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
|
|
return D;
|
|
llvm::PointerUnion<ClassTemplateDecl *,
|
|
ClassTemplatePartialSpecializationDecl *>
|
|
PU = CTSD->getSpecializedTemplateOrPartial();
|
|
return PU.is<ClassTemplateDecl*>() ?
|
|
static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
|
|
static_cast<const Decl*>(
|
|
PU.get<ClassTemplatePartialSpecializationDecl *>());
|
|
}
|
|
|
|
// Class is instantiated from a member definition of a class template?
|
|
if (const MemberSpecializationInfo *Info =
|
|
CRD->getMemberSpecializationInfo())
|
|
return Info->getInstantiatedFrom();
|
|
|
|
return D;
|
|
}
|
|
if (const auto *ED = dyn_cast<EnumDecl>(D)) {
|
|
// Enum is instantiated from a member definition of a class template?
|
|
if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
|
|
return MemberDecl;
|
|
|
|
return D;
|
|
}
|
|
// FIXME: Adjust alias templates?
|
|
return D;
|
|
}
|
|
|
|
const RawComment *ASTContext::getRawCommentForAnyRedecl(
|
|
const Decl *D,
|
|
const Decl **OriginalDecl) const {
|
|
D = adjustDeclToTemplate(D);
|
|
|
|
// Check whether we have cached a comment for this declaration already.
|
|
{
|
|
llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
|
|
RedeclComments.find(D);
|
|
if (Pos != RedeclComments.end()) {
|
|
const RawCommentAndCacheFlags &Raw = Pos->second;
|
|
if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
|
|
if (OriginalDecl)
|
|
*OriginalDecl = Raw.getOriginalDecl();
|
|
return Raw.getRaw();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search for comments attached to declarations in the redeclaration chain.
|
|
const RawComment *RC = nullptr;
|
|
const Decl *OriginalDeclForRC = nullptr;
|
|
for (auto I : D->redecls()) {
|
|
llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
|
|
RedeclComments.find(I);
|
|
if (Pos != RedeclComments.end()) {
|
|
const RawCommentAndCacheFlags &Raw = Pos->second;
|
|
if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
|
|
RC = Raw.getRaw();
|
|
OriginalDeclForRC = Raw.getOriginalDecl();
|
|
break;
|
|
}
|
|
} else {
|
|
RC = getRawCommentForDeclNoCache(I);
|
|
OriginalDeclForRC = I;
|
|
RawCommentAndCacheFlags Raw;
|
|
if (RC) {
|
|
// Call order swapped to work around ICE in VS2015 RTM (Release Win32)
|
|
// https://connect.microsoft.com/VisualStudio/feedback/details/1741530
|
|
Raw.setKind(RawCommentAndCacheFlags::FromDecl);
|
|
Raw.setRaw(RC);
|
|
} else
|
|
Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
|
|
Raw.setOriginalDecl(I);
|
|
RedeclComments[I] = Raw;
|
|
if (RC)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we found a comment, it should be a documentation comment.
|
|
assert(!RC || RC->isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
|
|
|
|
if (OriginalDecl)
|
|
*OriginalDecl = OriginalDeclForRC;
|
|
|
|
// Update cache for every declaration in the redeclaration chain.
|
|
RawCommentAndCacheFlags Raw;
|
|
Raw.setRaw(RC);
|
|
Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
|
|
Raw.setOriginalDecl(OriginalDeclForRC);
|
|
|
|
for (auto I : D->redecls()) {
|
|
RawCommentAndCacheFlags &R = RedeclComments[I];
|
|
if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
|
|
R = Raw;
|
|
}
|
|
|
|
return RC;
|
|
}
|
|
|
|
static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
|
|
SmallVectorImpl<const NamedDecl *> &Redeclared) {
|
|
const DeclContext *DC = ObjCMethod->getDeclContext();
|
|
if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
|
|
const ObjCInterfaceDecl *ID = IMD->getClassInterface();
|
|
if (!ID)
|
|
return;
|
|
// Add redeclared method here.
|
|
for (const auto *Ext : ID->known_extensions()) {
|
|
if (ObjCMethodDecl *RedeclaredMethod =
|
|
Ext->getMethod(ObjCMethod->getSelector(),
|
|
ObjCMethod->isInstanceMethod()))
|
|
Redeclared.push_back(RedeclaredMethod);
|
|
}
|
|
}
|
|
}
|
|
|
|
comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
|
|
const Decl *D) const {
|
|
auto *ThisDeclInfo = new (*this) comments::DeclInfo;
|
|
ThisDeclInfo->CommentDecl = D;
|
|
ThisDeclInfo->IsFilled = false;
|
|
ThisDeclInfo->fill();
|
|
ThisDeclInfo->CommentDecl = FC->getDecl();
|
|
if (!ThisDeclInfo->TemplateParameters)
|
|
ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
|
|
comments::FullComment *CFC =
|
|
new (*this) comments::FullComment(FC->getBlocks(),
|
|
ThisDeclInfo);
|
|
return CFC;
|
|
}
|
|
|
|
comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
|
|
const RawComment *RC = getRawCommentForDeclNoCache(D);
|
|
return RC ? RC->parse(*this, nullptr, D) : nullptr;
|
|
}
|
|
|
|
comments::FullComment *ASTContext::getCommentForDecl(
|
|
const Decl *D,
|
|
const Preprocessor *PP) const {
|
|
if (D->isInvalidDecl())
|
|
return nullptr;
|
|
D = adjustDeclToTemplate(D);
|
|
|
|
const Decl *Canonical = D->getCanonicalDecl();
|
|
llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
|
|
ParsedComments.find(Canonical);
|
|
|
|
if (Pos != ParsedComments.end()) {
|
|
if (Canonical != D) {
|
|
comments::FullComment *FC = Pos->second;
|
|
comments::FullComment *CFC = cloneFullComment(FC, D);
|
|
return CFC;
|
|
}
|
|
return Pos->second;
|
|
}
|
|
|
|
const Decl *OriginalDecl;
|
|
|
|
const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
|
|
if (!RC) {
|
|
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
|
|
SmallVector<const NamedDecl*, 8> Overridden;
|
|
const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
|
|
if (OMD && OMD->isPropertyAccessor())
|
|
if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
|
|
if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
|
|
return cloneFullComment(FC, D);
|
|
if (OMD)
|
|
addRedeclaredMethods(OMD, Overridden);
|
|
getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
|
|
for (unsigned i = 0, e = Overridden.size(); i < e; i++)
|
|
if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
|
|
return cloneFullComment(FC, D);
|
|
}
|
|
else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
// Attach any tag type's documentation to its typedef if latter
|
|
// does not have one of its own.
|
|
QualType QT = TD->getUnderlyingType();
|
|
if (const auto *TT = QT->getAs<TagType>())
|
|
if (const Decl *TD = TT->getDecl())
|
|
if (comments::FullComment *FC = getCommentForDecl(TD, PP))
|
|
return cloneFullComment(FC, D);
|
|
}
|
|
else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
|
|
while (IC->getSuperClass()) {
|
|
IC = IC->getSuperClass();
|
|
if (comments::FullComment *FC = getCommentForDecl(IC, PP))
|
|
return cloneFullComment(FC, D);
|
|
}
|
|
}
|
|
else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
|
|
if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
|
|
if (comments::FullComment *FC = getCommentForDecl(IC, PP))
|
|
return cloneFullComment(FC, D);
|
|
}
|
|
else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (!(RD = RD->getDefinition()))
|
|
return nullptr;
|
|
// Check non-virtual bases.
|
|
for (const auto &I : RD->bases()) {
|
|
if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
|
|
continue;
|
|
QualType Ty = I.getType();
|
|
if (Ty.isNull())
|
|
continue;
|
|
if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
|
|
if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
|
|
continue;
|
|
|
|
if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
|
|
return cloneFullComment(FC, D);
|
|
}
|
|
}
|
|
// Check virtual bases.
|
|
for (const auto &I : RD->vbases()) {
|
|
if (I.getAccessSpecifier() != AS_public)
|
|
continue;
|
|
QualType Ty = I.getType();
|
|
if (Ty.isNull())
|
|
continue;
|
|
if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
|
|
if (!(VirtualBase= VirtualBase->getDefinition()))
|
|
continue;
|
|
if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
|
|
return cloneFullComment(FC, D);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// If the RawComment was attached to other redeclaration of this Decl, we
|
|
// should parse the comment in context of that other Decl. This is important
|
|
// because comments can contain references to parameter names which can be
|
|
// different across redeclarations.
|
|
if (D != OriginalDecl)
|
|
return getCommentForDecl(OriginalDecl, PP);
|
|
|
|
comments::FullComment *FC = RC->parse(*this, PP, D);
|
|
ParsedComments[Canonical] = FC;
|
|
return FC;
|
|
}
|
|
|
|
void
|
|
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
|
|
TemplateTemplateParmDecl *Parm) {
|
|
ID.AddInteger(Parm->getDepth());
|
|
ID.AddInteger(Parm->getPosition());
|
|
ID.AddBoolean(Parm->isParameterPack());
|
|
|
|
TemplateParameterList *Params = Parm->getTemplateParameters();
|
|
ID.AddInteger(Params->size());
|
|
for (TemplateParameterList::const_iterator P = Params->begin(),
|
|
PEnd = Params->end();
|
|
P != PEnd; ++P) {
|
|
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
|
|
ID.AddInteger(0);
|
|
ID.AddBoolean(TTP->isParameterPack());
|
|
continue;
|
|
}
|
|
|
|
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
|
|
ID.AddInteger(1);
|
|
ID.AddBoolean(NTTP->isParameterPack());
|
|
ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
|
|
if (NTTP->isExpandedParameterPack()) {
|
|
ID.AddBoolean(true);
|
|
ID.AddInteger(NTTP->getNumExpansionTypes());
|
|
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
|
|
QualType T = NTTP->getExpansionType(I);
|
|
ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
|
|
}
|
|
} else
|
|
ID.AddBoolean(false);
|
|
continue;
|
|
}
|
|
|
|
auto *TTP = cast<TemplateTemplateParmDecl>(*P);
|
|
ID.AddInteger(2);
|
|
Profile(ID, TTP);
|
|
}
|
|
}
|
|
|
|
TemplateTemplateParmDecl *
|
|
ASTContext::getCanonicalTemplateTemplateParmDecl(
|
|
TemplateTemplateParmDecl *TTP) const {
|
|
// Check if we already have a canonical template template parameter.
|
|
llvm::FoldingSetNodeID ID;
|
|
CanonicalTemplateTemplateParm::Profile(ID, TTP);
|
|
void *InsertPos = nullptr;
|
|
CanonicalTemplateTemplateParm *Canonical
|
|
= CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (Canonical)
|
|
return Canonical->getParam();
|
|
|
|
// Build a canonical template parameter list.
|
|
TemplateParameterList *Params = TTP->getTemplateParameters();
|
|
SmallVector<NamedDecl *, 4> CanonParams;
|
|
CanonParams.reserve(Params->size());
|
|
for (TemplateParameterList::const_iterator P = Params->begin(),
|
|
PEnd = Params->end();
|
|
P != PEnd; ++P) {
|
|
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
|
|
CanonParams.push_back(
|
|
TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
TTP->getDepth(),
|
|
TTP->getIndex(), nullptr, false,
|
|
TTP->isParameterPack()));
|
|
else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
|
|
QualType T = getCanonicalType(NTTP->getType());
|
|
TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
|
|
NonTypeTemplateParmDecl *Param;
|
|
if (NTTP->isExpandedParameterPack()) {
|
|
SmallVector<QualType, 2> ExpandedTypes;
|
|
SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
|
|
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
|
|
ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
|
|
ExpandedTInfos.push_back(
|
|
getTrivialTypeSourceInfo(ExpandedTypes.back()));
|
|
}
|
|
|
|
Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
NTTP->getDepth(),
|
|
NTTP->getPosition(), nullptr,
|
|
T,
|
|
TInfo,
|
|
ExpandedTypes,
|
|
ExpandedTInfos);
|
|
} else {
|
|
Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
NTTP->getDepth(),
|
|
NTTP->getPosition(), nullptr,
|
|
T,
|
|
NTTP->isParameterPack(),
|
|
TInfo);
|
|
}
|
|
CanonParams.push_back(Param);
|
|
|
|
} else
|
|
CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
|
|
cast<TemplateTemplateParmDecl>(*P)));
|
|
}
|
|
|
|
assert(!TTP->getRequiresClause() &&
|
|
"Unexpected requires-clause on template template-parameter");
|
|
Expr *const CanonRequiresClause = nullptr;
|
|
|
|
TemplateTemplateParmDecl *CanonTTP
|
|
= TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(), TTP->getDepth(),
|
|
TTP->getPosition(),
|
|
TTP->isParameterPack(),
|
|
nullptr,
|
|
TemplateParameterList::Create(*this, SourceLocation(),
|
|
SourceLocation(),
|
|
CanonParams,
|
|
SourceLocation(),
|
|
CanonRequiresClause));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!Canonical && "Shouldn't be in the map!");
|
|
(void)Canonical;
|
|
|
|
// Create the canonical template template parameter entry.
|
|
Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
|
|
CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
|
|
return CanonTTP;
|
|
}
|
|
|
|
CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
|
|
if (!LangOpts.CPlusPlus) return nullptr;
|
|
|
|
switch (T.getCXXABI().getKind()) {
|
|
case TargetCXXABI::GenericARM: // Same as Itanium at this level
|
|
case TargetCXXABI::iOS:
|
|
case TargetCXXABI::iOS64:
|
|
case TargetCXXABI::WatchOS:
|
|
case TargetCXXABI::GenericAArch64:
|
|
case TargetCXXABI::GenericMIPS:
|
|
case TargetCXXABI::GenericItanium:
|
|
case TargetCXXABI::WebAssembly:
|
|
return CreateItaniumCXXABI(*this);
|
|
case TargetCXXABI::Microsoft:
|
|
return CreateMicrosoftCXXABI(*this);
|
|
}
|
|
llvm_unreachable("Invalid CXXABI type!");
|
|
}
|
|
|
|
static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
|
|
const LangOptions &LOpts) {
|
|
if (LOpts.FakeAddressSpaceMap) {
|
|
// The fake address space map must have a distinct entry for each
|
|
// language-specific address space.
|
|
static const unsigned FakeAddrSpaceMap[] = {
|
|
0, // Default
|
|
1, // opencl_global
|
|
3, // opencl_local
|
|
2, // opencl_constant
|
|
0, // opencl_private
|
|
4, // opencl_generic
|
|
5, // cuda_device
|
|
6, // cuda_constant
|
|
7 // cuda_shared
|
|
};
|
|
return &FakeAddrSpaceMap;
|
|
} else {
|
|
return &T.getAddressSpaceMap();
|
|
}
|
|
}
|
|
|
|
static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
|
|
const LangOptions &LangOpts) {
|
|
switch (LangOpts.getAddressSpaceMapMangling()) {
|
|
case LangOptions::ASMM_Target:
|
|
return TI.useAddressSpaceMapMangling();
|
|
case LangOptions::ASMM_On:
|
|
return true;
|
|
case LangOptions::ASMM_Off:
|
|
return false;
|
|
}
|
|
llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
|
|
}
|
|
|
|
ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
|
|
IdentifierTable &idents, SelectorTable &sels,
|
|
Builtin::Context &builtins)
|
|
: FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
|
|
DependentTemplateSpecializationTypes(this_()),
|
|
SubstTemplateTemplateParmPacks(this_()), SourceMgr(SM), LangOpts(LOpts),
|
|
SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
|
|
XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
|
|
LangOpts.XRayNeverInstrumentFiles,
|
|
LangOpts.XRayAttrListFiles, SM)),
|
|
PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
|
|
BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
|
|
CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
|
|
CompCategories(this_()), LastSDM(nullptr, 0) {
|
|
TUDecl = TranslationUnitDecl::Create(*this);
|
|
TraversalScope = {TUDecl};
|
|
}
|
|
|
|
ASTContext::~ASTContext() {
|
|
// Release the DenseMaps associated with DeclContext objects.
|
|
// FIXME: Is this the ideal solution?
|
|
ReleaseDeclContextMaps();
|
|
|
|
// Call all of the deallocation functions on all of their targets.
|
|
for (auto &Pair : Deallocations)
|
|
(Pair.first)(Pair.second);
|
|
|
|
// ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
|
|
// because they can contain DenseMaps.
|
|
for (llvm::DenseMap<const ObjCContainerDecl*,
|
|
const ASTRecordLayout*>::iterator
|
|
I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
|
|
// Increment in loop to prevent using deallocated memory.
|
|
if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
|
|
R->Destroy(*this);
|
|
|
|
for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
|
|
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
|
|
// Increment in loop to prevent using deallocated memory.
|
|
if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
|
|
R->Destroy(*this);
|
|
}
|
|
|
|
for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
|
|
AEnd = DeclAttrs.end();
|
|
A != AEnd; ++A)
|
|
A->second->~AttrVec();
|
|
|
|
for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
|
|
MaterializedTemporaryValues)
|
|
MTVPair.second->~APValue();
|
|
|
|
for (const auto &Value : ModuleInitializers)
|
|
Value.second->~PerModuleInitializers();
|
|
}
|
|
|
|
class ASTContext::ParentMap {
|
|
/// Contains parents of a node.
|
|
using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
|
|
|
|
/// Maps from a node to its parents. This is used for nodes that have
|
|
/// pointer identity only, which are more common and we can save space by
|
|
/// only storing a unique pointer to them.
|
|
using ParentMapPointers = llvm::DenseMap<
|
|
const void *,
|
|
llvm::PointerUnion4<const Decl *, const Stmt *,
|
|
ast_type_traits::DynTypedNode *, ParentVector *>>;
|
|
|
|
/// Parent map for nodes without pointer identity. We store a full
|
|
/// DynTypedNode for all keys.
|
|
using ParentMapOtherNodes = llvm::DenseMap<
|
|
ast_type_traits::DynTypedNode,
|
|
llvm::PointerUnion4<const Decl *, const Stmt *,
|
|
ast_type_traits::DynTypedNode *, ParentVector *>>;
|
|
|
|
ParentMapPointers PointerParents;
|
|
ParentMapOtherNodes OtherParents;
|
|
class ASTVisitor;
|
|
|
|
static ast_type_traits::DynTypedNode
|
|
getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
|
|
if (const auto *D = U.dyn_cast<const Decl *>())
|
|
return ast_type_traits::DynTypedNode::create(*D);
|
|
if (const auto *S = U.dyn_cast<const Stmt *>())
|
|
return ast_type_traits::DynTypedNode::create(*S);
|
|
return *U.get<ast_type_traits::DynTypedNode *>();
|
|
}
|
|
|
|
template <typename NodeTy, typename MapTy>
|
|
static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
|
|
const MapTy &Map) {
|
|
auto I = Map.find(Node);
|
|
if (I == Map.end()) {
|
|
return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
|
|
}
|
|
if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
|
|
return llvm::makeArrayRef(*V);
|
|
}
|
|
return getSingleDynTypedNodeFromParentMap(I->second);
|
|
}
|
|
|
|
public:
|
|
ParentMap(ASTContext &Ctx);
|
|
~ParentMap() {
|
|
for (const auto &Entry : PointerParents) {
|
|
if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
|
|
delete Entry.second.get<ast_type_traits::DynTypedNode *>();
|
|
} else if (Entry.second.is<ParentVector *>()) {
|
|
delete Entry.second.get<ParentVector *>();
|
|
}
|
|
}
|
|
for (const auto &Entry : OtherParents) {
|
|
if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
|
|
delete Entry.second.get<ast_type_traits::DynTypedNode *>();
|
|
} else if (Entry.second.is<ParentVector *>()) {
|
|
delete Entry.second.get<ParentVector *>();
|
|
}
|
|
}
|
|
}
|
|
|
|
DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
|
|
if (Node.getNodeKind().hasPointerIdentity())
|
|
return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
|
|
return getDynNodeFromMap(Node, OtherParents);
|
|
}
|
|
};
|
|
|
|
void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
|
|
TraversalScope = TopLevelDecls;
|
|
Parents.reset();
|
|
}
|
|
|
|
void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
|
|
Deallocations.push_back({Callback, Data});
|
|
}
|
|
|
|
void
|
|
ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
|
|
ExternalSource = std::move(Source);
|
|
}
|
|
|
|
void ASTContext::PrintStats() const {
|
|
llvm::errs() << "\n*** AST Context Stats:\n";
|
|
llvm::errs() << " " << Types.size() << " types total.\n";
|
|
|
|
unsigned counts[] = {
|
|
#define TYPE(Name, Parent) 0,
|
|
#define ABSTRACT_TYPE(Name, Parent)
|
|
#include "clang/AST/TypeNodes.def"
|
|
0 // Extra
|
|
};
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
Type *T = Types[i];
|
|
counts[(unsigned)T->getTypeClass()]++;
|
|
}
|
|
|
|
unsigned Idx = 0;
|
|
unsigned TotalBytes = 0;
|
|
#define TYPE(Name, Parent) \
|
|
if (counts[Idx]) \
|
|
llvm::errs() << " " << counts[Idx] << " " << #Name \
|
|
<< " types, " << sizeof(Name##Type) << " each " \
|
|
<< "(" << counts[Idx] * sizeof(Name##Type) \
|
|
<< " bytes)\n"; \
|
|
TotalBytes += counts[Idx] * sizeof(Name##Type); \
|
|
++Idx;
|
|
#define ABSTRACT_TYPE(Name, Parent)
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
llvm::errs() << "Total bytes = " << TotalBytes << "\n";
|
|
|
|
// Implicit special member functions.
|
|
llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
|
|
<< NumImplicitDefaultConstructors
|
|
<< " implicit default constructors created\n";
|
|
llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
|
|
<< NumImplicitCopyConstructors
|
|
<< " implicit copy constructors created\n";
|
|
if (getLangOpts().CPlusPlus)
|
|
llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
|
|
<< NumImplicitMoveConstructors
|
|
<< " implicit move constructors created\n";
|
|
llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
|
|
<< NumImplicitCopyAssignmentOperators
|
|
<< " implicit copy assignment operators created\n";
|
|
if (getLangOpts().CPlusPlus)
|
|
llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
|
|
<< NumImplicitMoveAssignmentOperators
|
|
<< " implicit move assignment operators created\n";
|
|
llvm::errs() << NumImplicitDestructorsDeclared << "/"
|
|
<< NumImplicitDestructors
|
|
<< " implicit destructors created\n";
|
|
|
|
if (ExternalSource) {
|
|
llvm::errs() << "\n";
|
|
ExternalSource->PrintStats();
|
|
}
|
|
|
|
BumpAlloc.PrintStats();
|
|
}
|
|
|
|
void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
|
|
bool NotifyListeners) {
|
|
if (NotifyListeners)
|
|
if (auto *Listener = getASTMutationListener())
|
|
Listener->RedefinedHiddenDefinition(ND, M);
|
|
|
|
MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
|
|
}
|
|
|
|
void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
|
|
auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
|
|
if (It == MergedDefModules.end())
|
|
return;
|
|
|
|
auto &Merged = It->second;
|
|
llvm::DenseSet<Module*> Found;
|
|
for (Module *&M : Merged)
|
|
if (!Found.insert(M).second)
|
|
M = nullptr;
|
|
Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
|
|
}
|
|
|
|
void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
|
|
if (LazyInitializers.empty())
|
|
return;
|
|
|
|
auto *Source = Ctx.getExternalSource();
|
|
assert(Source && "lazy initializers but no external source");
|
|
|
|
auto LazyInits = std::move(LazyInitializers);
|
|
LazyInitializers.clear();
|
|
|
|
for (auto ID : LazyInits)
|
|
Initializers.push_back(Source->GetExternalDecl(ID));
|
|
|
|
assert(LazyInitializers.empty() &&
|
|
"GetExternalDecl for lazy module initializer added more inits");
|
|
}
|
|
|
|
void ASTContext::addModuleInitializer(Module *M, Decl *D) {
|
|
// One special case: if we add a module initializer that imports another
|
|
// module, and that module's only initializer is an ImportDecl, simplify.
|
|
if (const auto *ID = dyn_cast<ImportDecl>(D)) {
|
|
auto It = ModuleInitializers.find(ID->getImportedModule());
|
|
|
|
// Maybe the ImportDecl does nothing at all. (Common case.)
|
|
if (It == ModuleInitializers.end())
|
|
return;
|
|
|
|
// Maybe the ImportDecl only imports another ImportDecl.
|
|
auto &Imported = *It->second;
|
|
if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
|
|
Imported.resolve(*this);
|
|
auto *OnlyDecl = Imported.Initializers.front();
|
|
if (isa<ImportDecl>(OnlyDecl))
|
|
D = OnlyDecl;
|
|
}
|
|
}
|
|
|
|
auto *&Inits = ModuleInitializers[M];
|
|
if (!Inits)
|
|
Inits = new (*this) PerModuleInitializers;
|
|
Inits->Initializers.push_back(D);
|
|
}
|
|
|
|
void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
|
|
auto *&Inits = ModuleInitializers[M];
|
|
if (!Inits)
|
|
Inits = new (*this) PerModuleInitializers;
|
|
Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
|
|
IDs.begin(), IDs.end());
|
|
}
|
|
|
|
ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
|
|
auto It = ModuleInitializers.find(M);
|
|
if (It == ModuleInitializers.end())
|
|
return None;
|
|
|
|
auto *Inits = It->second;
|
|
Inits->resolve(*this);
|
|
return Inits->Initializers;
|
|
}
|
|
|
|
ExternCContextDecl *ASTContext::getExternCContextDecl() const {
|
|
if (!ExternCContext)
|
|
ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
|
|
|
|
return ExternCContext;
|
|
}
|
|
|
|
BuiltinTemplateDecl *
|
|
ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
|
|
const IdentifierInfo *II) const {
|
|
auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
|
|
BuiltinTemplate->setImplicit();
|
|
TUDecl->addDecl(BuiltinTemplate);
|
|
|
|
return BuiltinTemplate;
|
|
}
|
|
|
|
BuiltinTemplateDecl *
|
|
ASTContext::getMakeIntegerSeqDecl() const {
|
|
if (!MakeIntegerSeqDecl)
|
|
MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
|
|
getMakeIntegerSeqName());
|
|
return MakeIntegerSeqDecl;
|
|
}
|
|
|
|
BuiltinTemplateDecl *
|
|
ASTContext::getTypePackElementDecl() const {
|
|
if (!TypePackElementDecl)
|
|
TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
|
|
getTypePackElementName());
|
|
return TypePackElementDecl;
|
|
}
|
|
|
|
RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
|
|
RecordDecl::TagKind TK) const {
|
|
SourceLocation Loc;
|
|
RecordDecl *NewDecl;
|
|
if (getLangOpts().CPlusPlus)
|
|
NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
|
|
Loc, &Idents.get(Name));
|
|
else
|
|
NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
|
|
&Idents.get(Name));
|
|
NewDecl->setImplicit();
|
|
NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
|
|
const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
|
|
return NewDecl;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
|
|
StringRef Name) const {
|
|
TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
|
|
TypedefDecl *NewDecl = TypedefDecl::Create(
|
|
const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
|
|
SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
|
|
NewDecl->setImplicit();
|
|
return NewDecl;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getInt128Decl() const {
|
|
if (!Int128Decl)
|
|
Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
|
|
return Int128Decl;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getUInt128Decl() const {
|
|
if (!UInt128Decl)
|
|
UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
|
|
return UInt128Decl;
|
|
}
|
|
|
|
void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
|
|
auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
|
|
R = CanQualType::CreateUnsafe(QualType(Ty, 0));
|
|
Types.push_back(Ty);
|
|
}
|
|
|
|
void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
|
|
const TargetInfo *AuxTarget) {
|
|
assert((!this->Target || this->Target == &Target) &&
|
|
"Incorrect target reinitialization");
|
|
assert(VoidTy.isNull() && "Context reinitialized?");
|
|
|
|
this->Target = &Target;
|
|
this->AuxTarget = AuxTarget;
|
|
|
|
ABI.reset(createCXXABI(Target));
|
|
AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
|
|
AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
|
|
|
|
// C99 6.2.5p19.
|
|
InitBuiltinType(VoidTy, BuiltinType::Void);
|
|
|
|
// C99 6.2.5p2.
|
|
InitBuiltinType(BoolTy, BuiltinType::Bool);
|
|
// C99 6.2.5p3.
|
|
if (LangOpts.CharIsSigned)
|
|
InitBuiltinType(CharTy, BuiltinType::Char_S);
|
|
else
|
|
InitBuiltinType(CharTy, BuiltinType::Char_U);
|
|
// C99 6.2.5p4.
|
|
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
|
|
InitBuiltinType(ShortTy, BuiltinType::Short);
|
|
InitBuiltinType(IntTy, BuiltinType::Int);
|
|
InitBuiltinType(LongTy, BuiltinType::Long);
|
|
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
|
|
|
|
// C99 6.2.5p6.
|
|
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
|
|
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
|
|
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
|
|
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
|
|
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
|
|
|
|
// C99 6.2.5p10.
|
|
InitBuiltinType(FloatTy, BuiltinType::Float);
|
|
InitBuiltinType(DoubleTy, BuiltinType::Double);
|
|
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
|
|
|
|
// GNU extension, __float128 for IEEE quadruple precision
|
|
InitBuiltinType(Float128Ty, BuiltinType::Float128);
|
|
|
|
// C11 extension ISO/IEC TS 18661-3
|
|
InitBuiltinType(Float16Ty, BuiltinType::Float16);
|
|
|
|
// ISO/IEC JTC1 SC22 WG14 N1169 Extension
|
|
InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
|
|
InitBuiltinType(AccumTy, BuiltinType::Accum);
|
|
InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
|
|
InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
|
|
InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
|
|
InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
|
|
InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
|
|
InitBuiltinType(FractTy, BuiltinType::Fract);
|
|
InitBuiltinType(LongFractTy, BuiltinType::LongFract);
|
|
InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
|
|
InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
|
|
InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
|
|
InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
|
|
InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
|
|
InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
|
|
InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
|
|
InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
|
|
InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
|
|
InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
|
|
InitBuiltinType(SatFractTy, BuiltinType::SatFract);
|
|
InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
|
|
InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
|
|
InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
|
|
InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
|
|
|
|
// GNU extension, 128-bit integers.
|
|
InitBuiltinType(Int128Ty, BuiltinType::Int128);
|
|
InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
|
|
|
|
// C++ 3.9.1p5
|
|
if (TargetInfo::isTypeSigned(Target.getWCharType()))
|
|
InitBuiltinType(WCharTy, BuiltinType::WChar_S);
|
|
else // -fshort-wchar makes wchar_t be unsigned.
|
|
InitBuiltinType(WCharTy, BuiltinType::WChar_U);
|
|
if (LangOpts.CPlusPlus && LangOpts.WChar)
|
|
WideCharTy = WCharTy;
|
|
else {
|
|
// C99 (or C++ using -fno-wchar).
|
|
WideCharTy = getFromTargetType(Target.getWCharType());
|
|
}
|
|
|
|
WIntTy = getFromTargetType(Target.getWIntType());
|
|
|
|
// C++20 (proposed)
|
|
InitBuiltinType(Char8Ty, BuiltinType::Char8);
|
|
|
|
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
|
|
InitBuiltinType(Char16Ty, BuiltinType::Char16);
|
|
else // C99
|
|
Char16Ty = getFromTargetType(Target.getChar16Type());
|
|
|
|
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
|
|
InitBuiltinType(Char32Ty, BuiltinType::Char32);
|
|
else // C99
|
|
Char32Ty = getFromTargetType(Target.getChar32Type());
|
|
|
|
// Placeholder type for type-dependent expressions whose type is
|
|
// completely unknown. No code should ever check a type against
|
|
// DependentTy and users should never see it; however, it is here to
|
|
// help diagnose failures to properly check for type-dependent
|
|
// expressions.
|
|
InitBuiltinType(DependentTy, BuiltinType::Dependent);
|
|
|
|
// Placeholder type for functions.
|
|
InitBuiltinType(OverloadTy, BuiltinType::Overload);
|
|
|
|
// Placeholder type for bound members.
|
|
InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
|
|
|
|
// Placeholder type for pseudo-objects.
|
|
InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
|
|
|
|
// "any" type; useful for debugger-like clients.
|
|
InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
|
|
|
|
// Placeholder type for unbridged ARC casts.
|
|
InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
|
|
|
|
// Placeholder type for builtin functions.
|
|
InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
|
|
|
|
// Placeholder type for OMP array sections.
|
|
if (LangOpts.OpenMP)
|
|
InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
|
|
|
|
// C99 6.2.5p11.
|
|
FloatComplexTy = getComplexType(FloatTy);
|
|
DoubleComplexTy = getComplexType(DoubleTy);
|
|
LongDoubleComplexTy = getComplexType(LongDoubleTy);
|
|
Float128ComplexTy = getComplexType(Float128Ty);
|
|
|
|
// Builtin types for 'id', 'Class', and 'SEL'.
|
|
InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
|
|
InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
|
|
InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
|
|
|
|
if (LangOpts.OpenCL) {
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
InitBuiltinType(SingletonId, BuiltinType::Id);
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
|
|
InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
|
|
InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
|
|
InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
|
|
InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
|
|
InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
|
|
|
|
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
|
|
InitBuiltinType(Id##Ty, BuiltinType::Id);
|
|
#include "clang/Basic/OpenCLExtensionTypes.def"
|
|
}
|
|
|
|
// Builtin type for __objc_yes and __objc_no
|
|
ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
|
|
SignedCharTy : BoolTy);
|
|
|
|
ObjCConstantStringType = QualType();
|
|
|
|
ObjCSuperType = QualType();
|
|
|
|
// void * type
|
|
if (LangOpts.OpenCLVersion >= 200) {
|
|
auto Q = VoidTy.getQualifiers();
|
|
Q.setAddressSpace(LangAS::opencl_generic);
|
|
VoidPtrTy = getPointerType(getCanonicalType(
|
|
getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
|
|
} else {
|
|
VoidPtrTy = getPointerType(VoidTy);
|
|
}
|
|
|
|
// nullptr type (C++0x 2.14.7)
|
|
InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
|
|
|
|
// half type (OpenCL 6.1.1.1) / ARM NEON __fp16
|
|
InitBuiltinType(HalfTy, BuiltinType::Half);
|
|
|
|
// Builtin type used to help define __builtin_va_list.
|
|
VaListTagDecl = nullptr;
|
|
}
|
|
|
|
DiagnosticsEngine &ASTContext::getDiagnostics() const {
|
|
return SourceMgr.getDiagnostics();
|
|
}
|
|
|
|
AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
|
|
AttrVec *&Result = DeclAttrs[D];
|
|
if (!Result) {
|
|
void *Mem = Allocate(sizeof(AttrVec));
|
|
Result = new (Mem) AttrVec;
|
|
}
|
|
|
|
return *Result;
|
|
}
|
|
|
|
/// Erase the attributes corresponding to the given declaration.
|
|
void ASTContext::eraseDeclAttrs(const Decl *D) {
|
|
llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
|
|
if (Pos != DeclAttrs.end()) {
|
|
Pos->second->~AttrVec();
|
|
DeclAttrs.erase(Pos);
|
|
}
|
|
}
|
|
|
|
// FIXME: Remove ?
|
|
MemberSpecializationInfo *
|
|
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
|
|
assert(Var->isStaticDataMember() && "Not a static data member");
|
|
return getTemplateOrSpecializationInfo(Var)
|
|
.dyn_cast<MemberSpecializationInfo *>();
|
|
}
|
|
|
|
ASTContext::TemplateOrSpecializationInfo
|
|
ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
|
|
llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
|
|
TemplateOrInstantiation.find(Var);
|
|
if (Pos == TemplateOrInstantiation.end())
|
|
return {};
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void
|
|
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
|
|
TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
assert(Inst->isStaticDataMember() && "Not a static data member");
|
|
assert(Tmpl->isStaticDataMember() && "Not a static data member");
|
|
setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
|
|
Tmpl, TSK, PointOfInstantiation));
|
|
}
|
|
|
|
void
|
|
ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
|
|
TemplateOrSpecializationInfo TSI) {
|
|
assert(!TemplateOrInstantiation[Inst] &&
|
|
"Already noted what the variable was instantiated from");
|
|
TemplateOrInstantiation[Inst] = TSI;
|
|
}
|
|
|
|
FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
|
|
const FunctionDecl *FD){
|
|
assert(FD && "Specialization is 0");
|
|
llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
|
|
= ClassScopeSpecializationPattern.find(FD);
|
|
if (Pos == ClassScopeSpecializationPattern.end())
|
|
return nullptr;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
|
|
FunctionDecl *Pattern) {
|
|
assert(FD && "Specialization is 0");
|
|
assert(Pattern && "Class scope specialization pattern is 0");
|
|
ClassScopeSpecializationPattern[FD] = Pattern;
|
|
}
|
|
|
|
NamedDecl *
|
|
ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
|
|
auto Pos = InstantiatedFromUsingDecl.find(UUD);
|
|
if (Pos == InstantiatedFromUsingDecl.end())
|
|
return nullptr;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void
|
|
ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
|
|
assert((isa<UsingDecl>(Pattern) ||
|
|
isa<UnresolvedUsingValueDecl>(Pattern) ||
|
|
isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
|
|
"pattern decl is not a using decl");
|
|
assert((isa<UsingDecl>(Inst) ||
|
|
isa<UnresolvedUsingValueDecl>(Inst) ||
|
|
isa<UnresolvedUsingTypenameDecl>(Inst)) &&
|
|
"instantiation did not produce a using decl");
|
|
assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
|
|
InstantiatedFromUsingDecl[Inst] = Pattern;
|
|
}
|
|
|
|
UsingShadowDecl *
|
|
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
|
|
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
|
|
= InstantiatedFromUsingShadowDecl.find(Inst);
|
|
if (Pos == InstantiatedFromUsingShadowDecl.end())
|
|
return nullptr;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void
|
|
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
|
|
UsingShadowDecl *Pattern) {
|
|
assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
|
|
InstantiatedFromUsingShadowDecl[Inst] = Pattern;
|
|
}
|
|
|
|
FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
|
|
llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
|
|
= InstantiatedFromUnnamedFieldDecl.find(Field);
|
|
if (Pos == InstantiatedFromUnnamedFieldDecl.end())
|
|
return nullptr;
|
|
|
|
return Pos->second;
|
|
}
|
|
|
|
void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
|
|
FieldDecl *Tmpl) {
|
|
assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
|
|
assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
|
|
assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
|
|
"Already noted what unnamed field was instantiated from");
|
|
|
|
InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
|
|
}
|
|
|
|
ASTContext::overridden_cxx_method_iterator
|
|
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
|
|
return overridden_methods(Method).begin();
|
|
}
|
|
|
|
ASTContext::overridden_cxx_method_iterator
|
|
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
|
|
return overridden_methods(Method).end();
|
|
}
|
|
|
|
unsigned
|
|
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
|
|
auto Range = overridden_methods(Method);
|
|
return Range.end() - Range.begin();
|
|
}
|
|
|
|
ASTContext::overridden_method_range
|
|
ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
|
|
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
|
|
OverriddenMethods.find(Method->getCanonicalDecl());
|
|
if (Pos == OverriddenMethods.end())
|
|
return overridden_method_range(nullptr, nullptr);
|
|
return overridden_method_range(Pos->second.begin(), Pos->second.end());
|
|
}
|
|
|
|
void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
|
|
const CXXMethodDecl *Overridden) {
|
|
assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
|
|
OverriddenMethods[Method].push_back(Overridden);
|
|
}
|
|
|
|
void ASTContext::getOverriddenMethods(
|
|
const NamedDecl *D,
|
|
SmallVectorImpl<const NamedDecl *> &Overridden) const {
|
|
assert(D);
|
|
|
|
if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
|
|
Overridden.append(overridden_methods_begin(CXXMethod),
|
|
overridden_methods_end(CXXMethod));
|
|
return;
|
|
}
|
|
|
|
const auto *Method = dyn_cast<ObjCMethodDecl>(D);
|
|
if (!Method)
|
|
return;
|
|
|
|
SmallVector<const ObjCMethodDecl *, 8> OverDecls;
|
|
Method->getOverriddenMethods(OverDecls);
|
|
Overridden.append(OverDecls.begin(), OverDecls.end());
|
|
}
|
|
|
|
void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
|
|
assert(!Import->NextLocalImport && "Import declaration already in the chain");
|
|
assert(!Import->isFromASTFile() && "Non-local import declaration");
|
|
if (!FirstLocalImport) {
|
|
FirstLocalImport = Import;
|
|
LastLocalImport = Import;
|
|
return;
|
|
}
|
|
|
|
LastLocalImport->NextLocalImport = Import;
|
|
LastLocalImport = Import;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Sizing and Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
|
|
/// scalar floating point type.
|
|
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
|
|
const auto *BT = T->getAs<BuiltinType>();
|
|
assert(BT && "Not a floating point type!");
|
|
switch (BT->getKind()) {
|
|
default: llvm_unreachable("Not a floating point type!");
|
|
case BuiltinType::Float16:
|
|
case BuiltinType::Half:
|
|
return Target->getHalfFormat();
|
|
case BuiltinType::Float: return Target->getFloatFormat();
|
|
case BuiltinType::Double: return Target->getDoubleFormat();
|
|
case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
|
|
case BuiltinType::Float128: return Target->getFloat128Format();
|
|
}
|
|
}
|
|
|
|
CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
|
|
unsigned Align = Target->getCharWidth();
|
|
|
|
bool UseAlignAttrOnly = false;
|
|
if (unsigned AlignFromAttr = D->getMaxAlignment()) {
|
|
Align = AlignFromAttr;
|
|
|
|
// __attribute__((aligned)) can increase or decrease alignment
|
|
// *except* on a struct or struct member, where it only increases
|
|
// alignment unless 'packed' is also specified.
|
|
//
|
|
// It is an error for alignas to decrease alignment, so we can
|
|
// ignore that possibility; Sema should diagnose it.
|
|
if (isa<FieldDecl>(D)) {
|
|
UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
|
|
cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
|
|
} else {
|
|
UseAlignAttrOnly = true;
|
|
}
|
|
}
|
|
else if (isa<FieldDecl>(D))
|
|
UseAlignAttrOnly =
|
|
D->hasAttr<PackedAttr>() ||
|
|
cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
|
|
|
|
// If we're using the align attribute only, just ignore everything
|
|
// else about the declaration and its type.
|
|
if (UseAlignAttrOnly) {
|
|
// do nothing
|
|
} else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
|
|
QualType T = VD->getType();
|
|
if (const auto *RT = T->getAs<ReferenceType>()) {
|
|
if (ForAlignof)
|
|
T = RT->getPointeeType();
|
|
else
|
|
T = getPointerType(RT->getPointeeType());
|
|
}
|
|
QualType BaseT = getBaseElementType(T);
|
|
if (T->isFunctionType())
|
|
Align = getTypeInfoImpl(T.getTypePtr()).Align;
|
|
else if (!BaseT->isIncompleteType()) {
|
|
// Adjust alignments of declarations with array type by the
|
|
// large-array alignment on the target.
|
|
if (const ArrayType *arrayType = getAsArrayType(T)) {
|
|
unsigned MinWidth = Target->getLargeArrayMinWidth();
|
|
if (!ForAlignof && MinWidth) {
|
|
if (isa<VariableArrayType>(arrayType))
|
|
Align = std::max(Align, Target->getLargeArrayAlign());
|
|
else if (isa<ConstantArrayType>(arrayType) &&
|
|
MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
|
|
Align = std::max(Align, Target->getLargeArrayAlign());
|
|
}
|
|
}
|
|
Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
|
|
if (BaseT.getQualifiers().hasUnaligned())
|
|
Align = Target->getCharWidth();
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->hasGlobalStorage() && !ForAlignof)
|
|
Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
|
|
}
|
|
}
|
|
|
|
// Fields can be subject to extra alignment constraints, like if
|
|
// the field is packed, the struct is packed, or the struct has a
|
|
// a max-field-alignment constraint (#pragma pack). So calculate
|
|
// the actual alignment of the field within the struct, and then
|
|
// (as we're expected to) constrain that by the alignment of the type.
|
|
if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
|
|
const RecordDecl *Parent = Field->getParent();
|
|
// We can only produce a sensible answer if the record is valid.
|
|
if (!Parent->isInvalidDecl()) {
|
|
const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
|
|
|
|
// Start with the record's overall alignment.
|
|
unsigned FieldAlign = toBits(Layout.getAlignment());
|
|
|
|
// Use the GCD of that and the offset within the record.
|
|
uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
|
|
if (Offset > 0) {
|
|
// Alignment is always a power of 2, so the GCD will be a power of 2,
|
|
// which means we get to do this crazy thing instead of Euclid's.
|
|
uint64_t LowBitOfOffset = Offset & (~Offset + 1);
|
|
if (LowBitOfOffset < FieldAlign)
|
|
FieldAlign = static_cast<unsigned>(LowBitOfOffset);
|
|
}
|
|
|
|
Align = std::min(Align, FieldAlign);
|
|
}
|
|
}
|
|
}
|
|
|
|
return toCharUnitsFromBits(Align);
|
|
}
|
|
|
|
// getTypeInfoDataSizeInChars - Return the size of a type, in
|
|
// chars. If the type is a record, its data size is returned. This is
|
|
// the size of the memcpy that's performed when assigning this type
|
|
// using a trivial copy/move assignment operator.
|
|
std::pair<CharUnits, CharUnits>
|
|
ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
|
|
std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
|
|
|
|
// In C++, objects can sometimes be allocated into the tail padding
|
|
// of a base-class subobject. We decide whether that's possible
|
|
// during class layout, so here we can just trust the layout results.
|
|
if (getLangOpts().CPlusPlus) {
|
|
if (const auto *RT = T->getAs<RecordType>()) {
|
|
const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
|
|
sizeAndAlign.first = layout.getDataSize();
|
|
}
|
|
}
|
|
|
|
return sizeAndAlign;
|
|
}
|
|
|
|
/// getConstantArrayInfoInChars - Performing the computation in CharUnits
|
|
/// instead of in bits prevents overflowing the uint64_t for some large arrays.
|
|
std::pair<CharUnits, CharUnits>
|
|
static getConstantArrayInfoInChars(const ASTContext &Context,
|
|
const ConstantArrayType *CAT) {
|
|
std::pair<CharUnits, CharUnits> EltInfo =
|
|
Context.getTypeInfoInChars(CAT->getElementType());
|
|
uint64_t Size = CAT->getSize().getZExtValue();
|
|
assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
|
|
(uint64_t)(-1)/Size) &&
|
|
"Overflow in array type char size evaluation");
|
|
uint64_t Width = EltInfo.first.getQuantity() * Size;
|
|
unsigned Align = EltInfo.second.getQuantity();
|
|
if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
|
|
Context.getTargetInfo().getPointerWidth(0) == 64)
|
|
Width = llvm::alignTo(Width, Align);
|
|
return std::make_pair(CharUnits::fromQuantity(Width),
|
|
CharUnits::fromQuantity(Align));
|
|
}
|
|
|
|
std::pair<CharUnits, CharUnits>
|
|
ASTContext::getTypeInfoInChars(const Type *T) const {
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
|
|
return getConstantArrayInfoInChars(*this, CAT);
|
|
TypeInfo Info = getTypeInfo(T);
|
|
return std::make_pair(toCharUnitsFromBits(Info.Width),
|
|
toCharUnitsFromBits(Info.Align));
|
|
}
|
|
|
|
std::pair<CharUnits, CharUnits>
|
|
ASTContext::getTypeInfoInChars(QualType T) const {
|
|
return getTypeInfoInChars(T.getTypePtr());
|
|
}
|
|
|
|
bool ASTContext::isAlignmentRequired(const Type *T) const {
|
|
return getTypeInfo(T).AlignIsRequired;
|
|
}
|
|
|
|
bool ASTContext::isAlignmentRequired(QualType T) const {
|
|
return isAlignmentRequired(T.getTypePtr());
|
|
}
|
|
|
|
unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
|
|
// An alignment on a typedef overrides anything else.
|
|
if (const auto *TT = T->getAs<TypedefType>())
|
|
if (unsigned Align = TT->getDecl()->getMaxAlignment())
|
|
return Align;
|
|
|
|
// If we have an (array of) complete type, we're done.
|
|
T = getBaseElementType(T);
|
|
if (!T->isIncompleteType())
|
|
return getTypeAlign(T);
|
|
|
|
// If we had an array type, its element type might be a typedef
|
|
// type with an alignment attribute.
|
|
if (const auto *TT = T->getAs<TypedefType>())
|
|
if (unsigned Align = TT->getDecl()->getMaxAlignment())
|
|
return Align;
|
|
|
|
// Otherwise, see if the declaration of the type had an attribute.
|
|
if (const auto *TT = T->getAs<TagType>())
|
|
return TT->getDecl()->getMaxAlignment();
|
|
|
|
return 0;
|
|
}
|
|
|
|
TypeInfo ASTContext::getTypeInfo(const Type *T) const {
|
|
TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
|
|
if (I != MemoizedTypeInfo.end())
|
|
return I->second;
|
|
|
|
// This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
|
|
TypeInfo TI = getTypeInfoImpl(T);
|
|
MemoizedTypeInfo[T] = TI;
|
|
return TI;
|
|
}
|
|
|
|
/// getTypeInfoImpl - Return the size of the specified type, in bits. This
|
|
/// method does not work on incomplete types.
|
|
///
|
|
/// FIXME: Pointers into different addr spaces could have different sizes and
|
|
/// alignment requirements: getPointerInfo should take an AddrSpace, this
|
|
/// should take a QualType, &c.
|
|
TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
|
|
uint64_t Width = 0;
|
|
unsigned Align = 8;
|
|
bool AlignIsRequired = false;
|
|
unsigned AS = 0;
|
|
switch (T->getTypeClass()) {
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base)
|
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
|
|
case Type::Class: \
|
|
assert(!T->isDependentType() && "should not see dependent types here"); \
|
|
return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
|
|
#include "clang/AST/TypeNodes.def"
|
|
llvm_unreachable("Should not see dependent types");
|
|
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto:
|
|
// GCC extension: alignof(function) = 32 bits
|
|
Width = 0;
|
|
Align = 32;
|
|
break;
|
|
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
Width = 0;
|
|
Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
|
|
break;
|
|
|
|
case Type::ConstantArray: {
|
|
const auto *CAT = cast<ConstantArrayType>(T);
|
|
|
|
TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
|
|
uint64_t Size = CAT->getSize().getZExtValue();
|
|
assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
|
|
"Overflow in array type bit size evaluation");
|
|
Width = EltInfo.Width * Size;
|
|
Align = EltInfo.Align;
|
|
if (!getTargetInfo().getCXXABI().isMicrosoft() ||
|
|
getTargetInfo().getPointerWidth(0) == 64)
|
|
Width = llvm::alignTo(Width, Align);
|
|
break;
|
|
}
|
|
case Type::ExtVector:
|
|
case Type::Vector: {
|
|
const auto *VT = cast<VectorType>(T);
|
|
TypeInfo EltInfo = getTypeInfo(VT->getElementType());
|
|
Width = EltInfo.Width * VT->getNumElements();
|
|
Align = Width;
|
|
// If the alignment is not a power of 2, round up to the next power of 2.
|
|
// This happens for non-power-of-2 length vectors.
|
|
if (Align & (Align-1)) {
|
|
Align = llvm::NextPowerOf2(Align);
|
|
Width = llvm::alignTo(Width, Align);
|
|
}
|
|
// Adjust the alignment based on the target max.
|
|
uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
|
|
if (TargetVectorAlign && TargetVectorAlign < Align)
|
|
Align = TargetVectorAlign;
|
|
break;
|
|
}
|
|
|
|
case Type::Builtin:
|
|
switch (cast<BuiltinType>(T)->getKind()) {
|
|
default: llvm_unreachable("Unknown builtin type!");
|
|
case BuiltinType::Void:
|
|
// GCC extension: alignof(void) = 8 bits.
|
|
Width = 0;
|
|
Align = 8;
|
|
break;
|
|
case BuiltinType::Bool:
|
|
Width = Target->getBoolWidth();
|
|
Align = Target->getBoolAlign();
|
|
break;
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::Char8:
|
|
Width = Target->getCharWidth();
|
|
Align = Target->getCharAlign();
|
|
break;
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U:
|
|
Width = Target->getWCharWidth();
|
|
Align = Target->getWCharAlign();
|
|
break;
|
|
case BuiltinType::Char16:
|
|
Width = Target->getChar16Width();
|
|
Align = Target->getChar16Align();
|
|
break;
|
|
case BuiltinType::Char32:
|
|
Width = Target->getChar32Width();
|
|
Align = Target->getChar32Align();
|
|
break;
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::Short:
|
|
Width = Target->getShortWidth();
|
|
Align = Target->getShortAlign();
|
|
break;
|
|
case BuiltinType::UInt:
|
|
case BuiltinType::Int:
|
|
Width = Target->getIntWidth();
|
|
Align = Target->getIntAlign();
|
|
break;
|
|
case BuiltinType::ULong:
|
|
case BuiltinType::Long:
|
|
Width = Target->getLongWidth();
|
|
Align = Target->getLongAlign();
|
|
break;
|
|
case BuiltinType::ULongLong:
|
|
case BuiltinType::LongLong:
|
|
Width = Target->getLongLongWidth();
|
|
Align = Target->getLongLongAlign();
|
|
break;
|
|
case BuiltinType::Int128:
|
|
case BuiltinType::UInt128:
|
|
Width = 128;
|
|
Align = 128; // int128_t is 128-bit aligned on all targets.
|
|
break;
|
|
case BuiltinType::ShortAccum:
|
|
case BuiltinType::UShortAccum:
|
|
case BuiltinType::SatShortAccum:
|
|
case BuiltinType::SatUShortAccum:
|
|
Width = Target->getShortAccumWidth();
|
|
Align = Target->getShortAccumAlign();
|
|
break;
|
|
case BuiltinType::Accum:
|
|
case BuiltinType::UAccum:
|
|
case BuiltinType::SatAccum:
|
|
case BuiltinType::SatUAccum:
|
|
Width = Target->getAccumWidth();
|
|
Align = Target->getAccumAlign();
|
|
break;
|
|
case BuiltinType::LongAccum:
|
|
case BuiltinType::ULongAccum:
|
|
case BuiltinType::SatLongAccum:
|
|
case BuiltinType::SatULongAccum:
|
|
Width = Target->getLongAccumWidth();
|
|
Align = Target->getLongAccumAlign();
|
|
break;
|
|
case BuiltinType::ShortFract:
|
|
case BuiltinType::UShortFract:
|
|
case BuiltinType::SatShortFract:
|
|
case BuiltinType::SatUShortFract:
|
|
Width = Target->getShortFractWidth();
|
|
Align = Target->getShortFractAlign();
|
|
break;
|
|
case BuiltinType::Fract:
|
|
case BuiltinType::UFract:
|
|
case BuiltinType::SatFract:
|
|
case BuiltinType::SatUFract:
|
|
Width = Target->getFractWidth();
|
|
Align = Target->getFractAlign();
|
|
break;
|
|
case BuiltinType::LongFract:
|
|
case BuiltinType::ULongFract:
|
|
case BuiltinType::SatLongFract:
|
|
case BuiltinType::SatULongFract:
|
|
Width = Target->getLongFractWidth();
|
|
Align = Target->getLongFractAlign();
|
|
break;
|
|
case BuiltinType::Float16:
|
|
case BuiltinType::Half:
|
|
Width = Target->getHalfWidth();
|
|
Align = Target->getHalfAlign();
|
|
break;
|
|
case BuiltinType::Float:
|
|
Width = Target->getFloatWidth();
|
|
Align = Target->getFloatAlign();
|
|
break;
|
|
case BuiltinType::Double:
|
|
Width = Target->getDoubleWidth();
|
|
Align = Target->getDoubleAlign();
|
|
break;
|
|
case BuiltinType::LongDouble:
|
|
Width = Target->getLongDoubleWidth();
|
|
Align = Target->getLongDoubleAlign();
|
|
break;
|
|
case BuiltinType::Float128:
|
|
Width = Target->getFloat128Width();
|
|
Align = Target->getFloat128Align();
|
|
break;
|
|
case BuiltinType::NullPtr:
|
|
Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
|
|
Align = Target->getPointerAlign(0); // == sizeof(void*)
|
|
break;
|
|
case BuiltinType::ObjCId:
|
|
case BuiltinType::ObjCClass:
|
|
case BuiltinType::ObjCSel:
|
|
Width = Target->getPointerWidth(0);
|
|
Align = Target->getPointerAlign(0);
|
|
break;
|
|
case BuiltinType::OCLSampler:
|
|
case BuiltinType::OCLEvent:
|
|
case BuiltinType::OCLClkEvent:
|
|
case BuiltinType::OCLQueue:
|
|
case BuiltinType::OCLReserveID:
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLExtensionTypes.def"
|
|
AS = getTargetAddressSpace(
|
|
Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
|
|
Width = Target->getPointerWidth(AS);
|
|
Align = Target->getPointerAlign(AS);
|
|
break;
|
|
}
|
|
break;
|
|
case Type::ObjCObjectPointer:
|
|
Width = Target->getPointerWidth(0);
|
|
Align = Target->getPointerAlign(0);
|
|
break;
|
|
case Type::BlockPointer:
|
|
AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
|
|
Width = Target->getPointerWidth(AS);
|
|
Align = Target->getPointerAlign(AS);
|
|
break;
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
// alignof and sizeof should never enter this code path here, so we go
|
|
// the pointer route.
|
|
AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
|
|
Width = Target->getPointerWidth(AS);
|
|
Align = Target->getPointerAlign(AS);
|
|
break;
|
|
case Type::Pointer:
|
|
AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
|
|
Width = Target->getPointerWidth(AS);
|
|
Align = Target->getPointerAlign(AS);
|
|
break;
|
|
case Type::MemberPointer: {
|
|
const auto *MPT = cast<MemberPointerType>(T);
|
|
CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
|
|
Width = MPI.Width;
|
|
Align = MPI.Align;
|
|
break;
|
|
}
|
|
case Type::Complex: {
|
|
// Complex types have the same alignment as their elements, but twice the
|
|
// size.
|
|
TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
|
|
Width = EltInfo.Width * 2;
|
|
Align = EltInfo.Align;
|
|
break;
|
|
}
|
|
case Type::ObjCObject:
|
|
return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
|
|
case Type::Adjusted:
|
|
case Type::Decayed:
|
|
return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
|
|
case Type::ObjCInterface: {
|
|
const auto *ObjCI = cast<ObjCInterfaceType>(T);
|
|
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
|
|
Width = toBits(Layout.getSize());
|
|
Align = toBits(Layout.getAlignment());
|
|
break;
|
|
}
|
|
case Type::Record:
|
|
case Type::Enum: {
|
|
const auto *TT = cast<TagType>(T);
|
|
|
|
if (TT->getDecl()->isInvalidDecl()) {
|
|
Width = 8;
|
|
Align = 8;
|
|
break;
|
|
}
|
|
|
|
if (const auto *ET = dyn_cast<EnumType>(TT)) {
|
|
const EnumDecl *ED = ET->getDecl();
|
|
TypeInfo Info =
|
|
getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
|
|
if (unsigned AttrAlign = ED->getMaxAlignment()) {
|
|
Info.Align = AttrAlign;
|
|
Info.AlignIsRequired = true;
|
|
}
|
|
return Info;
|
|
}
|
|
|
|
const auto *RT = cast<RecordType>(TT);
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = getASTRecordLayout(RD);
|
|
Width = toBits(Layout.getSize());
|
|
Align = toBits(Layout.getAlignment());
|
|
AlignIsRequired = RD->hasAttr<AlignedAttr>();
|
|
break;
|
|
}
|
|
|
|
case Type::SubstTemplateTypeParm:
|
|
return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
|
|
getReplacementType().getTypePtr());
|
|
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization: {
|
|
const auto *A = cast<DeducedType>(T);
|
|
assert(!A->getDeducedType().isNull() &&
|
|
"cannot request the size of an undeduced or dependent auto type");
|
|
return getTypeInfo(A->getDeducedType().getTypePtr());
|
|
}
|
|
|
|
case Type::Paren:
|
|
return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
|
|
|
|
case Type::ObjCTypeParam:
|
|
return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
|
|
|
|
case Type::Typedef: {
|
|
const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
|
|
TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
|
|
// If the typedef has an aligned attribute on it, it overrides any computed
|
|
// alignment we have. This violates the GCC documentation (which says that
|
|
// attribute(aligned) can only round up) but matches its implementation.
|
|
if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
|
|
Align = AttrAlign;
|
|
AlignIsRequired = true;
|
|
} else {
|
|
Align = Info.Align;
|
|
AlignIsRequired = Info.AlignIsRequired;
|
|
}
|
|
Width = Info.Width;
|
|
break;
|
|
}
|
|
|
|
case Type::Elaborated:
|
|
return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
|
|
|
|
case Type::Attributed:
|
|
return getTypeInfo(
|
|
cast<AttributedType>(T)->getEquivalentType().getTypePtr());
|
|
|
|
case Type::Atomic: {
|
|
// Start with the base type information.
|
|
TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
|
|
Width = Info.Width;
|
|
Align = Info.Align;
|
|
|
|
if (!Width) {
|
|
// An otherwise zero-sized type should still generate an
|
|
// atomic operation.
|
|
Width = Target->getCharWidth();
|
|
assert(Align);
|
|
} else if (Width <= Target->getMaxAtomicPromoteWidth()) {
|
|
// If the size of the type doesn't exceed the platform's max
|
|
// atomic promotion width, make the size and alignment more
|
|
// favorable to atomic operations:
|
|
|
|
// Round the size up to a power of 2.
|
|
if (!llvm::isPowerOf2_64(Width))
|
|
Width = llvm::NextPowerOf2(Width);
|
|
|
|
// Set the alignment equal to the size.
|
|
Align = static_cast<unsigned>(Width);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Type::Pipe:
|
|
Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
|
|
Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
|
|
break;
|
|
}
|
|
|
|
assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
|
|
return TypeInfo(Width, Align, AlignIsRequired);
|
|
}
|
|
|
|
unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
|
|
UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
|
|
if (I != MemoizedUnadjustedAlign.end())
|
|
return I->second;
|
|
|
|
unsigned UnadjustedAlign;
|
|
if (const auto *RT = T->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = getASTRecordLayout(RD);
|
|
UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
|
|
} else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
|
|
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
|
|
UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
|
|
} else {
|
|
UnadjustedAlign = getTypeAlign(T);
|
|
}
|
|
|
|
MemoizedUnadjustedAlign[T] = UnadjustedAlign;
|
|
return UnadjustedAlign;
|
|
}
|
|
|
|
unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
|
|
unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
|
|
// Target ppc64 with QPX: simd default alignment for pointer to double is 32.
|
|
if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
|
|
getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
|
|
getTargetInfo().getABI() == "elfv1-qpx" &&
|
|
T->isSpecificBuiltinType(BuiltinType::Double))
|
|
SimdAlign = 256;
|
|
return SimdAlign;
|
|
}
|
|
|
|
/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
|
|
CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
|
|
return CharUnits::fromQuantity(BitSize / getCharWidth());
|
|
}
|
|
|
|
/// toBits - Convert a size in characters to a size in characters.
|
|
int64_t ASTContext::toBits(CharUnits CharSize) const {
|
|
return CharSize.getQuantity() * getCharWidth();
|
|
}
|
|
|
|
/// getTypeSizeInChars - Return the size of the specified type, in characters.
|
|
/// This method does not work on incomplete types.
|
|
CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
|
|
return getTypeInfoInChars(T).first;
|
|
}
|
|
CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
|
|
return getTypeInfoInChars(T).first;
|
|
}
|
|
|
|
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
|
|
/// characters. This method does not work on incomplete types.
|
|
CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
|
|
return toCharUnitsFromBits(getTypeAlign(T));
|
|
}
|
|
CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
|
|
return toCharUnitsFromBits(getTypeAlign(T));
|
|
}
|
|
|
|
/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
|
|
/// type, in characters, before alignment adustments. This method does
|
|
/// not work on incomplete types.
|
|
CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
|
|
return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
|
|
}
|
|
CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
|
|
return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
|
|
}
|
|
|
|
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
|
|
/// type for the current target in bits. This can be different than the ABI
|
|
/// alignment in cases where it is beneficial for performance to overalign
|
|
/// a data type.
|
|
unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
|
|
TypeInfo TI = getTypeInfo(T);
|
|
unsigned ABIAlign = TI.Align;
|
|
|
|
T = T->getBaseElementTypeUnsafe();
|
|
|
|
// The preferred alignment of member pointers is that of a pointer.
|
|
if (T->isMemberPointerType())
|
|
return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
|
|
|
|
if (!Target->allowsLargerPreferedTypeAlignment())
|
|
return ABIAlign;
|
|
|
|
// Double and long long should be naturally aligned if possible.
|
|
if (const auto *CT = T->getAs<ComplexType>())
|
|
T = CT->getElementType().getTypePtr();
|
|
if (const auto *ET = T->getAs<EnumType>())
|
|
T = ET->getDecl()->getIntegerType().getTypePtr();
|
|
if (T->isSpecificBuiltinType(BuiltinType::Double) ||
|
|
T->isSpecificBuiltinType(BuiltinType::LongLong) ||
|
|
T->isSpecificBuiltinType(BuiltinType::ULongLong))
|
|
// Don't increase the alignment if an alignment attribute was specified on a
|
|
// typedef declaration.
|
|
if (!TI.AlignIsRequired)
|
|
return std::max(ABIAlign, (unsigned)getTypeSize(T));
|
|
|
|
return ABIAlign;
|
|
}
|
|
|
|
/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
|
|
/// for __attribute__((aligned)) on this target, to be used if no alignment
|
|
/// value is specified.
|
|
unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
|
|
return getTargetInfo().getDefaultAlignForAttributeAligned();
|
|
}
|
|
|
|
/// getAlignOfGlobalVar - Return the alignment in bits that should be given
|
|
/// to a global variable of the specified type.
|
|
unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
|
|
return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
|
|
}
|
|
|
|
/// getAlignOfGlobalVarInChars - Return the alignment in characters that
|
|
/// should be given to a global variable of the specified type.
|
|
CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
|
|
return toCharUnitsFromBits(getAlignOfGlobalVar(T));
|
|
}
|
|
|
|
CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
|
|
CharUnits Offset = CharUnits::Zero();
|
|
const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
|
|
while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
|
|
Offset += Layout->getBaseClassOffset(Base);
|
|
Layout = &getASTRecordLayout(Base);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
/// DeepCollectObjCIvars -
|
|
/// This routine first collects all declared, but not synthesized, ivars in
|
|
/// super class and then collects all ivars, including those synthesized for
|
|
/// current class. This routine is used for implementation of current class
|
|
/// when all ivars, declared and synthesized are known.
|
|
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
|
|
bool leafClass,
|
|
SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
|
|
if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
|
|
DeepCollectObjCIvars(SuperClass, false, Ivars);
|
|
if (!leafClass) {
|
|
for (const auto *I : OI->ivars())
|
|
Ivars.push_back(I);
|
|
} else {
|
|
auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
|
|
for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
|
|
Iv= Iv->getNextIvar())
|
|
Ivars.push_back(Iv);
|
|
}
|
|
}
|
|
|
|
/// CollectInheritedProtocols - Collect all protocols in current class and
|
|
/// those inherited by it.
|
|
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
|
|
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
|
|
if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
|
|
// We can use protocol_iterator here instead of
|
|
// all_referenced_protocol_iterator since we are walking all categories.
|
|
for (auto *Proto : OI->all_referenced_protocols()) {
|
|
CollectInheritedProtocols(Proto, Protocols);
|
|
}
|
|
|
|
// Categories of this Interface.
|
|
for (const auto *Cat : OI->visible_categories())
|
|
CollectInheritedProtocols(Cat, Protocols);
|
|
|
|
if (ObjCInterfaceDecl *SD = OI->getSuperClass())
|
|
while (SD) {
|
|
CollectInheritedProtocols(SD, Protocols);
|
|
SD = SD->getSuperClass();
|
|
}
|
|
} else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
|
|
for (auto *Proto : OC->protocols()) {
|
|
CollectInheritedProtocols(Proto, Protocols);
|
|
}
|
|
} else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
|
|
// Insert the protocol.
|
|
if (!Protocols.insert(
|
|
const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
|
|
return;
|
|
|
|
for (auto *Proto : OP->protocols())
|
|
CollectInheritedProtocols(Proto, Protocols);
|
|
}
|
|
}
|
|
|
|
static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
|
|
const RecordDecl *RD) {
|
|
assert(RD->isUnion() && "Must be union type");
|
|
CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
|
|
|
|
for (const auto *Field : RD->fields()) {
|
|
if (!Context.hasUniqueObjectRepresentations(Field->getType()))
|
|
return false;
|
|
CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
|
|
if (FieldSize != UnionSize)
|
|
return false;
|
|
}
|
|
return !RD->field_empty();
|
|
}
|
|
|
|
static bool isStructEmpty(QualType Ty) {
|
|
const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
|
|
|
|
if (!RD->field_empty())
|
|
return false;
|
|
|
|
if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
|
|
return ClassDecl->isEmpty();
|
|
|
|
return true;
|
|
}
|
|
|
|
static llvm::Optional<int64_t>
|
|
structHasUniqueObjectRepresentations(const ASTContext &Context,
|
|
const RecordDecl *RD) {
|
|
assert(!RD->isUnion() && "Must be struct/class type");
|
|
const auto &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
int64_t CurOffsetInBits = 0;
|
|
if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (ClassDecl->isDynamicClass())
|
|
return llvm::None;
|
|
|
|
SmallVector<std::pair<QualType, int64_t>, 4> Bases;
|
|
for (const auto Base : ClassDecl->bases()) {
|
|
// Empty types can be inherited from, and non-empty types can potentially
|
|
// have tail padding, so just make sure there isn't an error.
|
|
if (!isStructEmpty(Base.getType())) {
|
|
llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
|
|
Context, Base.getType()->getAs<RecordType>()->getDecl());
|
|
if (!Size)
|
|
return llvm::None;
|
|
Bases.emplace_back(Base.getType(), Size.getValue());
|
|
}
|
|
}
|
|
|
|
llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
|
|
const std::pair<QualType, int64_t> &R) {
|
|
return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
|
|
Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
|
|
});
|
|
|
|
for (const auto Base : Bases) {
|
|
int64_t BaseOffset = Context.toBits(
|
|
Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
|
|
int64_t BaseSize = Base.second;
|
|
if (BaseOffset != CurOffsetInBits)
|
|
return llvm::None;
|
|
CurOffsetInBits = BaseOffset + BaseSize;
|
|
}
|
|
}
|
|
|
|
for (const auto *Field : RD->fields()) {
|
|
if (!Field->getType()->isReferenceType() &&
|
|
!Context.hasUniqueObjectRepresentations(Field->getType()))
|
|
return llvm::None;
|
|
|
|
int64_t FieldSizeInBits =
|
|
Context.toBits(Context.getTypeSizeInChars(Field->getType()));
|
|
if (Field->isBitField()) {
|
|
int64_t BitfieldSize = Field->getBitWidthValue(Context);
|
|
|
|
if (BitfieldSize > FieldSizeInBits)
|
|
return llvm::None;
|
|
FieldSizeInBits = BitfieldSize;
|
|
}
|
|
|
|
int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
|
|
|
|
if (FieldOffsetInBits != CurOffsetInBits)
|
|
return llvm::None;
|
|
|
|
CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
|
|
}
|
|
|
|
return CurOffsetInBits;
|
|
}
|
|
|
|
bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
|
|
// C++17 [meta.unary.prop]:
|
|
// The predicate condition for a template specialization
|
|
// has_unique_object_representations<T> shall be
|
|
// satisfied if and only if:
|
|
// (9.1) - T is trivially copyable, and
|
|
// (9.2) - any two objects of type T with the same value have the same
|
|
// object representation, where two objects
|
|
// of array or non-union class type are considered to have the same value
|
|
// if their respective sequences of
|
|
// direct subobjects have the same values, and two objects of union type
|
|
// are considered to have the same
|
|
// value if they have the same active member and the corresponding members
|
|
// have the same value.
|
|
// The set of scalar types for which this condition holds is
|
|
// implementation-defined. [ Note: If a type has padding
|
|
// bits, the condition does not hold; otherwise, the condition holds true
|
|
// for unsigned integral types. -- end note ]
|
|
assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
|
|
|
|
// Arrays are unique only if their element type is unique.
|
|
if (Ty->isArrayType())
|
|
return hasUniqueObjectRepresentations(getBaseElementType(Ty));
|
|
|
|
// (9.1) - T is trivially copyable...
|
|
if (!Ty.isTriviallyCopyableType(*this))
|
|
return false;
|
|
|
|
// All integrals and enums are unique.
|
|
if (Ty->isIntegralOrEnumerationType())
|
|
return true;
|
|
|
|
// All other pointers are unique.
|
|
if (Ty->isPointerType())
|
|
return true;
|
|
|
|
if (Ty->isMemberPointerType()) {
|
|
const auto *MPT = Ty->getAs<MemberPointerType>();
|
|
return !ABI->getMemberPointerInfo(MPT).HasPadding;
|
|
}
|
|
|
|
if (Ty->isRecordType()) {
|
|
const RecordDecl *Record = Ty->getAs<RecordType>()->getDecl();
|
|
|
|
if (Record->isInvalidDecl())
|
|
return false;
|
|
|
|
if (Record->isUnion())
|
|
return unionHasUniqueObjectRepresentations(*this, Record);
|
|
|
|
Optional<int64_t> StructSize =
|
|
structHasUniqueObjectRepresentations(*this, Record);
|
|
|
|
return StructSize &&
|
|
StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
|
|
}
|
|
|
|
// FIXME: More cases to handle here (list by rsmith):
|
|
// vectors (careful about, eg, vector of 3 foo)
|
|
// _Complex int and friends
|
|
// _Atomic T
|
|
// Obj-C block pointers
|
|
// Obj-C object pointers
|
|
// and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
|
|
// clk_event_t, queue_t, reserve_id_t)
|
|
// There're also Obj-C class types and the Obj-C selector type, but I think it
|
|
// makes sense for those to return false here.
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
|
|
unsigned count = 0;
|
|
// Count ivars declared in class extension.
|
|
for (const auto *Ext : OI->known_extensions())
|
|
count += Ext->ivar_size();
|
|
|
|
// Count ivar defined in this class's implementation. This
|
|
// includes synthesized ivars.
|
|
if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
|
|
count += ImplDecl->ivar_size();
|
|
|
|
return count;
|
|
}
|
|
|
|
bool ASTContext::isSentinelNullExpr(const Expr *E) {
|
|
if (!E)
|
|
return false;
|
|
|
|
// nullptr_t is always treated as null.
|
|
if (E->getType()->isNullPtrType()) return true;
|
|
|
|
if (E->getType()->isAnyPointerType() &&
|
|
E->IgnoreParenCasts()->isNullPointerConstant(*this,
|
|
Expr::NPC_ValueDependentIsNull))
|
|
return true;
|
|
|
|
// Unfortunately, __null has type 'int'.
|
|
if (isa<GNUNullExpr>(E)) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
|
|
/// exists.
|
|
ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
|
|
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
|
|
I = ObjCImpls.find(D);
|
|
if (I != ObjCImpls.end())
|
|
return cast<ObjCImplementationDecl>(I->second);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get the implementation of ObjCCategoryDecl, or nullptr if none
|
|
/// exists.
|
|
ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
|
|
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
|
|
I = ObjCImpls.find(D);
|
|
if (I != ObjCImpls.end())
|
|
return cast<ObjCCategoryImplDecl>(I->second);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Set the implementation of ObjCInterfaceDecl.
|
|
void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
|
|
ObjCImplementationDecl *ImplD) {
|
|
assert(IFaceD && ImplD && "Passed null params");
|
|
ObjCImpls[IFaceD] = ImplD;
|
|
}
|
|
|
|
/// Set the implementation of ObjCCategoryDecl.
|
|
void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
|
|
ObjCCategoryImplDecl *ImplD) {
|
|
assert(CatD && ImplD && "Passed null params");
|
|
ObjCImpls[CatD] = ImplD;
|
|
}
|
|
|
|
const ObjCMethodDecl *
|
|
ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
|
|
return ObjCMethodRedecls.lookup(MD);
|
|
}
|
|
|
|
void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
|
|
const ObjCMethodDecl *Redecl) {
|
|
assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
|
|
ObjCMethodRedecls[MD] = Redecl;
|
|
}
|
|
|
|
const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
|
|
const NamedDecl *ND) const {
|
|
if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
|
|
return ID;
|
|
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
|
|
return CD->getClassInterface();
|
|
if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
|
|
return IMD->getClassInterface();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get the copy initialization expression of VarDecl, or nullptr if
|
|
/// none exists.
|
|
ASTContext::BlockVarCopyInit
|
|
ASTContext::getBlockVarCopyInit(const VarDecl*VD) const {
|
|
assert(VD && "Passed null params");
|
|
assert(VD->hasAttr<BlocksAttr>() &&
|
|
"getBlockVarCopyInits - not __block var");
|
|
auto I = BlockVarCopyInits.find(VD);
|
|
if (I != BlockVarCopyInits.end())
|
|
return I->second;
|
|
return {nullptr, false};
|
|
}
|
|
|
|
/// Set the copy inialization expression of a block var decl.
|
|
void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
|
|
bool CanThrow) {
|
|
assert(VD && CopyExpr && "Passed null params");
|
|
assert(VD->hasAttr<BlocksAttr>() &&
|
|
"setBlockVarCopyInits - not __block var");
|
|
BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
|
|
}
|
|
|
|
TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
|
|
unsigned DataSize) const {
|
|
if (!DataSize)
|
|
DataSize = TypeLoc::getFullDataSizeForType(T);
|
|
else
|
|
assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
|
|
"incorrect data size provided to CreateTypeSourceInfo!");
|
|
|
|
auto *TInfo =
|
|
(TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
|
|
new (TInfo) TypeSourceInfo(T);
|
|
return TInfo;
|
|
}
|
|
|
|
TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
|
|
SourceLocation L) const {
|
|
TypeSourceInfo *DI = CreateTypeSourceInfo(T);
|
|
DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
|
|
return DI;
|
|
}
|
|
|
|
const ASTRecordLayout &
|
|
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
|
|
return getObjCLayout(D, nullptr);
|
|
}
|
|
|
|
const ASTRecordLayout &
|
|
ASTContext::getASTObjCImplementationLayout(
|
|
const ObjCImplementationDecl *D) const {
|
|
return getObjCLayout(D->getClassInterface(), D);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type creation/memoization methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
QualType
|
|
ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
|
|
unsigned fastQuals = quals.getFastQualifiers();
|
|
quals.removeFastQualifiers();
|
|
|
|
// Check if we've already instantiated this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ExtQuals::Profile(ID, baseType, quals);
|
|
void *insertPos = nullptr;
|
|
if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
|
|
assert(eq->getQualifiers() == quals);
|
|
return QualType(eq, fastQuals);
|
|
}
|
|
|
|
// If the base type is not canonical, make the appropriate canonical type.
|
|
QualType canon;
|
|
if (!baseType->isCanonicalUnqualified()) {
|
|
SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
|
|
canonSplit.Quals.addConsistentQualifiers(quals);
|
|
canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
|
|
|
|
// Re-find the insert position.
|
|
(void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
|
|
}
|
|
|
|
auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
|
|
ExtQualNodes.InsertNode(eq, insertPos);
|
|
return QualType(eq, fastQuals);
|
|
}
|
|
|
|
QualType ASTContext::getAddrSpaceQualType(QualType T,
|
|
LangAS AddressSpace) const {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.getAddressSpace() == AddressSpace)
|
|
return T;
|
|
|
|
// If we are composing extended qualifiers together, merge together
|
|
// into one ExtQuals node.
|
|
QualifierCollector Quals;
|
|
const Type *TypeNode = Quals.strip(T);
|
|
|
|
// If this type already has an address space specified, it cannot get
|
|
// another one.
|
|
assert(!Quals.hasAddressSpace() &&
|
|
"Type cannot be in multiple addr spaces!");
|
|
Quals.addAddressSpace(AddressSpace);
|
|
|
|
return getExtQualType(TypeNode, Quals);
|
|
}
|
|
|
|
QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
|
|
// If we are composing extended qualifiers together, merge together
|
|
// into one ExtQuals node.
|
|
QualifierCollector Quals;
|
|
const Type *TypeNode = Quals.strip(T);
|
|
|
|
// If the qualifier doesn't have an address space just return it.
|
|
if (!Quals.hasAddressSpace())
|
|
return T;
|
|
|
|
Quals.removeAddressSpace();
|
|
|
|
// Removal of the address space can mean there are no longer any
|
|
// non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
|
|
// or required.
|
|
if (Quals.hasNonFastQualifiers())
|
|
return getExtQualType(TypeNode, Quals);
|
|
else
|
|
return QualType(TypeNode, Quals.getFastQualifiers());
|
|
}
|
|
|
|
QualType ASTContext::getObjCGCQualType(QualType T,
|
|
Qualifiers::GC GCAttr) const {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.getObjCGCAttr() == GCAttr)
|
|
return T;
|
|
|
|
if (const auto *ptr = T->getAs<PointerType>()) {
|
|
QualType Pointee = ptr->getPointeeType();
|
|
if (Pointee->isAnyPointerType()) {
|
|
QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
|
|
return getPointerType(ResultType);
|
|
}
|
|
}
|
|
|
|
// If we are composing extended qualifiers together, merge together
|
|
// into one ExtQuals node.
|
|
QualifierCollector Quals;
|
|
const Type *TypeNode = Quals.strip(T);
|
|
|
|
// If this type already has an ObjCGC specified, it cannot get
|
|
// another one.
|
|
assert(!Quals.hasObjCGCAttr() &&
|
|
"Type cannot have multiple ObjCGCs!");
|
|
Quals.addObjCGCAttr(GCAttr);
|
|
|
|
return getExtQualType(TypeNode, Quals);
|
|
}
|
|
|
|
const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
|
|
FunctionType::ExtInfo Info) {
|
|
if (T->getExtInfo() == Info)
|
|
return T;
|
|
|
|
QualType Result;
|
|
if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
|
|
Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
|
|
} else {
|
|
const auto *FPT = cast<FunctionProtoType>(T);
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.ExtInfo = Info;
|
|
Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
|
|
}
|
|
|
|
return cast<FunctionType>(Result.getTypePtr());
|
|
}
|
|
|
|
void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
|
|
QualType ResultType) {
|
|
FD = FD->getMostRecentDecl();
|
|
while (true) {
|
|
const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
|
|
if (FunctionDecl *Next = FD->getPreviousDecl())
|
|
FD = Next;
|
|
else
|
|
break;
|
|
}
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->DeducedReturnType(FD, ResultType);
|
|
}
|
|
|
|
/// Get a function type and produce the equivalent function type with the
|
|
/// specified exception specification. Type sugar that can be present on a
|
|
/// declaration of a function with an exception specification is permitted
|
|
/// and preserved. Other type sugar (for instance, typedefs) is not.
|
|
QualType ASTContext::getFunctionTypeWithExceptionSpec(
|
|
QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
|
|
// Might have some parens.
|
|
if (const auto *PT = dyn_cast<ParenType>(Orig))
|
|
return getParenType(
|
|
getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
|
|
|
|
// Might have a calling-convention attribute.
|
|
if (const auto *AT = dyn_cast<AttributedType>(Orig))
|
|
return getAttributedType(
|
|
AT->getAttrKind(),
|
|
getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
|
|
getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
|
|
|
|
// Anything else must be a function type. Rebuild it with the new exception
|
|
// specification.
|
|
const auto *Proto = cast<FunctionProtoType>(Orig);
|
|
return getFunctionType(
|
|
Proto->getReturnType(), Proto->getParamTypes(),
|
|
Proto->getExtProtoInfo().withExceptionSpec(ESI));
|
|
}
|
|
|
|
bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
|
|
QualType U) {
|
|
return hasSameType(T, U) ||
|
|
(getLangOpts().CPlusPlus17 &&
|
|
hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
|
|
getFunctionTypeWithExceptionSpec(U, EST_None)));
|
|
}
|
|
|
|
void ASTContext::adjustExceptionSpec(
|
|
FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
|
|
bool AsWritten) {
|
|
// Update the type.
|
|
QualType Updated =
|
|
getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
|
|
FD->setType(Updated);
|
|
|
|
if (!AsWritten)
|
|
return;
|
|
|
|
// Update the type in the type source information too.
|
|
if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
|
|
// If the type and the type-as-written differ, we may need to update
|
|
// the type-as-written too.
|
|
if (TSInfo->getType() != FD->getType())
|
|
Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
|
|
|
|
// FIXME: When we get proper type location information for exceptions,
|
|
// we'll also have to rebuild the TypeSourceInfo. For now, we just patch
|
|
// up the TypeSourceInfo;
|
|
assert(TypeLoc::getFullDataSizeForType(Updated) ==
|
|
TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
|
|
"TypeLoc size mismatch from updating exception specification");
|
|
TSInfo->overrideType(Updated);
|
|
}
|
|
}
|
|
|
|
/// getComplexType - Return the uniqued reference to the type for a complex
|
|
/// number with the specified element type.
|
|
QualType ASTContext::getComplexType(QualType T) const {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ComplexType::Profile(ID, T);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(CT, 0);
|
|
|
|
// If the pointee type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getComplexType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
|
|
Types.push_back(New);
|
|
ComplexTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getPointerType - Return the uniqued reference to the type for a pointer to
|
|
/// the specified type.
|
|
QualType ASTContext::getPointerType(QualType T) const {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
PointerType::Profile(ID, T);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pointee type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getPointerType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
|
|
Types.push_back(New);
|
|
PointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
AdjustedType::Profile(ID, Orig, New);
|
|
void *InsertPos = nullptr;
|
|
AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (AT)
|
|
return QualType(AT, 0);
|
|
|
|
QualType Canonical = getCanonicalType(New);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!AT && "Shouldn't be in the map!");
|
|
|
|
AT = new (*this, TypeAlignment)
|
|
AdjustedType(Type::Adjusted, Orig, New, Canonical);
|
|
Types.push_back(AT);
|
|
AdjustedTypes.InsertNode(AT, InsertPos);
|
|
return QualType(AT, 0);
|
|
}
|
|
|
|
QualType ASTContext::getDecayedType(QualType T) const {
|
|
assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
|
|
|
|
QualType Decayed;
|
|
|
|
// C99 6.7.5.3p7:
|
|
// A declaration of a parameter as "array of type" shall be
|
|
// adjusted to "qualified pointer to type", where the type
|
|
// qualifiers (if any) are those specified within the [ and ] of
|
|
// the array type derivation.
|
|
if (T->isArrayType())
|
|
Decayed = getArrayDecayedType(T);
|
|
|
|
// C99 6.7.5.3p8:
|
|
// A declaration of a parameter as "function returning type"
|
|
// shall be adjusted to "pointer to function returning type", as
|
|
// in 6.3.2.1.
|
|
if (T->isFunctionType())
|
|
Decayed = getPointerType(T);
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
AdjustedType::Profile(ID, T, Decayed);
|
|
void *InsertPos = nullptr;
|
|
AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (AT)
|
|
return QualType(AT, 0);
|
|
|
|
QualType Canonical = getCanonicalType(Decayed);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!AT && "Shouldn't be in the map!");
|
|
|
|
AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
|
|
Types.push_back(AT);
|
|
AdjustedTypes.InsertNode(AT, InsertPos);
|
|
return QualType(AT, 0);
|
|
}
|
|
|
|
/// getBlockPointerType - Return the uniqued reference to the type for
|
|
/// a pointer to the specified block.
|
|
QualType ASTContext::getBlockPointerType(QualType T) const {
|
|
assert(T->isFunctionType() && "block of function types only");
|
|
// Unique pointers, to guarantee there is only one block of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
BlockPointerType::Profile(ID, T);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (BlockPointerType *PT =
|
|
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the block pointee type isn't canonical, this won't be a canonical
|
|
// type either so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getBlockPointerType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
BlockPointerType *NewIP =
|
|
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
|
|
Types.push_back(New);
|
|
BlockPointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getLValueReferenceType - Return the uniqued reference to the type for an
|
|
/// lvalue reference to the specified type.
|
|
QualType
|
|
ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
|
|
assert(getCanonicalType(T) != OverloadTy &&
|
|
"Unresolved overloaded function type");
|
|
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ReferenceType::Profile(ID, T, SpelledAsLValue);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (LValueReferenceType *RT =
|
|
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(RT, 0);
|
|
|
|
const auto *InnerRef = T->getAs<ReferenceType>();
|
|
|
|
// If the referencee type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
|
|
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
|
|
Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
LValueReferenceType *NewIP =
|
|
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
|
|
auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
|
|
SpelledAsLValue);
|
|
Types.push_back(New);
|
|
LValueReferenceTypes.InsertNode(New, InsertPos);
|
|
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getRValueReferenceType - Return the uniqued reference to the type for an
|
|
/// rvalue reference to the specified type.
|
|
QualType ASTContext::getRValueReferenceType(QualType T) const {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ReferenceType::Profile(ID, T, false);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (RValueReferenceType *RT =
|
|
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(RT, 0);
|
|
|
|
const auto *InnerRef = T->getAs<ReferenceType>();
|
|
|
|
// If the referencee type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (InnerRef || !T.isCanonical()) {
|
|
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
|
|
Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
RValueReferenceType *NewIP =
|
|
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
|
|
auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
|
|
Types.push_back(New);
|
|
RValueReferenceTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getMemberPointerType - Return the uniqued reference to the type for a
|
|
/// member pointer to the specified type, in the specified class.
|
|
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
MemberPointerType::Profile(ID, T, Cls);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (MemberPointerType *PT =
|
|
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pointee or class type isn't canonical, this won't be a canonical
|
|
// type either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
|
|
Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
MemberPointerType *NewIP =
|
|
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
|
|
Types.push_back(New);
|
|
MemberPointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getConstantArrayType - Return the unique reference to the type for an
|
|
/// array of the specified element type.
|
|
QualType ASTContext::getConstantArrayType(QualType EltTy,
|
|
const llvm::APInt &ArySizeIn,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned IndexTypeQuals) const {
|
|
assert((EltTy->isDependentType() ||
|
|
EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
|
|
"Constant array of VLAs is illegal!");
|
|
|
|
// Convert the array size into a canonical width matching the pointer size for
|
|
// the target.
|
|
llvm::APInt ArySize(ArySizeIn);
|
|
ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (ConstantArrayType *ATP =
|
|
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(ATP, 0);
|
|
|
|
// If the element type isn't canonical or has qualifiers, this won't
|
|
// be a canonical type either, so fill in the canonical type field.
|
|
QualType Canon;
|
|
if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
|
|
SplitQualType canonSplit = getCanonicalType(EltTy).split();
|
|
Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
|
|
ASM, IndexTypeQuals);
|
|
Canon = getQualifiedType(Canon, canonSplit.Quals);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
ConstantArrayType *NewIP =
|
|
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
|
|
auto *New = new (*this,TypeAlignment)
|
|
ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
|
|
ConstantArrayTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getVariableArrayDecayedType - Turns the given type, which may be
|
|
/// variably-modified, into the corresponding type with all the known
|
|
/// sizes replaced with [*].
|
|
QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
|
|
// Vastly most common case.
|
|
if (!type->isVariablyModifiedType()) return type;
|
|
|
|
QualType result;
|
|
|
|
SplitQualType split = type.getSplitDesugaredType();
|
|
const Type *ty = split.Ty;
|
|
switch (ty->getTypeClass()) {
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
llvm_unreachable("didn't desugar past all non-canonical types?");
|
|
|
|
// These types should never be variably-modified.
|
|
case Type::Builtin:
|
|
case Type::Complex:
|
|
case Type::Vector:
|
|
case Type::DependentVector:
|
|
case Type::ExtVector:
|
|
case Type::DependentSizedExtVector:
|
|
case Type::DependentAddressSpace:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::UnresolvedUsing:
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::Decltype:
|
|
case Type::UnaryTransform:
|
|
case Type::DependentName:
|
|
case Type::InjectedClassName:
|
|
case Type::TemplateSpecialization:
|
|
case Type::DependentTemplateSpecialization:
|
|
case Type::TemplateTypeParm:
|
|
case Type::SubstTemplateTypeParmPack:
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization:
|
|
case Type::PackExpansion:
|
|
llvm_unreachable("type should never be variably-modified");
|
|
|
|
// These types can be variably-modified but should never need to
|
|
// further decay.
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto:
|
|
case Type::BlockPointer:
|
|
case Type::MemberPointer:
|
|
case Type::Pipe:
|
|
return type;
|
|
|
|
// These types can be variably-modified. All these modifications
|
|
// preserve structure except as noted by comments.
|
|
// TODO: if we ever care about optimizing VLAs, there are no-op
|
|
// optimizations available here.
|
|
case Type::Pointer:
|
|
result = getPointerType(getVariableArrayDecayedType(
|
|
cast<PointerType>(ty)->getPointeeType()));
|
|
break;
|
|
|
|
case Type::LValueReference: {
|
|
const auto *lv = cast<LValueReferenceType>(ty);
|
|
result = getLValueReferenceType(
|
|
getVariableArrayDecayedType(lv->getPointeeType()),
|
|
lv->isSpelledAsLValue());
|
|
break;
|
|
}
|
|
|
|
case Type::RValueReference: {
|
|
const auto *lv = cast<RValueReferenceType>(ty);
|
|
result = getRValueReferenceType(
|
|
getVariableArrayDecayedType(lv->getPointeeType()));
|
|
break;
|
|
}
|
|
|
|
case Type::Atomic: {
|
|
const auto *at = cast<AtomicType>(ty);
|
|
result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
|
|
break;
|
|
}
|
|
|
|
case Type::ConstantArray: {
|
|
const auto *cat = cast<ConstantArrayType>(ty);
|
|
result = getConstantArrayType(
|
|
getVariableArrayDecayedType(cat->getElementType()),
|
|
cat->getSize(),
|
|
cat->getSizeModifier(),
|
|
cat->getIndexTypeCVRQualifiers());
|
|
break;
|
|
}
|
|
|
|
case Type::DependentSizedArray: {
|
|
const auto *dat = cast<DependentSizedArrayType>(ty);
|
|
result = getDependentSizedArrayType(
|
|
getVariableArrayDecayedType(dat->getElementType()),
|
|
dat->getSizeExpr(),
|
|
dat->getSizeModifier(),
|
|
dat->getIndexTypeCVRQualifiers(),
|
|
dat->getBracketsRange());
|
|
break;
|
|
}
|
|
|
|
// Turn incomplete types into [*] types.
|
|
case Type::IncompleteArray: {
|
|
const auto *iat = cast<IncompleteArrayType>(ty);
|
|
result = getVariableArrayType(
|
|
getVariableArrayDecayedType(iat->getElementType()),
|
|
/*size*/ nullptr,
|
|
ArrayType::Normal,
|
|
iat->getIndexTypeCVRQualifiers(),
|
|
SourceRange());
|
|
break;
|
|
}
|
|
|
|
// Turn VLA types into [*] types.
|
|
case Type::VariableArray: {
|
|
const auto *vat = cast<VariableArrayType>(ty);
|
|
result = getVariableArrayType(
|
|
getVariableArrayDecayedType(vat->getElementType()),
|
|
/*size*/ nullptr,
|
|
ArrayType::Star,
|
|
vat->getIndexTypeCVRQualifiers(),
|
|
vat->getBracketsRange());
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Apply the top-level qualifiers from the original.
|
|
return getQualifiedType(result, split.Quals);
|
|
}
|
|
|
|
/// getVariableArrayType - Returns a non-unique reference to the type for a
|
|
/// variable array of the specified element type.
|
|
QualType ASTContext::getVariableArrayType(QualType EltTy,
|
|
Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange Brackets) const {
|
|
// Since we don't unique expressions, it isn't possible to unique VLA's
|
|
// that have an expression provided for their size.
|
|
QualType Canon;
|
|
|
|
// Be sure to pull qualifiers off the element type.
|
|
if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
|
|
SplitQualType canonSplit = getCanonicalType(EltTy).split();
|
|
Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
|
|
IndexTypeQuals, Brackets);
|
|
Canon = getQualifiedType(Canon, canonSplit.Quals);
|
|
}
|
|
|
|
auto *New = new (*this, TypeAlignment)
|
|
VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
|
|
|
|
VariableArrayTypes.push_back(New);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getDependentSizedArrayType - Returns a non-unique reference to
|
|
/// the type for a dependently-sized array of the specified element
|
|
/// type.
|
|
QualType ASTContext::getDependentSizedArrayType(QualType elementType,
|
|
Expr *numElements,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned elementTypeQuals,
|
|
SourceRange brackets) const {
|
|
assert((!numElements || numElements->isTypeDependent() ||
|
|
numElements->isValueDependent()) &&
|
|
"Size must be type- or value-dependent!");
|
|
|
|
// Dependently-sized array types that do not have a specified number
|
|
// of elements will have their sizes deduced from a dependent
|
|
// initializer. We do no canonicalization here at all, which is okay
|
|
// because they can't be used in most locations.
|
|
if (!numElements) {
|
|
auto *newType
|
|
= new (*this, TypeAlignment)
|
|
DependentSizedArrayType(*this, elementType, QualType(),
|
|
numElements, ASM, elementTypeQuals,
|
|
brackets);
|
|
Types.push_back(newType);
|
|
return QualType(newType, 0);
|
|
}
|
|
|
|
// Otherwise, we actually build a new type every time, but we
|
|
// also build a canonical type.
|
|
|
|
SplitQualType canonElementType = getCanonicalType(elementType).split();
|
|
|
|
void *insertPos = nullptr;
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentSizedArrayType::Profile(ID, *this,
|
|
QualType(canonElementType.Ty, 0),
|
|
ASM, elementTypeQuals, numElements);
|
|
|
|
// Look for an existing type with these properties.
|
|
DependentSizedArrayType *canonTy =
|
|
DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
|
|
|
|
// If we don't have one, build one.
|
|
if (!canonTy) {
|
|
canonTy = new (*this, TypeAlignment)
|
|
DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
|
|
QualType(), numElements, ASM, elementTypeQuals,
|
|
brackets);
|
|
DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
|
|
Types.push_back(canonTy);
|
|
}
|
|
|
|
// Apply qualifiers from the element type to the array.
|
|
QualType canon = getQualifiedType(QualType(canonTy,0),
|
|
canonElementType.Quals);
|
|
|
|
// If we didn't need extra canonicalization for the element type or the size
|
|
// expression, then just use that as our result.
|
|
if (QualType(canonElementType.Ty, 0) == elementType &&
|
|
canonTy->getSizeExpr() == numElements)
|
|
return canon;
|
|
|
|
// Otherwise, we need to build a type which follows the spelling
|
|
// of the element type.
|
|
auto *sugaredType
|
|
= new (*this, TypeAlignment)
|
|
DependentSizedArrayType(*this, elementType, canon, numElements,
|
|
ASM, elementTypeQuals, brackets);
|
|
Types.push_back(sugaredType);
|
|
return QualType(sugaredType, 0);
|
|
}
|
|
|
|
QualType ASTContext::getIncompleteArrayType(QualType elementType,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned elementTypeQuals) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
|
|
|
|
void *insertPos = nullptr;
|
|
if (IncompleteArrayType *iat =
|
|
IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
|
|
return QualType(iat, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field. We also have to pull
|
|
// qualifiers off the element type.
|
|
QualType canon;
|
|
|
|
if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
|
|
SplitQualType canonSplit = getCanonicalType(elementType).split();
|
|
canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
|
|
ASM, elementTypeQuals);
|
|
canon = getQualifiedType(canon, canonSplit.Quals);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
IncompleteArrayType *existing =
|
|
IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
|
|
assert(!existing && "Shouldn't be in the map!"); (void) existing;
|
|
}
|
|
|
|
auto *newType = new (*this, TypeAlignment)
|
|
IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
|
|
|
|
IncompleteArrayTypes.InsertNode(newType, insertPos);
|
|
Types.push_back(newType);
|
|
return QualType(newType, 0);
|
|
}
|
|
|
|
/// getVectorType - Return the unique reference to a vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
|
|
VectorType::VectorKind VecKind) const {
|
|
assert(vecType->isBuiltinType());
|
|
|
|
// Check if we've already instantiated a vector of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(VTP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!vecType.isCanonical()) {
|
|
Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment)
|
|
VectorType(vecType, NumElts, Canonical, VecKind);
|
|
VectorTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
|
|
SourceLocation AttrLoc,
|
|
VectorType::VectorKind VecKind) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
|
|
VecKind);
|
|
void *InsertPos = nullptr;
|
|
DependentVectorType *Canon =
|
|
DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
DependentVectorType *New;
|
|
|
|
if (Canon) {
|
|
New = new (*this, TypeAlignment) DependentVectorType(
|
|
*this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
|
|
} else {
|
|
QualType CanonVecTy = getCanonicalType(VecType);
|
|
if (CanonVecTy == VecType) {
|
|
New = new (*this, TypeAlignment) DependentVectorType(
|
|
*this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
|
|
|
|
DependentVectorType *CanonCheck =
|
|
DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CanonCheck &&
|
|
"Dependent-sized vector_size canonical type broken");
|
|
(void)CanonCheck;
|
|
DependentVectorTypes.InsertNode(New, InsertPos);
|
|
} else {
|
|
QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
|
|
SourceLocation());
|
|
New = new (*this, TypeAlignment) DependentVectorType(
|
|
*this, VecType, Canon, SizeExpr, AttrLoc, VecKind);
|
|
}
|
|
}
|
|
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getExtVectorType - Return the unique reference to an extended vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType
|
|
ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
|
|
assert(vecType->isBuiltinType() || vecType->isDependentType());
|
|
|
|
// Check if we've already instantiated a vector of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
|
|
VectorType::GenericVector);
|
|
void *InsertPos = nullptr;
|
|
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(VTP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!vecType.isCanonical()) {
|
|
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment)
|
|
ExtVectorType(vecType, NumElts, Canonical);
|
|
VectorTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getDependentSizedExtVectorType(QualType vecType,
|
|
Expr *SizeExpr,
|
|
SourceLocation AttrLoc) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
|
|
SizeExpr);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentSizedExtVectorType *Canon
|
|
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
DependentSizedExtVectorType *New;
|
|
if (Canon) {
|
|
// We already have a canonical version of this array type; use it as
|
|
// the canonical type for a newly-built type.
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
|
|
SizeExpr, AttrLoc);
|
|
} else {
|
|
QualType CanonVecTy = getCanonicalType(vecType);
|
|
if (CanonVecTy == vecType) {
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
|
|
AttrLoc);
|
|
|
|
DependentSizedExtVectorType *CanonCheck
|
|
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
|
|
(void)CanonCheck;
|
|
DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
|
|
} else {
|
|
QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
|
|
SourceLocation());
|
|
New = new (*this, TypeAlignment)
|
|
DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
|
|
}
|
|
}
|
|
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
|
|
Expr *AddrSpaceExpr,
|
|
SourceLocation AttrLoc) const {
|
|
assert(AddrSpaceExpr->isInstantiationDependent());
|
|
|
|
QualType canonPointeeType = getCanonicalType(PointeeType);
|
|
|
|
void *insertPos = nullptr;
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
|
|
AddrSpaceExpr);
|
|
|
|
DependentAddressSpaceType *canonTy =
|
|
DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
|
|
|
|
if (!canonTy) {
|
|
canonTy = new (*this, TypeAlignment)
|
|
DependentAddressSpaceType(*this, canonPointeeType,
|
|
QualType(), AddrSpaceExpr, AttrLoc);
|
|
DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
|
|
Types.push_back(canonTy);
|
|
}
|
|
|
|
if (canonPointeeType == PointeeType &&
|
|
canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
|
|
return QualType(canonTy, 0);
|
|
|
|
auto *sugaredType
|
|
= new (*this, TypeAlignment)
|
|
DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
|
|
AddrSpaceExpr, AttrLoc);
|
|
Types.push_back(sugaredType);
|
|
return QualType(sugaredType, 0);
|
|
}
|
|
|
|
/// Determine whether \p T is canonical as the result type of a function.
|
|
static bool isCanonicalResultType(QualType T) {
|
|
return T.isCanonical() &&
|
|
(T.getObjCLifetime() == Qualifiers::OCL_None ||
|
|
T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
|
|
}
|
|
|
|
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
|
|
QualType
|
|
ASTContext::getFunctionNoProtoType(QualType ResultTy,
|
|
const FunctionType::ExtInfo &Info) const {
|
|
// Unique functions, to guarantee there is only one function of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
FunctionNoProtoType::Profile(ID, ResultTy, Info);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (FunctionNoProtoType *FT =
|
|
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(FT, 0);
|
|
|
|
QualType Canonical;
|
|
if (!isCanonicalResultType(ResultTy)) {
|
|
Canonical =
|
|
getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
FunctionNoProtoType *NewIP =
|
|
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
|
|
auto *New = new (*this, TypeAlignment)
|
|
FunctionNoProtoType(ResultTy, Canonical, Info);
|
|
Types.push_back(New);
|
|
FunctionNoProtoTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
CanQualType
|
|
ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
|
|
CanQualType CanResultType = getCanonicalType(ResultType);
|
|
|
|
// Canonical result types do not have ARC lifetime qualifiers.
|
|
if (CanResultType.getQualifiers().hasObjCLifetime()) {
|
|
Qualifiers Qs = CanResultType.getQualifiers();
|
|
Qs.removeObjCLifetime();
|
|
return CanQualType::CreateUnsafe(
|
|
getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
|
|
}
|
|
|
|
return CanResultType;
|
|
}
|
|
|
|
static bool isCanonicalExceptionSpecification(
|
|
const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
|
|
if (ESI.Type == EST_None)
|
|
return true;
|
|
if (!NoexceptInType)
|
|
return false;
|
|
|
|
// C++17 onwards: exception specification is part of the type, as a simple
|
|
// boolean "can this function type throw".
|
|
if (ESI.Type == EST_BasicNoexcept)
|
|
return true;
|
|
|
|
// A noexcept(expr) specification is (possibly) canonical if expr is
|
|
// value-dependent.
|
|
if (ESI.Type == EST_DependentNoexcept)
|
|
return true;
|
|
|
|
// A dynamic exception specification is canonical if it only contains pack
|
|
// expansions (so we can't tell whether it's non-throwing) and all its
|
|
// contained types are canonical.
|
|
if (ESI.Type == EST_Dynamic) {
|
|
bool AnyPackExpansions = false;
|
|
for (QualType ET : ESI.Exceptions) {
|
|
if (!ET.isCanonical())
|
|
return false;
|
|
if (ET->getAs<PackExpansionType>())
|
|
AnyPackExpansions = true;
|
|
}
|
|
return AnyPackExpansions;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
QualType ASTContext::getFunctionTypeInternal(
|
|
QualType ResultTy, ArrayRef<QualType> ArgArray,
|
|
const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
|
|
size_t NumArgs = ArgArray.size();
|
|
|
|
// Unique functions, to guarantee there is only one function of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
|
|
*this, true);
|
|
|
|
QualType Canonical;
|
|
bool Unique = false;
|
|
|
|
void *InsertPos = nullptr;
|
|
if (FunctionProtoType *FPT =
|
|
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
|
|
QualType Existing = QualType(FPT, 0);
|
|
|
|
// If we find a pre-existing equivalent FunctionProtoType, we can just reuse
|
|
// it so long as our exception specification doesn't contain a dependent
|
|
// noexcept expression, or we're just looking for a canonical type.
|
|
// Otherwise, we're going to need to create a type
|
|
// sugar node to hold the concrete expression.
|
|
if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
|
|
EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
|
|
return Existing;
|
|
|
|
// We need a new type sugar node for this one, to hold the new noexcept
|
|
// expression. We do no canonicalization here, but that's OK since we don't
|
|
// expect to see the same noexcept expression much more than once.
|
|
Canonical = getCanonicalType(Existing);
|
|
Unique = true;
|
|
}
|
|
|
|
bool NoexceptInType = getLangOpts().CPlusPlus17;
|
|
bool IsCanonicalExceptionSpec =
|
|
isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
|
|
|
|
// Determine whether the type being created is already canonical or not.
|
|
bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
|
|
isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
|
|
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
|
|
if (!ArgArray[i].isCanonicalAsParam())
|
|
isCanonical = false;
|
|
|
|
if (OnlyWantCanonical)
|
|
assert(isCanonical &&
|
|
"given non-canonical parameters constructing canonical type");
|
|
|
|
// If this type isn't canonical, get the canonical version of it if we don't
|
|
// already have it. The exception spec is only partially part of the
|
|
// canonical type, and only in C++17 onwards.
|
|
if (!isCanonical && Canonical.isNull()) {
|
|
SmallVector<QualType, 16> CanonicalArgs;
|
|
CanonicalArgs.reserve(NumArgs);
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
|
|
|
|
llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
|
|
FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
|
|
CanonicalEPI.HasTrailingReturn = false;
|
|
|
|
if (IsCanonicalExceptionSpec) {
|
|
// Exception spec is already OK.
|
|
} else if (NoexceptInType) {
|
|
switch (EPI.ExceptionSpec.Type) {
|
|
case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
|
|
// We don't know yet. It shouldn't matter what we pick here; no-one
|
|
// should ever look at this.
|
|
LLVM_FALLTHROUGH;
|
|
case EST_None: case EST_MSAny: case EST_NoexceptFalse:
|
|
CanonicalEPI.ExceptionSpec.Type = EST_None;
|
|
break;
|
|
|
|
// A dynamic exception specification is almost always "not noexcept",
|
|
// with the exception that a pack expansion might expand to no types.
|
|
case EST_Dynamic: {
|
|
bool AnyPacks = false;
|
|
for (QualType ET : EPI.ExceptionSpec.Exceptions) {
|
|
if (ET->getAs<PackExpansionType>())
|
|
AnyPacks = true;
|
|
ExceptionTypeStorage.push_back(getCanonicalType(ET));
|
|
}
|
|
if (!AnyPacks)
|
|
CanonicalEPI.ExceptionSpec.Type = EST_None;
|
|
else {
|
|
CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
|
|
CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EST_DynamicNone: case EST_BasicNoexcept: case EST_NoexceptTrue:
|
|
CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
|
|
break;
|
|
|
|
case EST_DependentNoexcept:
|
|
llvm_unreachable("dependent noexcept is already canonical");
|
|
}
|
|
} else {
|
|
CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
|
|
}
|
|
|
|
// Adjust the canonical function result type.
|
|
CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
|
|
Canonical =
|
|
getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
FunctionProtoType *NewIP =
|
|
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
|
|
// Compute the needed size to hold this FunctionProtoType and the
|
|
// various trailing objects.
|
|
auto ESH = FunctionProtoType::getExceptionSpecSize(
|
|
EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
|
|
size_t Size = FunctionProtoType::totalSizeToAlloc<
|
|
QualType, FunctionType::FunctionTypeExtraBitfields,
|
|
FunctionType::ExceptionType, Expr *, FunctionDecl *,
|
|
FunctionProtoType::ExtParameterInfo, Qualifiers>(
|
|
NumArgs, FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
|
|
ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
|
|
EPI.ExtParameterInfos ? NumArgs : 0,
|
|
EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
|
|
|
|
auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
|
|
FunctionProtoType::ExtProtoInfo newEPI = EPI;
|
|
new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
|
|
Types.push_back(FTP);
|
|
if (!Unique)
|
|
FunctionProtoTypes.InsertNode(FTP, InsertPos);
|
|
return QualType(FTP, 0);
|
|
}
|
|
|
|
QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
PipeType::Profile(ID, T, ReadOnly);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pipe element type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getPipeType(getCanonicalType(T), ReadOnly);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!");
|
|
(void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
|
|
Types.push_back(New);
|
|
PipeTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
|
|
// OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
|
|
return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
|
|
: Ty;
|
|
}
|
|
|
|
QualType ASTContext::getReadPipeType(QualType T) const {
|
|
return getPipeType(T, true);
|
|
}
|
|
|
|
QualType ASTContext::getWritePipeType(QualType T) const {
|
|
return getPipeType(T, false);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool NeedsInjectedClassNameType(const RecordDecl *D) {
|
|
if (!isa<CXXRecordDecl>(D)) return false;
|
|
const auto *RD = cast<CXXRecordDecl>(D);
|
|
if (isa<ClassTemplatePartialSpecializationDecl>(RD))
|
|
return true;
|
|
if (RD->getDescribedClassTemplate() &&
|
|
!isa<ClassTemplateSpecializationDecl>(RD))
|
|
return true;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/// getInjectedClassNameType - Return the unique reference to the
|
|
/// injected class name type for the specified templated declaration.
|
|
QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
|
|
QualType TST) const {
|
|
assert(NeedsInjectedClassNameType(Decl));
|
|
if (Decl->TypeForDecl) {
|
|
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
|
|
} else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
|
|
assert(PrevDecl->TypeForDecl && "previous declaration has no type");
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
|
|
} else {
|
|
Type *newType =
|
|
new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
|
|
Decl->TypeForDecl = newType;
|
|
Types.push_back(newType);
|
|
}
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// getTypeDeclType - Return the unique reference to the type for the
|
|
/// specified type declaration.
|
|
QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
|
|
assert(Decl && "Passed null for Decl param");
|
|
assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
|
|
|
|
if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
|
|
return getTypedefType(Typedef);
|
|
|
|
assert(!isa<TemplateTypeParmDecl>(Decl) &&
|
|
"Template type parameter types are always available.");
|
|
|
|
if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
|
|
assert(Record->isFirstDecl() && "struct/union has previous declaration");
|
|
assert(!NeedsInjectedClassNameType(Record));
|
|
return getRecordType(Record);
|
|
} else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
|
|
assert(Enum->isFirstDecl() && "enum has previous declaration");
|
|
return getEnumType(Enum);
|
|
} else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
|
|
Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
|
|
Decl->TypeForDecl = newType;
|
|
Types.push_back(newType);
|
|
} else
|
|
llvm_unreachable("TypeDecl without a type?");
|
|
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// getTypedefType - Return the unique reference to the type for the
|
|
/// specified typedef name decl.
|
|
QualType
|
|
ASTContext::getTypedefType(const TypedefNameDecl *Decl,
|
|
QualType Canonical) const {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (Canonical.isNull())
|
|
Canonical = getCanonicalType(Decl->getUnderlyingType());
|
|
auto *newType = new (*this, TypeAlignment)
|
|
TypedefType(Type::Typedef, Decl, Canonical);
|
|
Decl->TypeForDecl = newType;
|
|
Types.push_back(newType);
|
|
return QualType(newType, 0);
|
|
}
|
|
|
|
QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
|
|
if (PrevDecl->TypeForDecl)
|
|
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
|
|
|
|
auto *newType = new (*this, TypeAlignment) RecordType(Decl);
|
|
Decl->TypeForDecl = newType;
|
|
Types.push_back(newType);
|
|
return QualType(newType, 0);
|
|
}
|
|
|
|
QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
|
|
if (PrevDecl->TypeForDecl)
|
|
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
|
|
|
|
auto *newType = new (*this, TypeAlignment) EnumType(Decl);
|
|
Decl->TypeForDecl = newType;
|
|
Types.push_back(newType);
|
|
return QualType(newType, 0);
|
|
}
|
|
|
|
QualType ASTContext::getAttributedType(attr::Kind attrKind,
|
|
QualType modifiedType,
|
|
QualType equivalentType) {
|
|
llvm::FoldingSetNodeID id;
|
|
AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
|
|
|
|
void *insertPos = nullptr;
|
|
AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
|
|
if (type) return QualType(type, 0);
|
|
|
|
QualType canon = getCanonicalType(equivalentType);
|
|
type = new (*this, TypeAlignment)
|
|
AttributedType(canon, attrKind, modifiedType, equivalentType);
|
|
|
|
Types.push_back(type);
|
|
AttributedTypes.InsertNode(type, insertPos);
|
|
|
|
return QualType(type, 0);
|
|
}
|
|
|
|
/// Retrieve a substitution-result type.
|
|
QualType
|
|
ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
|
|
QualType Replacement) const {
|
|
assert(Replacement.isCanonical()
|
|
&& "replacement types must always be canonical");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
|
|
void *InsertPos = nullptr;
|
|
SubstTemplateTypeParmType *SubstParm
|
|
= SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!SubstParm) {
|
|
SubstParm = new (*this, TypeAlignment)
|
|
SubstTemplateTypeParmType(Parm, Replacement);
|
|
Types.push_back(SubstParm);
|
|
SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
|
|
}
|
|
|
|
return QualType(SubstParm, 0);
|
|
}
|
|
|
|
/// Retrieve a
|
|
QualType ASTContext::getSubstTemplateTypeParmPackType(
|
|
const TemplateTypeParmType *Parm,
|
|
const TemplateArgument &ArgPack) {
|
|
#ifndef NDEBUG
|
|
for (const auto &P : ArgPack.pack_elements()) {
|
|
assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
|
|
assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
|
|
}
|
|
#endif
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
|
|
void *InsertPos = nullptr;
|
|
if (SubstTemplateTypeParmPackType *SubstParm
|
|
= SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(SubstParm, 0);
|
|
|
|
QualType Canon;
|
|
if (!Parm->isCanonicalUnqualified()) {
|
|
Canon = getCanonicalType(QualType(Parm, 0));
|
|
Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
|
|
ArgPack);
|
|
SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
auto *SubstParm
|
|
= new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
|
|
ArgPack);
|
|
Types.push_back(SubstParm);
|
|
SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
|
|
return QualType(SubstParm, 0);
|
|
}
|
|
|
|
/// Retrieve the template type parameter type for a template
|
|
/// parameter or parameter pack with the given depth, index, and (optionally)
|
|
/// name.
|
|
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
|
|
bool ParameterPack,
|
|
TemplateTypeParmDecl *TTPDecl) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
|
|
void *InsertPos = nullptr;
|
|
TemplateTypeParmType *TypeParm
|
|
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (TypeParm)
|
|
return QualType(TypeParm, 0);
|
|
|
|
if (TTPDecl) {
|
|
QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
|
|
TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
|
|
|
|
TemplateTypeParmType *TypeCheck
|
|
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!TypeCheck && "Template type parameter canonical type broken");
|
|
(void)TypeCheck;
|
|
} else
|
|
TypeParm = new (*this, TypeAlignment)
|
|
TemplateTypeParmType(Depth, Index, ParameterPack);
|
|
|
|
Types.push_back(TypeParm);
|
|
TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
|
|
|
|
return QualType(TypeParm, 0);
|
|
}
|
|
|
|
TypeSourceInfo *
|
|
ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
|
|
SourceLocation NameLoc,
|
|
const TemplateArgumentListInfo &Args,
|
|
QualType Underlying) const {
|
|
assert(!Name.getAsDependentTemplateName() &&
|
|
"No dependent template names here!");
|
|
QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
|
|
|
|
TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
|
|
TemplateSpecializationTypeLoc TL =
|
|
DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
|
|
TL.setTemplateKeywordLoc(SourceLocation());
|
|
TL.setTemplateNameLoc(NameLoc);
|
|
TL.setLAngleLoc(Args.getLAngleLoc());
|
|
TL.setRAngleLoc(Args.getRAngleLoc());
|
|
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
|
|
TL.setArgLocInfo(i, Args[i].getLocInfo());
|
|
return DI;
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getTemplateSpecializationType(TemplateName Template,
|
|
const TemplateArgumentListInfo &Args,
|
|
QualType Underlying) const {
|
|
assert(!Template.getAsDependentTemplateName() &&
|
|
"No dependent template names here!");
|
|
|
|
SmallVector<TemplateArgument, 4> ArgVec;
|
|
ArgVec.reserve(Args.size());
|
|
for (const TemplateArgumentLoc &Arg : Args.arguments())
|
|
ArgVec.push_back(Arg.getArgument());
|
|
|
|
return getTemplateSpecializationType(Template, ArgVec, Underlying);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
|
|
for (const TemplateArgument &Arg : Args)
|
|
if (Arg.isPackExpansion())
|
|
return true;
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
QualType
|
|
ASTContext::getTemplateSpecializationType(TemplateName Template,
|
|
ArrayRef<TemplateArgument> Args,
|
|
QualType Underlying) const {
|
|
assert(!Template.getAsDependentTemplateName() &&
|
|
"No dependent template names here!");
|
|
// Look through qualified template names.
|
|
if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
|
|
Template = TemplateName(QTN->getTemplateDecl());
|
|
|
|
bool IsTypeAlias =
|
|
Template.getAsTemplateDecl() &&
|
|
isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
|
|
QualType CanonType;
|
|
if (!Underlying.isNull())
|
|
CanonType = getCanonicalType(Underlying);
|
|
else {
|
|
// We can get here with an alias template when the specialization contains
|
|
// a pack expansion that does not match up with a parameter pack.
|
|
assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
|
|
"Caller must compute aliased type");
|
|
IsTypeAlias = false;
|
|
CanonType = getCanonicalTemplateSpecializationType(Template, Args);
|
|
}
|
|
|
|
// Allocate the (non-canonical) template specialization type, but don't
|
|
// try to unique it: these types typically have location information that
|
|
// we don't unique and don't want to lose.
|
|
void *Mem = Allocate(sizeof(TemplateSpecializationType) +
|
|
sizeof(TemplateArgument) * Args.size() +
|
|
(IsTypeAlias? sizeof(QualType) : 0),
|
|
TypeAlignment);
|
|
auto *Spec
|
|
= new (Mem) TemplateSpecializationType(Template, Args, CanonType,
|
|
IsTypeAlias ? Underlying : QualType());
|
|
|
|
Types.push_back(Spec);
|
|
return QualType(Spec, 0);
|
|
}
|
|
|
|
QualType ASTContext::getCanonicalTemplateSpecializationType(
|
|
TemplateName Template, ArrayRef<TemplateArgument> Args) const {
|
|
assert(!Template.getAsDependentTemplateName() &&
|
|
"No dependent template names here!");
|
|
|
|
// Look through qualified template names.
|
|
if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
|
|
Template = TemplateName(QTN->getTemplateDecl());
|
|
|
|
// Build the canonical template specialization type.
|
|
TemplateName CanonTemplate = getCanonicalTemplateName(Template);
|
|
SmallVector<TemplateArgument, 4> CanonArgs;
|
|
unsigned NumArgs = Args.size();
|
|
CanonArgs.reserve(NumArgs);
|
|
for (const TemplateArgument &Arg : Args)
|
|
CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
|
|
|
|
// Determine whether this canonical template specialization type already
|
|
// exists.
|
|
llvm::FoldingSetNodeID ID;
|
|
TemplateSpecializationType::Profile(ID, CanonTemplate,
|
|
CanonArgs, *this);
|
|
|
|
void *InsertPos = nullptr;
|
|
TemplateSpecializationType *Spec
|
|
= TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!Spec) {
|
|
// Allocate a new canonical template specialization type.
|
|
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
|
|
sizeof(TemplateArgument) * NumArgs),
|
|
TypeAlignment);
|
|
Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
|
|
CanonArgs,
|
|
QualType(), QualType());
|
|
Types.push_back(Spec);
|
|
TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
|
|
}
|
|
|
|
assert(Spec->isDependentType() &&
|
|
"Non-dependent template-id type must have a canonical type");
|
|
return QualType(Spec, 0);
|
|
}
|
|
|
|
QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
QualType NamedType,
|
|
TagDecl *OwnedTagDecl) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
|
|
|
|
void *InsertPos = nullptr;
|
|
ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
QualType Canon = NamedType;
|
|
if (!Canon.isCanonical()) {
|
|
Canon = getCanonicalType(NamedType);
|
|
ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckT && "Elaborated canonical type broken");
|
|
(void)CheckT;
|
|
}
|
|
|
|
void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
|
|
TypeAlignment);
|
|
T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
|
|
|
|
Types.push_back(T);
|
|
ElaboratedTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getParenType(QualType InnerType) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
ParenType::Profile(ID, InnerType);
|
|
|
|
void *InsertPos = nullptr;
|
|
ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
QualType Canon = InnerType;
|
|
if (!Canon.isCanonical()) {
|
|
Canon = getCanonicalType(InnerType);
|
|
ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckT && "Paren canonical type broken");
|
|
(void)CheckT;
|
|
}
|
|
|
|
T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
|
|
Types.push_back(T);
|
|
ParenTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
QualType Canon) const {
|
|
if (Canon.isNull()) {
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
if (CanonNNS != NNS)
|
|
Canon = getDependentNameType(Keyword, CanonNNS, Name);
|
|
}
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentNameType::Profile(ID, Keyword, NNS, Name);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentNameType *T
|
|
= DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
|
|
Types.push_back(T);
|
|
DependentNameTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
const TemplateArgumentListInfo &Args) const {
|
|
// TODO: avoid this copy
|
|
SmallVector<TemplateArgument, 16> ArgCopy;
|
|
for (unsigned I = 0, E = Args.size(); I != E; ++I)
|
|
ArgCopy.push_back(Args[I].getArgument());
|
|
return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
ArrayRef<TemplateArgument> Args) const {
|
|
assert((!NNS || NNS->isDependent()) &&
|
|
"nested-name-specifier must be dependent");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
|
|
Name, Args);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentTemplateSpecializationType *T
|
|
= DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
|
|
ElaboratedTypeKeyword CanonKeyword = Keyword;
|
|
if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
|
|
|
|
bool AnyNonCanonArgs = false;
|
|
unsigned NumArgs = Args.size();
|
|
SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
|
|
if (!CanonArgs[I].structurallyEquals(Args[I]))
|
|
AnyNonCanonArgs = true;
|
|
}
|
|
|
|
QualType Canon;
|
|
if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
|
|
Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
|
|
Name,
|
|
CanonArgs);
|
|
|
|
// Find the insert position again.
|
|
DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
|
|
sizeof(TemplateArgument) * NumArgs),
|
|
TypeAlignment);
|
|
T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
|
|
Name, Args, Canon);
|
|
Types.push_back(T);
|
|
DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
|
|
TemplateArgument Arg;
|
|
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
|
|
QualType ArgType = getTypeDeclType(TTP);
|
|
if (TTP->isParameterPack())
|
|
ArgType = getPackExpansionType(ArgType, None);
|
|
|
|
Arg = TemplateArgument(ArgType);
|
|
} else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
Expr *E = new (*this) DeclRefExpr(
|
|
*this, NTTP, /*enclosing*/ false,
|
|
NTTP->getType().getNonLValueExprType(*this),
|
|
Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
|
|
|
|
if (NTTP->isParameterPack())
|
|
E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
|
|
None);
|
|
Arg = TemplateArgument(E);
|
|
} else {
|
|
auto *TTP = cast<TemplateTemplateParmDecl>(Param);
|
|
if (TTP->isParameterPack())
|
|
Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
|
|
else
|
|
Arg = TemplateArgument(TemplateName(TTP));
|
|
}
|
|
|
|
if (Param->isTemplateParameterPack())
|
|
Arg = TemplateArgument::CreatePackCopy(*this, Arg);
|
|
|
|
return Arg;
|
|
}
|
|
|
|
void
|
|
ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
|
|
SmallVectorImpl<TemplateArgument> &Args) {
|
|
Args.reserve(Args.size() + Params->size());
|
|
|
|
for (NamedDecl *Param : *Params)
|
|
Args.push_back(getInjectedTemplateArg(Param));
|
|
}
|
|
|
|
QualType ASTContext::getPackExpansionType(QualType Pattern,
|
|
Optional<unsigned> NumExpansions) {
|
|
llvm::FoldingSetNodeID ID;
|
|
PackExpansionType::Profile(ID, Pattern, NumExpansions);
|
|
|
|
assert(Pattern->containsUnexpandedParameterPack() &&
|
|
"Pack expansions must expand one or more parameter packs");
|
|
void *InsertPos = nullptr;
|
|
PackExpansionType *T
|
|
= PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (T)
|
|
return QualType(T, 0);
|
|
|
|
QualType Canon;
|
|
if (!Pattern.isCanonical()) {
|
|
Canon = getCanonicalType(Pattern);
|
|
// The canonical type might not contain an unexpanded parameter pack, if it
|
|
// contains an alias template specialization which ignores one of its
|
|
// parameters.
|
|
if (Canon->containsUnexpandedParameterPack()) {
|
|
Canon = getPackExpansionType(Canon, NumExpansions);
|
|
|
|
// Find the insert position again, in case we inserted an element into
|
|
// PackExpansionTypes and invalidated our insert position.
|
|
PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
}
|
|
|
|
T = new (*this, TypeAlignment)
|
|
PackExpansionType(Pattern, Canon, NumExpansions);
|
|
Types.push_back(T);
|
|
PackExpansionTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
/// CmpProtocolNames - Comparison predicate for sorting protocols
|
|
/// alphabetically.
|
|
static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
|
|
ObjCProtocolDecl *const *RHS) {
|
|
return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
|
|
}
|
|
|
|
static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
|
|
if (Protocols.empty()) return true;
|
|
|
|
if (Protocols[0]->getCanonicalDecl() != Protocols[0])
|
|
return false;
|
|
|
|
for (unsigned i = 1; i != Protocols.size(); ++i)
|
|
if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
|
|
Protocols[i]->getCanonicalDecl() != Protocols[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
|
|
// Sort protocols, keyed by name.
|
|
llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
|
|
|
|
// Canonicalize.
|
|
for (ObjCProtocolDecl *&P : Protocols)
|
|
P = P->getCanonicalDecl();
|
|
|
|
// Remove duplicates.
|
|
auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
|
|
Protocols.erase(ProtocolsEnd, Protocols.end());
|
|
}
|
|
|
|
QualType ASTContext::getObjCObjectType(QualType BaseType,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols) const {
|
|
return getObjCObjectType(BaseType, {},
|
|
llvm::makeArrayRef(Protocols, NumProtocols),
|
|
/*isKindOf=*/false);
|
|
}
|
|
|
|
QualType ASTContext::getObjCObjectType(
|
|
QualType baseType,
|
|
ArrayRef<QualType> typeArgs,
|
|
ArrayRef<ObjCProtocolDecl *> protocols,
|
|
bool isKindOf) const {
|
|
// If the base type is an interface and there aren't any protocols or
|
|
// type arguments to add, then the interface type will do just fine.
|
|
if (typeArgs.empty() && protocols.empty() && !isKindOf &&
|
|
isa<ObjCInterfaceType>(baseType))
|
|
return baseType;
|
|
|
|
// Look in the folding set for an existing type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
|
|
void *InsertPos = nullptr;
|
|
if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// Determine the type arguments to be used for canonicalization,
|
|
// which may be explicitly specified here or written on the base
|
|
// type.
|
|
ArrayRef<QualType> effectiveTypeArgs = typeArgs;
|
|
if (effectiveTypeArgs.empty()) {
|
|
if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
|
|
effectiveTypeArgs = baseObject->getTypeArgs();
|
|
}
|
|
|
|
// Build the canonical type, which has the canonical base type and a
|
|
// sorted-and-uniqued list of protocols and the type arguments
|
|
// canonicalized.
|
|
QualType canonical;
|
|
bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
|
|
effectiveTypeArgs.end(),
|
|
[&](QualType type) {
|
|
return type.isCanonical();
|
|
});
|
|
bool protocolsSorted = areSortedAndUniqued(protocols);
|
|
if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
|
|
// Determine the canonical type arguments.
|
|
ArrayRef<QualType> canonTypeArgs;
|
|
SmallVector<QualType, 4> canonTypeArgsVec;
|
|
if (!typeArgsAreCanonical) {
|
|
canonTypeArgsVec.reserve(effectiveTypeArgs.size());
|
|
for (auto typeArg : effectiveTypeArgs)
|
|
canonTypeArgsVec.push_back(getCanonicalType(typeArg));
|
|
canonTypeArgs = canonTypeArgsVec;
|
|
} else {
|
|
canonTypeArgs = effectiveTypeArgs;
|
|
}
|
|
|
|
ArrayRef<ObjCProtocolDecl *> canonProtocols;
|
|
SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
|
|
if (!protocolsSorted) {
|
|
canonProtocolsVec.append(protocols.begin(), protocols.end());
|
|
SortAndUniqueProtocols(canonProtocolsVec);
|
|
canonProtocols = canonProtocolsVec;
|
|
} else {
|
|
canonProtocols = protocols;
|
|
}
|
|
|
|
canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
|
|
canonProtocols, isKindOf);
|
|
|
|
// Regenerate InsertPos.
|
|
ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
unsigned size = sizeof(ObjCObjectTypeImpl);
|
|
size += typeArgs.size() * sizeof(QualType);
|
|
size += protocols.size() * sizeof(ObjCProtocolDecl *);
|
|
void *mem = Allocate(size, TypeAlignment);
|
|
auto *T =
|
|
new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
|
|
isKindOf);
|
|
|
|
Types.push_back(T);
|
|
ObjCObjectTypes.InsertNode(T, InsertPos);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
/// Apply Objective-C protocol qualifiers to the given type.
|
|
/// If this is for the canonical type of a type parameter, we can apply
|
|
/// protocol qualifiers on the ObjCObjectPointerType.
|
|
QualType
|
|
ASTContext::applyObjCProtocolQualifiers(QualType type,
|
|
ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
|
|
bool allowOnPointerType) const {
|
|
hasError = false;
|
|
|
|
if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
|
|
return getObjCTypeParamType(objT->getDecl(), protocols);
|
|
}
|
|
|
|
// Apply protocol qualifiers to ObjCObjectPointerType.
|
|
if (allowOnPointerType) {
|
|
if (const auto *objPtr =
|
|
dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
|
|
const ObjCObjectType *objT = objPtr->getObjectType();
|
|
// Merge protocol lists and construct ObjCObjectType.
|
|
SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
|
|
protocolsVec.append(objT->qual_begin(),
|
|
objT->qual_end());
|
|
protocolsVec.append(protocols.begin(), protocols.end());
|
|
ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
|
|
type = getObjCObjectType(
|
|
objT->getBaseType(),
|
|
objT->getTypeArgsAsWritten(),
|
|
protocols,
|
|
objT->isKindOfTypeAsWritten());
|
|
return getObjCObjectPointerType(type);
|
|
}
|
|
}
|
|
|
|
// Apply protocol qualifiers to ObjCObjectType.
|
|
if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
|
|
// FIXME: Check for protocols to which the class type is already
|
|
// known to conform.
|
|
|
|
return getObjCObjectType(objT->getBaseType(),
|
|
objT->getTypeArgsAsWritten(),
|
|
protocols,
|
|
objT->isKindOfTypeAsWritten());
|
|
}
|
|
|
|
// If the canonical type is ObjCObjectType, ...
|
|
if (type->isObjCObjectType()) {
|
|
// Silently overwrite any existing protocol qualifiers.
|
|
// TODO: determine whether that's the right thing to do.
|
|
|
|
// FIXME: Check for protocols to which the class type is already
|
|
// known to conform.
|
|
return getObjCObjectType(type, {}, protocols, false);
|
|
}
|
|
|
|
// id<protocol-list>
|
|
if (type->isObjCIdType()) {
|
|
const auto *objPtr = type->castAs<ObjCObjectPointerType>();
|
|
type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
|
|
objPtr->isKindOfType());
|
|
return getObjCObjectPointerType(type);
|
|
}
|
|
|
|
// Class<protocol-list>
|
|
if (type->isObjCClassType()) {
|
|
const auto *objPtr = type->castAs<ObjCObjectPointerType>();
|
|
type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
|
|
objPtr->isKindOfType());
|
|
return getObjCObjectPointerType(type);
|
|
}
|
|
|
|
hasError = true;
|
|
return type;
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
|
|
ArrayRef<ObjCProtocolDecl *> protocols,
|
|
QualType Canonical) const {
|
|
// Look in the folding set for an existing type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCTypeParamType::Profile(ID, Decl, protocols);
|
|
void *InsertPos = nullptr;
|
|
if (ObjCTypeParamType *TypeParam =
|
|
ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(TypeParam, 0);
|
|
|
|
if (Canonical.isNull()) {
|
|
// We canonicalize to the underlying type.
|
|
Canonical = getCanonicalType(Decl->getUnderlyingType());
|
|
if (!protocols.empty()) {
|
|
// Apply the protocol qualifers.
|
|
bool hasError;
|
|
Canonical = getCanonicalType(applyObjCProtocolQualifiers(
|
|
Canonical, protocols, hasError, true /*allowOnPointerType*/));
|
|
assert(!hasError && "Error when apply protocol qualifier to bound type");
|
|
}
|
|
}
|
|
|
|
unsigned size = sizeof(ObjCTypeParamType);
|
|
size += protocols.size() * sizeof(ObjCProtocolDecl *);
|
|
void *mem = Allocate(size, TypeAlignment);
|
|
auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
|
|
|
|
Types.push_back(newType);
|
|
ObjCTypeParamTypes.InsertNode(newType, InsertPos);
|
|
return QualType(newType, 0);
|
|
}
|
|
|
|
/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
|
|
/// protocol list adopt all protocols in QT's qualified-id protocol
|
|
/// list.
|
|
bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
|
|
ObjCInterfaceDecl *IC) {
|
|
if (!QT->isObjCQualifiedIdType())
|
|
return false;
|
|
|
|
if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
|
|
// If both the right and left sides have qualifiers.
|
|
for (auto *Proto : OPT->quals()) {
|
|
if (!IC->ClassImplementsProtocol(Proto, false))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
|
|
/// QT's qualified-id protocol list adopt all protocols in IDecl's list
|
|
/// of protocols.
|
|
bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
|
|
ObjCInterfaceDecl *IDecl) {
|
|
if (!QT->isObjCQualifiedIdType())
|
|
return false;
|
|
const auto *OPT = QT->getAs<ObjCObjectPointerType>();
|
|
if (!OPT)
|
|
return false;
|
|
if (!IDecl->hasDefinition())
|
|
return false;
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
|
|
CollectInheritedProtocols(IDecl, InheritedProtocols);
|
|
if (InheritedProtocols.empty())
|
|
return false;
|
|
// Check that if every protocol in list of id<plist> conforms to a protocol
|
|
// of IDecl's, then bridge casting is ok.
|
|
bool Conforms = false;
|
|
for (auto *Proto : OPT->quals()) {
|
|
Conforms = false;
|
|
for (auto *PI : InheritedProtocols) {
|
|
if (ProtocolCompatibleWithProtocol(Proto, PI)) {
|
|
Conforms = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Conforms)
|
|
break;
|
|
}
|
|
if (Conforms)
|
|
return true;
|
|
|
|
for (auto *PI : InheritedProtocols) {
|
|
// If both the right and left sides have qualifiers.
|
|
bool Adopts = false;
|
|
for (auto *Proto : OPT->quals()) {
|
|
// return 'true' if 'PI' is in the inheritance hierarchy of Proto
|
|
if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
|
|
break;
|
|
}
|
|
if (!Adopts)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
|
|
/// the given object type.
|
|
QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCObjectPointerType::Profile(ID, ObjectT);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (ObjCObjectPointerType *QT =
|
|
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// Find the canonical object type.
|
|
QualType Canonical;
|
|
if (!ObjectT.isCanonical()) {
|
|
Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
|
|
|
|
// Regenerate InsertPos.
|
|
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
// No match.
|
|
void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
|
|
auto *QType =
|
|
new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
|
|
|
|
Types.push_back(QType);
|
|
ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
|
|
return QualType(QType, 0);
|
|
}
|
|
|
|
/// getObjCInterfaceType - Return the unique reference to the type for the
|
|
/// specified ObjC interface decl. The list of protocols is optional.
|
|
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
|
|
ObjCInterfaceDecl *PrevDecl) const {
|
|
if (Decl->TypeForDecl)
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (PrevDecl) {
|
|
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
return QualType(PrevDecl->TypeForDecl, 0);
|
|
}
|
|
|
|
// Prefer the definition, if there is one.
|
|
if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
|
|
Decl = Def;
|
|
|
|
void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
|
|
auto *T = new (Mem) ObjCInterfaceType(Decl);
|
|
Decl->TypeForDecl = T;
|
|
Types.push_back(T);
|
|
return QualType(T, 0);
|
|
}
|
|
|
|
/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
|
|
/// TypeOfExprType AST's (since expression's are never shared). For example,
|
|
/// multiple declarations that refer to "typeof(x)" all contain different
|
|
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
|
|
/// on canonical type's (which are always unique).
|
|
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
|
|
TypeOfExprType *toe;
|
|
if (tofExpr->isTypeDependent()) {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTypeOfExprType::Profile(ID, *this, tofExpr);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentTypeOfExprType *Canon
|
|
= DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (Canon) {
|
|
// We already have a "canonical" version of an identical, dependent
|
|
// typeof(expr) type. Use that as our canonical type.
|
|
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
|
|
QualType((TypeOfExprType*)Canon, 0));
|
|
} else {
|
|
// Build a new, canonical typeof(expr) type.
|
|
Canon
|
|
= new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
|
|
DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
|
|
toe = Canon;
|
|
}
|
|
} else {
|
|
QualType Canonical = getCanonicalType(tofExpr->getType());
|
|
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
|
|
}
|
|
Types.push_back(toe);
|
|
return QualType(toe, 0);
|
|
}
|
|
|
|
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
|
|
/// TypeOfType nodes. The only motivation to unique these nodes would be
|
|
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
|
|
/// an issue. This doesn't affect the type checker, since it operates
|
|
/// on canonical types (which are always unique).
|
|
QualType ASTContext::getTypeOfType(QualType tofType) const {
|
|
QualType Canonical = getCanonicalType(tofType);
|
|
auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
|
|
Types.push_back(tot);
|
|
return QualType(tot, 0);
|
|
}
|
|
|
|
/// Unlike many "get<Type>" functions, we don't unique DecltypeType
|
|
/// nodes. This would never be helpful, since each such type has its own
|
|
/// expression, and would not give a significant memory saving, since there
|
|
/// is an Expr tree under each such type.
|
|
QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
|
|
DecltypeType *dt;
|
|
|
|
// C++11 [temp.type]p2:
|
|
// If an expression e involves a template parameter, decltype(e) denotes a
|
|
// unique dependent type. Two such decltype-specifiers refer to the same
|
|
// type only if their expressions are equivalent (14.5.6.1).
|
|
if (e->isInstantiationDependent()) {
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentDecltypeType::Profile(ID, *this, e);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentDecltypeType *Canon
|
|
= DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (!Canon) {
|
|
// Build a new, canonical decltype(expr) type.
|
|
Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
|
|
DependentDecltypeTypes.InsertNode(Canon, InsertPos);
|
|
}
|
|
dt = new (*this, TypeAlignment)
|
|
DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
|
|
} else {
|
|
dt = new (*this, TypeAlignment)
|
|
DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
|
|
}
|
|
Types.push_back(dt);
|
|
return QualType(dt, 0);
|
|
}
|
|
|
|
/// getUnaryTransformationType - We don't unique these, since the memory
|
|
/// savings are minimal and these are rare.
|
|
QualType ASTContext::getUnaryTransformType(QualType BaseType,
|
|
QualType UnderlyingType,
|
|
UnaryTransformType::UTTKind Kind)
|
|
const {
|
|
UnaryTransformType *ut = nullptr;
|
|
|
|
if (BaseType->isDependentType()) {
|
|
// Look in the folding set for an existing type.
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentUnaryTransformType *Canon
|
|
= DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!Canon) {
|
|
// Build a new, canonical __underlying_type(type) type.
|
|
Canon = new (*this, TypeAlignment)
|
|
DependentUnaryTransformType(*this, getCanonicalType(BaseType),
|
|
Kind);
|
|
DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
|
|
}
|
|
ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
|
|
QualType(), Kind,
|
|
QualType(Canon, 0));
|
|
} else {
|
|
QualType CanonType = getCanonicalType(UnderlyingType);
|
|
ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
|
|
UnderlyingType, Kind,
|
|
CanonType);
|
|
}
|
|
Types.push_back(ut);
|
|
return QualType(ut, 0);
|
|
}
|
|
|
|
/// getAutoType - Return the uniqued reference to the 'auto' type which has been
|
|
/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
|
|
/// canonical deduced-but-dependent 'auto' type.
|
|
QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
|
|
bool IsDependent) const {
|
|
if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
|
|
return getAutoDeductType();
|
|
|
|
// Look in the folding set for an existing type.
|
|
void *InsertPos = nullptr;
|
|
llvm::FoldingSetNodeID ID;
|
|
AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
|
|
if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(AT, 0);
|
|
|
|
auto *AT = new (*this, TypeAlignment)
|
|
AutoType(DeducedType, Keyword, IsDependent);
|
|
Types.push_back(AT);
|
|
if (InsertPos)
|
|
AutoTypes.InsertNode(AT, InsertPos);
|
|
return QualType(AT, 0);
|
|
}
|
|
|
|
/// Return the uniqued reference to the deduced template specialization type
|
|
/// which has been deduced to the given type, or to the canonical undeduced
|
|
/// such type, or the canonical deduced-but-dependent such type.
|
|
QualType ASTContext::getDeducedTemplateSpecializationType(
|
|
TemplateName Template, QualType DeducedType, bool IsDependent) const {
|
|
// Look in the folding set for an existing type.
|
|
void *InsertPos = nullptr;
|
|
llvm::FoldingSetNodeID ID;
|
|
DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
|
|
IsDependent);
|
|
if (DeducedTemplateSpecializationType *DTST =
|
|
DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(DTST, 0);
|
|
|
|
auto *DTST = new (*this, TypeAlignment)
|
|
DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
|
|
Types.push_back(DTST);
|
|
if (InsertPos)
|
|
DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
|
|
return QualType(DTST, 0);
|
|
}
|
|
|
|
/// getAtomicType - Return the uniqued reference to the atomic type for
|
|
/// the given value type.
|
|
QualType ASTContext::getAtomicType(QualType T) const {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
AtomicType::Profile(ID, T);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(AT, 0);
|
|
|
|
// If the atomic value type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T.isCanonical()) {
|
|
Canonical = getAtomicType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
|
|
}
|
|
auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
|
|
Types.push_back(New);
|
|
AtomicTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getAutoDeductType - Get type pattern for deducing against 'auto'.
|
|
QualType ASTContext::getAutoDeductType() const {
|
|
if (AutoDeductTy.isNull())
|
|
AutoDeductTy = QualType(
|
|
new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
|
|
/*dependent*/false),
|
|
0);
|
|
return AutoDeductTy;
|
|
}
|
|
|
|
/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
|
|
QualType ASTContext::getAutoRRefDeductType() const {
|
|
if (AutoRRefDeductTy.isNull())
|
|
AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
|
|
assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
|
|
return AutoRRefDeductTy;
|
|
}
|
|
|
|
/// getTagDeclType - Return the unique reference to the type for the
|
|
/// specified TagDecl (struct/union/class/enum) decl.
|
|
QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
|
|
assert(Decl);
|
|
// FIXME: What is the design on getTagDeclType when it requires casting
|
|
// away const? mutable?
|
|
return getTypeDeclType(const_cast<TagDecl*>(Decl));
|
|
}
|
|
|
|
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
|
|
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
|
|
/// needs to agree with the definition in <stddef.h>.
|
|
CanQualType ASTContext::getSizeType() const {
|
|
return getFromTargetType(Target->getSizeType());
|
|
}
|
|
|
|
/// Return the unique signed counterpart of the integer type
|
|
/// corresponding to size_t.
|
|
CanQualType ASTContext::getSignedSizeType() const {
|
|
return getFromTargetType(Target->getSignedSizeType());
|
|
}
|
|
|
|
/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
|
|
CanQualType ASTContext::getIntMaxType() const {
|
|
return getFromTargetType(Target->getIntMaxType());
|
|
}
|
|
|
|
/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
|
|
CanQualType ASTContext::getUIntMaxType() const {
|
|
return getFromTargetType(Target->getUIntMaxType());
|
|
}
|
|
|
|
/// getSignedWCharType - Return the type of "signed wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType ASTContext::getSignedWCharType() const {
|
|
// FIXME: derive from "Target" ?
|
|
return WCharTy;
|
|
}
|
|
|
|
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType ASTContext::getUnsignedWCharType() const {
|
|
// FIXME: derive from "Target" ?
|
|
return UnsignedIntTy;
|
|
}
|
|
|
|
QualType ASTContext::getIntPtrType() const {
|
|
return getFromTargetType(Target->getIntPtrType());
|
|
}
|
|
|
|
QualType ASTContext::getUIntPtrType() const {
|
|
return getCorrespondingUnsignedType(getIntPtrType());
|
|
}
|
|
|
|
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
|
|
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
|
|
QualType ASTContext::getPointerDiffType() const {
|
|
return getFromTargetType(Target->getPtrDiffType(0));
|
|
}
|
|
|
|
/// Return the unique unsigned counterpart of "ptrdiff_t"
|
|
/// integer type. The standard (C11 7.21.6.1p7) refers to this type
|
|
/// in the definition of %tu format specifier.
|
|
QualType ASTContext::getUnsignedPointerDiffType() const {
|
|
return getFromTargetType(Target->getUnsignedPtrDiffType(0));
|
|
}
|
|
|
|
/// Return the unique type for "pid_t" defined in
|
|
/// <sys/types.h>. We need this to compute the correct type for vfork().
|
|
QualType ASTContext::getProcessIDType() const {
|
|
return getFromTargetType(Target->getProcessIDType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CanQualType ASTContext::getCanonicalParamType(QualType T) const {
|
|
// Push qualifiers into arrays, and then discard any remaining
|
|
// qualifiers.
|
|
T = getCanonicalType(T);
|
|
T = getVariableArrayDecayedType(T);
|
|
const Type *Ty = T.getTypePtr();
|
|
QualType Result;
|
|
if (isa<ArrayType>(Ty)) {
|
|
Result = getArrayDecayedType(QualType(Ty,0));
|
|
} else if (isa<FunctionType>(Ty)) {
|
|
Result = getPointerType(QualType(Ty, 0));
|
|
} else {
|
|
Result = QualType(Ty, 0);
|
|
}
|
|
|
|
return CanQualType::CreateUnsafe(Result);
|
|
}
|
|
|
|
QualType ASTContext::getUnqualifiedArrayType(QualType type,
|
|
Qualifiers &quals) {
|
|
SplitQualType splitType = type.getSplitUnqualifiedType();
|
|
|
|
// FIXME: getSplitUnqualifiedType() actually walks all the way to
|
|
// the unqualified desugared type and then drops it on the floor.
|
|
// We then have to strip that sugar back off with
|
|
// getUnqualifiedDesugaredType(), which is silly.
|
|
const auto *AT =
|
|
dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
|
|
|
|
// If we don't have an array, just use the results in splitType.
|
|
if (!AT) {
|
|
quals = splitType.Quals;
|
|
return QualType(splitType.Ty, 0);
|
|
}
|
|
|
|
// Otherwise, recurse on the array's element type.
|
|
QualType elementType = AT->getElementType();
|
|
QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
|
|
|
|
// If that didn't change the element type, AT has no qualifiers, so we
|
|
// can just use the results in splitType.
|
|
if (elementType == unqualElementType) {
|
|
assert(quals.empty()); // from the recursive call
|
|
quals = splitType.Quals;
|
|
return QualType(splitType.Ty, 0);
|
|
}
|
|
|
|
// Otherwise, add in the qualifiers from the outermost type, then
|
|
// build the type back up.
|
|
quals.addConsistentQualifiers(splitType.Quals);
|
|
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
|
|
return getConstantArrayType(unqualElementType, CAT->getSize(),
|
|
CAT->getSizeModifier(), 0);
|
|
}
|
|
|
|
if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
|
|
return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
|
|
}
|
|
|
|
if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
|
|
return getVariableArrayType(unqualElementType,
|
|
VAT->getSizeExpr(),
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeCVRQualifiers(),
|
|
VAT->getBracketsRange());
|
|
}
|
|
|
|
const auto *DSAT = cast<DependentSizedArrayType>(AT);
|
|
return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
|
|
DSAT->getSizeModifier(), 0,
|
|
SourceRange());
|
|
}
|
|
|
|
/// Attempt to unwrap two types that may both be array types with the same bound
|
|
/// (or both be array types of unknown bound) for the purpose of comparing the
|
|
/// cv-decomposition of two types per C++ [conv.qual].
|
|
bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
|
|
bool UnwrappedAny = false;
|
|
while (true) {
|
|
auto *AT1 = getAsArrayType(T1);
|
|
if (!AT1) return UnwrappedAny;
|
|
|
|
auto *AT2 = getAsArrayType(T2);
|
|
if (!AT2) return UnwrappedAny;
|
|
|
|
// If we don't have two array types with the same constant bound nor two
|
|
// incomplete array types, we've unwrapped everything we can.
|
|
if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
|
|
auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
|
|
if (!CAT2 || CAT1->getSize() != CAT2->getSize())
|
|
return UnwrappedAny;
|
|
} else if (!isa<IncompleteArrayType>(AT1) ||
|
|
!isa<IncompleteArrayType>(AT2)) {
|
|
return UnwrappedAny;
|
|
}
|
|
|
|
T1 = AT1->getElementType();
|
|
T2 = AT2->getElementType();
|
|
UnwrappedAny = true;
|
|
}
|
|
}
|
|
|
|
/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
|
|
///
|
|
/// If T1 and T2 are both pointer types of the same kind, or both array types
|
|
/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
|
|
/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
|
|
///
|
|
/// This function will typically be called in a loop that successively
|
|
/// "unwraps" pointer and pointer-to-member types to compare them at each
|
|
/// level.
|
|
///
|
|
/// \return \c true if a pointer type was unwrapped, \c false if we reached a
|
|
/// pair of types that can't be unwrapped further.
|
|
bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
|
|
UnwrapSimilarArrayTypes(T1, T2);
|
|
|
|
const auto *T1PtrType = T1->getAs<PointerType>();
|
|
const auto *T2PtrType = T2->getAs<PointerType>();
|
|
if (T1PtrType && T2PtrType) {
|
|
T1 = T1PtrType->getPointeeType();
|
|
T2 = T2PtrType->getPointeeType();
|
|
return true;
|
|
}
|
|
|
|
const auto *T1MPType = T1->getAs<MemberPointerType>();
|
|
const auto *T2MPType = T2->getAs<MemberPointerType>();
|
|
if (T1MPType && T2MPType &&
|
|
hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
|
|
QualType(T2MPType->getClass(), 0))) {
|
|
T1 = T1MPType->getPointeeType();
|
|
T2 = T2MPType->getPointeeType();
|
|
return true;
|
|
}
|
|
|
|
if (getLangOpts().ObjC) {
|
|
const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
|
|
const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
|
|
if (T1OPType && T2OPType) {
|
|
T1 = T1OPType->getPointeeType();
|
|
T2 = T2OPType->getPointeeType();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// FIXME: Block pointers, too?
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
|
|
while (true) {
|
|
Qualifiers Quals;
|
|
T1 = getUnqualifiedArrayType(T1, Quals);
|
|
T2 = getUnqualifiedArrayType(T2, Quals);
|
|
if (hasSameType(T1, T2))
|
|
return true;
|
|
if (!UnwrapSimilarTypes(T1, T2))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
|
|
while (true) {
|
|
Qualifiers Quals1, Quals2;
|
|
T1 = getUnqualifiedArrayType(T1, Quals1);
|
|
T2 = getUnqualifiedArrayType(T2, Quals2);
|
|
|
|
Quals1.removeCVRQualifiers();
|
|
Quals2.removeCVRQualifiers();
|
|
if (Quals1 != Quals2)
|
|
return false;
|
|
|
|
if (hasSameType(T1, T2))
|
|
return true;
|
|
|
|
if (!UnwrapSimilarTypes(T1, T2))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DeclarationNameInfo
|
|
ASTContext::getNameForTemplate(TemplateName Name,
|
|
SourceLocation NameLoc) const {
|
|
switch (Name.getKind()) {
|
|
case TemplateName::QualifiedTemplate:
|
|
case TemplateName::Template:
|
|
// DNInfo work in progress: CHECKME: what about DNLoc?
|
|
return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
|
|
NameLoc);
|
|
|
|
case TemplateName::OverloadedTemplate: {
|
|
OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
|
|
// DNInfo work in progress: CHECKME: what about DNLoc?
|
|
return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
|
|
}
|
|
|
|
case TemplateName::DependentTemplate: {
|
|
DependentTemplateName *DTN = Name.getAsDependentTemplateName();
|
|
DeclarationName DName;
|
|
if (DTN->isIdentifier()) {
|
|
DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
|
|
return DeclarationNameInfo(DName, NameLoc);
|
|
} else {
|
|
DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
|
|
// DNInfo work in progress: FIXME: source locations?
|
|
DeclarationNameLoc DNLoc;
|
|
DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
|
|
DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
|
|
return DeclarationNameInfo(DName, NameLoc, DNLoc);
|
|
}
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParm: {
|
|
SubstTemplateTemplateParmStorage *subst
|
|
= Name.getAsSubstTemplateTemplateParm();
|
|
return DeclarationNameInfo(subst->getParameter()->getDeclName(),
|
|
NameLoc);
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParmPack: {
|
|
SubstTemplateTemplateParmPackStorage *subst
|
|
= Name.getAsSubstTemplateTemplateParmPack();
|
|
return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
|
|
NameLoc);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("bad template name kind!");
|
|
}
|
|
|
|
TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
|
|
switch (Name.getKind()) {
|
|
case TemplateName::QualifiedTemplate:
|
|
case TemplateName::Template: {
|
|
TemplateDecl *Template = Name.getAsTemplateDecl();
|
|
if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
|
|
Template = getCanonicalTemplateTemplateParmDecl(TTP);
|
|
|
|
// The canonical template name is the canonical template declaration.
|
|
return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
|
|
}
|
|
|
|
case TemplateName::OverloadedTemplate:
|
|
llvm_unreachable("cannot canonicalize overloaded template");
|
|
|
|
case TemplateName::DependentTemplate: {
|
|
DependentTemplateName *DTN = Name.getAsDependentTemplateName();
|
|
assert(DTN && "Non-dependent template names must refer to template decls.");
|
|
return DTN->CanonicalTemplateName;
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParm: {
|
|
SubstTemplateTemplateParmStorage *subst
|
|
= Name.getAsSubstTemplateTemplateParm();
|
|
return getCanonicalTemplateName(subst->getReplacement());
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParmPack: {
|
|
SubstTemplateTemplateParmPackStorage *subst
|
|
= Name.getAsSubstTemplateTemplateParmPack();
|
|
TemplateTemplateParmDecl *canonParameter
|
|
= getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
|
|
TemplateArgument canonArgPack
|
|
= getCanonicalTemplateArgument(subst->getArgumentPack());
|
|
return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("bad template name!");
|
|
}
|
|
|
|
bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
|
|
X = getCanonicalTemplateName(X);
|
|
Y = getCanonicalTemplateName(Y);
|
|
return X.getAsVoidPointer() == Y.getAsVoidPointer();
|
|
}
|
|
|
|
TemplateArgument
|
|
ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
return Arg;
|
|
|
|
case TemplateArgument::Expression:
|
|
return Arg;
|
|
|
|
case TemplateArgument::Declaration: {
|
|
auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
|
|
return TemplateArgument(D, Arg.getParamTypeForDecl());
|
|
}
|
|
|
|
case TemplateArgument::NullPtr:
|
|
return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
|
|
/*isNullPtr*/true);
|
|
|
|
case TemplateArgument::Template:
|
|
return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
return TemplateArgument(getCanonicalTemplateName(
|
|
Arg.getAsTemplateOrTemplatePattern()),
|
|
Arg.getNumTemplateExpansions());
|
|
|
|
case TemplateArgument::Integral:
|
|
return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
|
|
|
|
case TemplateArgument::Type:
|
|
return TemplateArgument(getCanonicalType(Arg.getAsType()));
|
|
|
|
case TemplateArgument::Pack: {
|
|
if (Arg.pack_size() == 0)
|
|
return Arg;
|
|
|
|
auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
|
|
unsigned Idx = 0;
|
|
for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
|
|
AEnd = Arg.pack_end();
|
|
A != AEnd; (void)++A, ++Idx)
|
|
CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
|
|
|
|
return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
|
|
}
|
|
}
|
|
|
|
// Silence GCC warning
|
|
llvm_unreachable("Unhandled template argument kind");
|
|
}
|
|
|
|
NestedNameSpecifier *
|
|
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
|
|
if (!NNS)
|
|
return nullptr;
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
// Canonicalize the prefix but keep the identifier the same.
|
|
return NestedNameSpecifier::Create(*this,
|
|
getCanonicalNestedNameSpecifier(NNS->getPrefix()),
|
|
NNS->getAsIdentifier());
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
// A namespace is canonical; build a nested-name-specifier with
|
|
// this namespace and no prefix.
|
|
return NestedNameSpecifier::Create(*this, nullptr,
|
|
NNS->getAsNamespace()->getOriginalNamespace());
|
|
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
// A namespace is canonical; build a nested-name-specifier with
|
|
// this namespace and no prefix.
|
|
return NestedNameSpecifier::Create(*this, nullptr,
|
|
NNS->getAsNamespaceAlias()->getNamespace()
|
|
->getOriginalNamespace());
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
|
|
|
|
// If we have some kind of dependent-named type (e.g., "typename T::type"),
|
|
// break it apart into its prefix and identifier, then reconsititute those
|
|
// as the canonical nested-name-specifier. This is required to canonicalize
|
|
// a dependent nested-name-specifier involving typedefs of dependent-name
|
|
// types, e.g.,
|
|
// typedef typename T::type T1;
|
|
// typedef typename T1::type T2;
|
|
if (const auto *DNT = T->getAs<DependentNameType>())
|
|
return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
|
|
const_cast<IdentifierInfo *>(DNT->getIdentifier()));
|
|
|
|
// Otherwise, just canonicalize the type, and force it to be a TypeSpec.
|
|
// FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
|
|
// first place?
|
|
return NestedNameSpecifier::Create(*this, nullptr, false,
|
|
const_cast<Type *>(T.getTypePtr()));
|
|
}
|
|
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Super:
|
|
// The global specifier and __super specifer are canonical and unique.
|
|
return NNS;
|
|
}
|
|
|
|
llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
|
|
}
|
|
|
|
const ArrayType *ASTContext::getAsArrayType(QualType T) const {
|
|
// Handle the non-qualified case efficiently.
|
|
if (!T.hasLocalQualifiers()) {
|
|
// Handle the common positive case fast.
|
|
if (const auto *AT = dyn_cast<ArrayType>(T))
|
|
return AT;
|
|
}
|
|
|
|
// Handle the common negative case fast.
|
|
if (!isa<ArrayType>(T.getCanonicalType()))
|
|
return nullptr;
|
|
|
|
// Apply any qualifiers from the array type to the element type. This
|
|
// implements C99 6.7.3p8: "If the specification of an array type includes
|
|
// any type qualifiers, the element type is so qualified, not the array type."
|
|
|
|
// If we get here, we either have type qualifiers on the type, or we have
|
|
// sugar such as a typedef in the way. If we have type qualifiers on the type
|
|
// we must propagate them down into the element type.
|
|
|
|
SplitQualType split = T.getSplitDesugaredType();
|
|
Qualifiers qs = split.Quals;
|
|
|
|
// If we have a simple case, just return now.
|
|
const auto *ATy = dyn_cast<ArrayType>(split.Ty);
|
|
if (!ATy || qs.empty())
|
|
return ATy;
|
|
|
|
// Otherwise, we have an array and we have qualifiers on it. Push the
|
|
// qualifiers into the array element type and return a new array type.
|
|
QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
|
|
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
|
|
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
|
|
CAT->getSizeModifier(),
|
|
CAT->getIndexTypeCVRQualifiers()));
|
|
if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
|
|
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
|
|
IAT->getSizeModifier(),
|
|
IAT->getIndexTypeCVRQualifiers()));
|
|
|
|
if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
|
|
return cast<ArrayType>(
|
|
getDependentSizedArrayType(NewEltTy,
|
|
DSAT->getSizeExpr(),
|
|
DSAT->getSizeModifier(),
|
|
DSAT->getIndexTypeCVRQualifiers(),
|
|
DSAT->getBracketsRange()));
|
|
|
|
const auto *VAT = cast<VariableArrayType>(ATy);
|
|
return cast<ArrayType>(getVariableArrayType(NewEltTy,
|
|
VAT->getSizeExpr(),
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeCVRQualifiers(),
|
|
VAT->getBracketsRange()));
|
|
}
|
|
|
|
QualType ASTContext::getAdjustedParameterType(QualType T) const {
|
|
if (T->isArrayType() || T->isFunctionType())
|
|
return getDecayedType(T);
|
|
return T;
|
|
}
|
|
|
|
QualType ASTContext::getSignatureParameterType(QualType T) const {
|
|
T = getVariableArrayDecayedType(T);
|
|
T = getAdjustedParameterType(T);
|
|
return T.getUnqualifiedType();
|
|
}
|
|
|
|
QualType ASTContext::getExceptionObjectType(QualType T) const {
|
|
// C++ [except.throw]p3:
|
|
// A throw-expression initializes a temporary object, called the exception
|
|
// object, the type of which is determined by removing any top-level
|
|
// cv-qualifiers from the static type of the operand of throw and adjusting
|
|
// the type from "array of T" or "function returning T" to "pointer to T"
|
|
// or "pointer to function returning T", [...]
|
|
T = getVariableArrayDecayedType(T);
|
|
if (T->isArrayType() || T->isFunctionType())
|
|
T = getDecayedType(T);
|
|
return T.getUnqualifiedType();
|
|
}
|
|
|
|
/// getArrayDecayedType - Return the properly qualified result of decaying the
|
|
/// specified array type to a pointer. This operation is non-trivial when
|
|
/// handling typedefs etc. The canonical type of "T" must be an array type,
|
|
/// this returns a pointer to a properly qualified element of the array.
|
|
///
|
|
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
|
|
QualType ASTContext::getArrayDecayedType(QualType Ty) const {
|
|
// Get the element type with 'getAsArrayType' so that we don't lose any
|
|
// typedefs in the element type of the array. This also handles propagation
|
|
// of type qualifiers from the array type into the element type if present
|
|
// (C99 6.7.3p8).
|
|
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
|
|
assert(PrettyArrayType && "Not an array type!");
|
|
|
|
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
|
|
|
|
// int x[restrict 4] -> int *restrict
|
|
QualType Result = getQualifiedType(PtrTy,
|
|
PrettyArrayType->getIndexTypeQualifiers());
|
|
|
|
// int x[_Nullable] -> int * _Nullable
|
|
if (auto Nullability = Ty->getNullability(*this)) {
|
|
Result = const_cast<ASTContext *>(this)->getAttributedType(
|
|
AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
QualType ASTContext::getBaseElementType(const ArrayType *array) const {
|
|
return getBaseElementType(array->getElementType());
|
|
}
|
|
|
|
QualType ASTContext::getBaseElementType(QualType type) const {
|
|
Qualifiers qs;
|
|
while (true) {
|
|
SplitQualType split = type.getSplitDesugaredType();
|
|
const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
|
|
if (!array) break;
|
|
|
|
type = array->getElementType();
|
|
qs.addConsistentQualifiers(split.Quals);
|
|
}
|
|
|
|
return getQualifiedType(type, qs);
|
|
}
|
|
|
|
/// getConstantArrayElementCount - Returns number of constant array elements.
|
|
uint64_t
|
|
ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
|
|
uint64_t ElementCount = 1;
|
|
do {
|
|
ElementCount *= CA->getSize().getZExtValue();
|
|
CA = dyn_cast_or_null<ConstantArrayType>(
|
|
CA->getElementType()->getAsArrayTypeUnsafe());
|
|
} while (CA);
|
|
return ElementCount;
|
|
}
|
|
|
|
/// getFloatingRank - Return a relative rank for floating point types.
|
|
/// This routine will assert if passed a built-in type that isn't a float.
|
|
static FloatingRank getFloatingRank(QualType T) {
|
|
if (const auto *CT = T->getAs<ComplexType>())
|
|
return getFloatingRank(CT->getElementType());
|
|
|
|
assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
|
|
switch (T->getAs<BuiltinType>()->getKind()) {
|
|
default: llvm_unreachable("getFloatingRank(): not a floating type");
|
|
case BuiltinType::Float16: return Float16Rank;
|
|
case BuiltinType::Half: return HalfRank;
|
|
case BuiltinType::Float: return FloatRank;
|
|
case BuiltinType::Double: return DoubleRank;
|
|
case BuiltinType::LongDouble: return LongDoubleRank;
|
|
case BuiltinType::Float128: return Float128Rank;
|
|
}
|
|
}
|
|
|
|
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
|
|
/// point or a complex type (based on typeDomain/typeSize).
|
|
/// 'typeDomain' is a real floating point or complex type.
|
|
/// 'typeSize' is a real floating point or complex type.
|
|
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
|
|
QualType Domain) const {
|
|
FloatingRank EltRank = getFloatingRank(Size);
|
|
if (Domain->isComplexType()) {
|
|
switch (EltRank) {
|
|
case Float16Rank:
|
|
case HalfRank: llvm_unreachable("Complex half is not supported");
|
|
case FloatRank: return FloatComplexTy;
|
|
case DoubleRank: return DoubleComplexTy;
|
|
case LongDoubleRank: return LongDoubleComplexTy;
|
|
case Float128Rank: return Float128ComplexTy;
|
|
}
|
|
}
|
|
|
|
assert(Domain->isRealFloatingType() && "Unknown domain!");
|
|
switch (EltRank) {
|
|
case Float16Rank: return HalfTy;
|
|
case HalfRank: return HalfTy;
|
|
case FloatRank: return FloatTy;
|
|
case DoubleRank: return DoubleTy;
|
|
case LongDoubleRank: return LongDoubleTy;
|
|
case Float128Rank: return Float128Ty;
|
|
}
|
|
llvm_unreachable("getFloatingRank(): illegal value for rank");
|
|
}
|
|
|
|
/// getFloatingTypeOrder - Compare the rank of the two specified floating
|
|
/// point types, ignoring the domain of the type (i.e. 'double' ==
|
|
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
|
|
FloatingRank LHSR = getFloatingRank(LHS);
|
|
FloatingRank RHSR = getFloatingRank(RHS);
|
|
|
|
if (LHSR == RHSR)
|
|
return 0;
|
|
if (LHSR > RHSR)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
|
|
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
|
|
/// routine will assert if passed a built-in type that isn't an integer or enum,
|
|
/// or if it is not canonicalized.
|
|
unsigned ASTContext::getIntegerRank(const Type *T) const {
|
|
assert(T->isCanonicalUnqualified() && "T should be canonicalized");
|
|
|
|
switch (cast<BuiltinType>(T)->getKind()) {
|
|
default: llvm_unreachable("getIntegerRank(): not a built-in integer");
|
|
case BuiltinType::Bool:
|
|
return 1 + (getIntWidth(BoolTy) << 3);
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
return 2 + (getIntWidth(CharTy) << 3);
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return 3 + (getIntWidth(ShortTy) << 3);
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return 4 + (getIntWidth(IntTy) << 3);
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
return 5 + (getIntWidth(LongTy) << 3);
|
|
case BuiltinType::LongLong:
|
|
case BuiltinType::ULongLong:
|
|
return 6 + (getIntWidth(LongLongTy) << 3);
|
|
case BuiltinType::Int128:
|
|
case BuiltinType::UInt128:
|
|
return 7 + (getIntWidth(Int128Ty) << 3);
|
|
}
|
|
}
|
|
|
|
/// Whether this is a promotable bitfield reference according
|
|
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
|
|
///
|
|
/// \returns the type this bit-field will promote to, or NULL if no
|
|
/// promotion occurs.
|
|
QualType ASTContext::isPromotableBitField(Expr *E) const {
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return {};
|
|
|
|
// C++ [conv.prom]p5:
|
|
// If the bit-field has an enumerated type, it is treated as any other
|
|
// value of that type for promotion purposes.
|
|
if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
|
|
return {};
|
|
|
|
// FIXME: We should not do this unless E->refersToBitField() is true. This
|
|
// matters in C where getSourceBitField() will find bit-fields for various
|
|
// cases where the source expression is not a bit-field designator.
|
|
|
|
FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
|
|
if (!Field)
|
|
return {};
|
|
|
|
QualType FT = Field->getType();
|
|
|
|
uint64_t BitWidth = Field->getBitWidthValue(*this);
|
|
uint64_t IntSize = getTypeSize(IntTy);
|
|
// C++ [conv.prom]p5:
|
|
// A prvalue for an integral bit-field can be converted to a prvalue of type
|
|
// int if int can represent all the values of the bit-field; otherwise, it
|
|
// can be converted to unsigned int if unsigned int can represent all the
|
|
// values of the bit-field. If the bit-field is larger yet, no integral
|
|
// promotion applies to it.
|
|
// C11 6.3.1.1/2:
|
|
// [For a bit-field of type _Bool, int, signed int, or unsigned int:]
|
|
// If an int can represent all values of the original type (as restricted by
|
|
// the width, for a bit-field), the value is converted to an int; otherwise,
|
|
// it is converted to an unsigned int.
|
|
//
|
|
// FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
|
|
// We perform that promotion here to match GCC and C++.
|
|
// FIXME: C does not permit promotion of an enum bit-field whose rank is
|
|
// greater than that of 'int'. We perform that promotion to match GCC.
|
|
if (BitWidth < IntSize)
|
|
return IntTy;
|
|
|
|
if (BitWidth == IntSize)
|
|
return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
|
|
|
|
// Bit-fields wider than int are not subject to promotions, and therefore act
|
|
// like the base type. GCC has some weird bugs in this area that we
|
|
// deliberately do not follow (GCC follows a pre-standard resolution to
|
|
// C's DR315 which treats bit-width as being part of the type, and this leaks
|
|
// into their semantics in some cases).
|
|
return {};
|
|
}
|
|
|
|
/// getPromotedIntegerType - Returns the type that Promotable will
|
|
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
|
|
/// integer type.
|
|
QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
|
|
assert(!Promotable.isNull());
|
|
assert(Promotable->isPromotableIntegerType());
|
|
if (const auto *ET = Promotable->getAs<EnumType>())
|
|
return ET->getDecl()->getPromotionType();
|
|
|
|
if (const auto *BT = Promotable->getAs<BuiltinType>()) {
|
|
// C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
|
|
// (3.9.1) can be converted to a prvalue of the first of the following
|
|
// types that can represent all the values of its underlying type:
|
|
// int, unsigned int, long int, unsigned long int, long long int, or
|
|
// unsigned long long int [...]
|
|
// FIXME: Is there some better way to compute this?
|
|
if (BT->getKind() == BuiltinType::WChar_S ||
|
|
BT->getKind() == BuiltinType::WChar_U ||
|
|
BT->getKind() == BuiltinType::Char8 ||
|
|
BT->getKind() == BuiltinType::Char16 ||
|
|
BT->getKind() == BuiltinType::Char32) {
|
|
bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
|
|
uint64_t FromSize = getTypeSize(BT);
|
|
QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
|
|
LongLongTy, UnsignedLongLongTy };
|
|
for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
|
|
uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
|
|
if (FromSize < ToSize ||
|
|
(FromSize == ToSize &&
|
|
FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
|
|
return PromoteTypes[Idx];
|
|
}
|
|
llvm_unreachable("char type should fit into long long");
|
|
}
|
|
}
|
|
|
|
// At this point, we should have a signed or unsigned integer type.
|
|
if (Promotable->isSignedIntegerType())
|
|
return IntTy;
|
|
uint64_t PromotableSize = getIntWidth(Promotable);
|
|
uint64_t IntSize = getIntWidth(IntTy);
|
|
assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
|
|
return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
|
|
}
|
|
|
|
/// Recurses in pointer/array types until it finds an objc retainable
|
|
/// type and returns its ownership.
|
|
Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
|
|
while (!T.isNull()) {
|
|
if (T.getObjCLifetime() != Qualifiers::OCL_None)
|
|
return T.getObjCLifetime();
|
|
if (T->isArrayType())
|
|
T = getBaseElementType(T);
|
|
else if (const auto *PT = T->getAs<PointerType>())
|
|
T = PT->getPointeeType();
|
|
else if (const auto *RT = T->getAs<ReferenceType>())
|
|
T = RT->getPointeeType();
|
|
else
|
|
break;
|
|
}
|
|
|
|
return Qualifiers::OCL_None;
|
|
}
|
|
|
|
static const Type *getIntegerTypeForEnum(const EnumType *ET) {
|
|
// Incomplete enum types are not treated as integer types.
|
|
// FIXME: In C++, enum types are never integer types.
|
|
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
|
|
return ET->getDecl()->getIntegerType().getTypePtr();
|
|
return nullptr;
|
|
}
|
|
|
|
/// getIntegerTypeOrder - Returns the highest ranked integer type:
|
|
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
|
|
const Type *LHSC = getCanonicalType(LHS).getTypePtr();
|
|
const Type *RHSC = getCanonicalType(RHS).getTypePtr();
|
|
|
|
// Unwrap enums to their underlying type.
|
|
if (const auto *ET = dyn_cast<EnumType>(LHSC))
|
|
LHSC = getIntegerTypeForEnum(ET);
|
|
if (const auto *ET = dyn_cast<EnumType>(RHSC))
|
|
RHSC = getIntegerTypeForEnum(ET);
|
|
|
|
if (LHSC == RHSC) return 0;
|
|
|
|
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
|
|
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
|
|
|
|
unsigned LHSRank = getIntegerRank(LHSC);
|
|
unsigned RHSRank = getIntegerRank(RHSC);
|
|
|
|
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
|
|
if (LHSRank == RHSRank) return 0;
|
|
return LHSRank > RHSRank ? 1 : -1;
|
|
}
|
|
|
|
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
|
|
if (LHSUnsigned) {
|
|
// If the unsigned [LHS] type is larger, return it.
|
|
if (LHSRank >= RHSRank)
|
|
return 1;
|
|
|
|
// If the signed type can represent all values of the unsigned type, it
|
|
// wins. Because we are dealing with 2's complement and types that are
|
|
// powers of two larger than each other, this is always safe.
|
|
return -1;
|
|
}
|
|
|
|
// If the unsigned [RHS] type is larger, return it.
|
|
if (RHSRank >= LHSRank)
|
|
return -1;
|
|
|
|
// If the signed type can represent all values of the unsigned type, it
|
|
// wins. Because we are dealing with 2's complement and types that are
|
|
// powers of two larger than each other, this is always safe.
|
|
return 1;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getCFConstantStringDecl() const {
|
|
if (CFConstantStringTypeDecl)
|
|
return CFConstantStringTypeDecl;
|
|
|
|
assert(!CFConstantStringTagDecl &&
|
|
"tag and typedef should be initialized together");
|
|
CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
|
|
CFConstantStringTagDecl->startDefinition();
|
|
|
|
struct {
|
|
QualType Type;
|
|
const char *Name;
|
|
} Fields[5];
|
|
unsigned Count = 0;
|
|
|
|
/// Objective-C ABI
|
|
///
|
|
/// typedef struct __NSConstantString_tag {
|
|
/// const int *isa;
|
|
/// int flags;
|
|
/// const char *str;
|
|
/// long length;
|
|
/// } __NSConstantString;
|
|
///
|
|
/// Swift ABI (4.1, 4.2)
|
|
///
|
|
/// typedef struct __NSConstantString_tag {
|
|
/// uintptr_t _cfisa;
|
|
/// uintptr_t _swift_rc;
|
|
/// _Atomic(uint64_t) _cfinfoa;
|
|
/// const char *_ptr;
|
|
/// uint32_t _length;
|
|
/// } __NSConstantString;
|
|
///
|
|
/// Swift ABI (5.0)
|
|
///
|
|
/// typedef struct __NSConstantString_tag {
|
|
/// uintptr_t _cfisa;
|
|
/// uintptr_t _swift_rc;
|
|
/// _Atomic(uint64_t) _cfinfoa;
|
|
/// const char *_ptr;
|
|
/// uintptr_t _length;
|
|
/// } __NSConstantString;
|
|
|
|
const auto CFRuntime = getLangOpts().CFRuntime;
|
|
if (static_cast<unsigned>(CFRuntime) <
|
|
static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
|
|
Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
|
|
Fields[Count++] = { IntTy, "flags" };
|
|
Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
|
|
Fields[Count++] = { LongTy, "length" };
|
|
} else {
|
|
Fields[Count++] = { getUIntPtrType(), "_cfisa" };
|
|
Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
|
|
Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
|
|
Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
|
|
if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
|
|
CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
|
|
Fields[Count++] = { IntTy, "_ptr" };
|
|
else
|
|
Fields[Count++] = { getUIntPtrType(), "_ptr" };
|
|
}
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < Count; ++i) {
|
|
FieldDecl *Field =
|
|
FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
|
|
SourceLocation(), &Idents.get(Fields[i].Name),
|
|
Fields[i].Type, /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
CFConstantStringTagDecl->addDecl(Field);
|
|
}
|
|
|
|
CFConstantStringTagDecl->completeDefinition();
|
|
// This type is designed to be compatible with NSConstantString, but cannot
|
|
// use the same name, since NSConstantString is an interface.
|
|
auto tagType = getTagDeclType(CFConstantStringTagDecl);
|
|
CFConstantStringTypeDecl =
|
|
buildImplicitTypedef(tagType, "__NSConstantString");
|
|
|
|
return CFConstantStringTypeDecl;
|
|
}
|
|
|
|
RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
|
|
if (!CFConstantStringTagDecl)
|
|
getCFConstantStringDecl(); // Build the tag and the typedef.
|
|
return CFConstantStringTagDecl;
|
|
}
|
|
|
|
// getCFConstantStringType - Return the type used for constant CFStrings.
|
|
QualType ASTContext::getCFConstantStringType() const {
|
|
return getTypedefType(getCFConstantStringDecl());
|
|
}
|
|
|
|
QualType ASTContext::getObjCSuperType() const {
|
|
if (ObjCSuperType.isNull()) {
|
|
RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
|
|
TUDecl->addDecl(ObjCSuperTypeDecl);
|
|
ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
|
|
}
|
|
return ObjCSuperType;
|
|
}
|
|
|
|
void ASTContext::setCFConstantStringType(QualType T) {
|
|
const auto *TD = T->getAs<TypedefType>();
|
|
assert(TD && "Invalid CFConstantStringType");
|
|
CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
|
|
const auto *TagType =
|
|
CFConstantStringTypeDecl->getUnderlyingType()->getAs<RecordType>();
|
|
assert(TagType && "Invalid CFConstantStringType");
|
|
CFConstantStringTagDecl = TagType->getDecl();
|
|
}
|
|
|
|
QualType ASTContext::getBlockDescriptorType() const {
|
|
if (BlockDescriptorType)
|
|
return getTagDeclType(BlockDescriptorType);
|
|
|
|
RecordDecl *RD;
|
|
// FIXME: Needs the FlagAppleBlock bit.
|
|
RD = buildImplicitRecord("__block_descriptor");
|
|
RD->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
UnsignedLongTy,
|
|
UnsignedLongTy,
|
|
};
|
|
|
|
static const char *const FieldNames[] = {
|
|
"reserved",
|
|
"Size"
|
|
};
|
|
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(
|
|
*this, RD, SourceLocation(), SourceLocation(),
|
|
&Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
RD->addDecl(Field);
|
|
}
|
|
|
|
RD->completeDefinition();
|
|
|
|
BlockDescriptorType = RD;
|
|
|
|
return getTagDeclType(BlockDescriptorType);
|
|
}
|
|
|
|
QualType ASTContext::getBlockDescriptorExtendedType() const {
|
|
if (BlockDescriptorExtendedType)
|
|
return getTagDeclType(BlockDescriptorExtendedType);
|
|
|
|
RecordDecl *RD;
|
|
// FIXME: Needs the FlagAppleBlock bit.
|
|
RD = buildImplicitRecord("__block_descriptor_withcopydispose");
|
|
RD->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
UnsignedLongTy,
|
|
UnsignedLongTy,
|
|
getPointerType(VoidPtrTy),
|
|
getPointerType(VoidPtrTy)
|
|
};
|
|
|
|
static const char *const FieldNames[] = {
|
|
"reserved",
|
|
"Size",
|
|
"CopyFuncPtr",
|
|
"DestroyFuncPtr"
|
|
};
|
|
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(
|
|
*this, RD, SourceLocation(), SourceLocation(),
|
|
&Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false, ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
RD->addDecl(Field);
|
|
}
|
|
|
|
RD->completeDefinition();
|
|
|
|
BlockDescriptorExtendedType = RD;
|
|
return getTagDeclType(BlockDescriptorExtendedType);
|
|
}
|
|
|
|
TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
|
|
const auto *BT = dyn_cast<BuiltinType>(T);
|
|
|
|
if (!BT) {
|
|
if (isa<PipeType>(T))
|
|
return TargetInfo::OCLTK_Pipe;
|
|
|
|
return TargetInfo::OCLTK_Default;
|
|
}
|
|
|
|
switch (BT->getKind()) {
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
case BuiltinType::Id: \
|
|
return TargetInfo::OCLTK_Image;
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
|
|
case BuiltinType::OCLClkEvent:
|
|
return TargetInfo::OCLTK_ClkEvent;
|
|
|
|
case BuiltinType::OCLEvent:
|
|
return TargetInfo::OCLTK_Event;
|
|
|
|
case BuiltinType::OCLQueue:
|
|
return TargetInfo::OCLTK_Queue;
|
|
|
|
case BuiltinType::OCLReserveID:
|
|
return TargetInfo::OCLTK_ReserveID;
|
|
|
|
case BuiltinType::OCLSampler:
|
|
return TargetInfo::OCLTK_Sampler;
|
|
|
|
default:
|
|
return TargetInfo::OCLTK_Default;
|
|
}
|
|
}
|
|
|
|
LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
|
|
return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
|
|
}
|
|
|
|
/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
|
|
/// requires copy/dispose. Note that this must match the logic
|
|
/// in buildByrefHelpers.
|
|
bool ASTContext::BlockRequiresCopying(QualType Ty,
|
|
const VarDecl *D) {
|
|
if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
|
|
const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
|
|
if (!copyExpr && record->hasTrivialDestructor()) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// The block needs copy/destroy helpers if Ty is non-trivial to destructively
|
|
// move or destroy.
|
|
if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
|
|
return true;
|
|
|
|
if (!Ty->isObjCRetainableType()) return false;
|
|
|
|
Qualifiers qs = Ty.getQualifiers();
|
|
|
|
// If we have lifetime, that dominates.
|
|
if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
|
|
switch (lifetime) {
|
|
case Qualifiers::OCL_None: llvm_unreachable("impossible");
|
|
|
|
// These are just bits as far as the runtime is concerned.
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return false;
|
|
|
|
// These cases should have been taken care of when checking the type's
|
|
// non-triviality.
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Strong:
|
|
llvm_unreachable("impossible");
|
|
}
|
|
llvm_unreachable("fell out of lifetime switch!");
|
|
}
|
|
return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
|
|
Ty->isObjCObjectPointerType());
|
|
}
|
|
|
|
bool ASTContext::getByrefLifetime(QualType Ty,
|
|
Qualifiers::ObjCLifetime &LifeTime,
|
|
bool &HasByrefExtendedLayout) const {
|
|
if (!getLangOpts().ObjC ||
|
|
getLangOpts().getGC() != LangOptions::NonGC)
|
|
return false;
|
|
|
|
HasByrefExtendedLayout = false;
|
|
if (Ty->isRecordType()) {
|
|
HasByrefExtendedLayout = true;
|
|
LifeTime = Qualifiers::OCL_None;
|
|
} else if ((LifeTime = Ty.getObjCLifetime())) {
|
|
// Honor the ARC qualifiers.
|
|
} else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
|
|
// The MRR rule.
|
|
LifeTime = Qualifiers::OCL_ExplicitNone;
|
|
} else {
|
|
LifeTime = Qualifiers::OCL_None;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
|
|
if (!ObjCInstanceTypeDecl)
|
|
ObjCInstanceTypeDecl =
|
|
buildImplicitTypedef(getObjCIdType(), "instancetype");
|
|
return ObjCInstanceTypeDecl;
|
|
}
|
|
|
|
// This returns true if a type has been typedefed to BOOL:
|
|
// typedef <type> BOOL;
|
|
static bool isTypeTypedefedAsBOOL(QualType T) {
|
|
if (const auto *TT = dyn_cast<TypedefType>(T))
|
|
if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
|
|
return II->isStr("BOOL");
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
|
|
/// purpose.
|
|
CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
|
|
if (!type->isIncompleteArrayType() && type->isIncompleteType())
|
|
return CharUnits::Zero();
|
|
|
|
CharUnits sz = getTypeSizeInChars(type);
|
|
|
|
// Make all integer and enum types at least as large as an int
|
|
if (sz.isPositive() && type->isIntegralOrEnumerationType())
|
|
sz = std::max(sz, getTypeSizeInChars(IntTy));
|
|
// Treat arrays as pointers, since that's how they're passed in.
|
|
else if (type->isArrayType())
|
|
sz = getTypeSizeInChars(VoidPtrTy);
|
|
return sz;
|
|
}
|
|
|
|
bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
|
|
return getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
VD->isStaticDataMember() &&
|
|
VD->getType()->isIntegralOrEnumerationType() &&
|
|
!VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
|
|
}
|
|
|
|
ASTContext::InlineVariableDefinitionKind
|
|
ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
|
|
if (!VD->isInline())
|
|
return InlineVariableDefinitionKind::None;
|
|
|
|
// In almost all cases, it's a weak definition.
|
|
auto *First = VD->getFirstDecl();
|
|
if (First->isInlineSpecified() || !First->isStaticDataMember())
|
|
return InlineVariableDefinitionKind::Weak;
|
|
|
|
// If there's a file-context declaration in this translation unit, it's a
|
|
// non-discardable definition.
|
|
for (auto *D : VD->redecls())
|
|
if (D->getLexicalDeclContext()->isFileContext() &&
|
|
!D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
|
|
return InlineVariableDefinitionKind::Strong;
|
|
|
|
// If we've not seen one yet, we don't know.
|
|
return InlineVariableDefinitionKind::WeakUnknown;
|
|
}
|
|
|
|
static std::string charUnitsToString(const CharUnits &CU) {
|
|
return llvm::itostr(CU.getQuantity());
|
|
}
|
|
|
|
/// getObjCEncodingForBlock - Return the encoded type for this block
|
|
/// declaration.
|
|
std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
|
|
std::string S;
|
|
|
|
const BlockDecl *Decl = Expr->getBlockDecl();
|
|
QualType BlockTy =
|
|
Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
|
|
// Encode result type.
|
|
if (getLangOpts().EncodeExtendedBlockSig)
|
|
getObjCEncodingForMethodParameter(
|
|
Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
|
|
true /*Extended*/);
|
|
else
|
|
getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
|
|
// Compute size of all parameters.
|
|
// Start with computing size of a pointer in number of bytes.
|
|
// FIXME: There might(should) be a better way of doing this computation!
|
|
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
|
|
CharUnits ParmOffset = PtrSize;
|
|
for (auto PI : Decl->parameters()) {
|
|
QualType PType = PI->getType();
|
|
CharUnits sz = getObjCEncodingTypeSize(PType);
|
|
if (sz.isZero())
|
|
continue;
|
|
assert(sz.isPositive() && "BlockExpr - Incomplete param type");
|
|
ParmOffset += sz;
|
|
}
|
|
// Size of the argument frame
|
|
S += charUnitsToString(ParmOffset);
|
|
// Block pointer and offset.
|
|
S += "@?0";
|
|
|
|
// Argument types.
|
|
ParmOffset = PtrSize;
|
|
for (auto PVDecl : Decl->parameters()) {
|
|
QualType PType = PVDecl->getOriginalType();
|
|
if (const auto *AT =
|
|
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
|
|
// Use array's original type only if it has known number of
|
|
// elements.
|
|
if (!isa<ConstantArrayType>(AT))
|
|
PType = PVDecl->getType();
|
|
} else if (PType->isFunctionType())
|
|
PType = PVDecl->getType();
|
|
if (getLangOpts().EncodeExtendedBlockSig)
|
|
getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
|
|
S, true /*Extended*/);
|
|
else
|
|
getObjCEncodingForType(PType, S);
|
|
S += charUnitsToString(ParmOffset);
|
|
ParmOffset += getObjCEncodingTypeSize(PType);
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
std::string
|
|
ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
|
|
std::string S;
|
|
// Encode result type.
|
|
getObjCEncodingForType(Decl->getReturnType(), S);
|
|
CharUnits ParmOffset;
|
|
// Compute size of all parameters.
|
|
for (auto PI : Decl->parameters()) {
|
|
QualType PType = PI->getType();
|
|
CharUnits sz = getObjCEncodingTypeSize(PType);
|
|
if (sz.isZero())
|
|
continue;
|
|
|
|
assert(sz.isPositive() &&
|
|
"getObjCEncodingForFunctionDecl - Incomplete param type");
|
|
ParmOffset += sz;
|
|
}
|
|
S += charUnitsToString(ParmOffset);
|
|
ParmOffset = CharUnits::Zero();
|
|
|
|
// Argument types.
|
|
for (auto PVDecl : Decl->parameters()) {
|
|
QualType PType = PVDecl->getOriginalType();
|
|
if (const auto *AT =
|
|
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
|
|
// Use array's original type only if it has known number of
|
|
// elements.
|
|
if (!isa<ConstantArrayType>(AT))
|
|
PType = PVDecl->getType();
|
|
} else if (PType->isFunctionType())
|
|
PType = PVDecl->getType();
|
|
getObjCEncodingForType(PType, S);
|
|
S += charUnitsToString(ParmOffset);
|
|
ParmOffset += getObjCEncodingTypeSize(PType);
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
/// getObjCEncodingForMethodParameter - Return the encoded type for a single
|
|
/// method parameter or return type. If Extended, include class names and
|
|
/// block object types.
|
|
void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
|
|
QualType T, std::string& S,
|
|
bool Extended) const {
|
|
// Encode type qualifer, 'in', 'inout', etc. for the parameter.
|
|
getObjCEncodingForTypeQualifier(QT, S);
|
|
// Encode parameter type.
|
|
getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
|
|
true /*OutermostType*/,
|
|
false /*EncodingProperty*/,
|
|
false /*StructField*/,
|
|
Extended /*EncodeBlockParameters*/,
|
|
Extended /*EncodeClassNames*/);
|
|
}
|
|
|
|
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
|
|
/// declaration.
|
|
std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
|
|
bool Extended) const {
|
|
// FIXME: This is not very efficient.
|
|
// Encode return type.
|
|
std::string S;
|
|
getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
|
|
Decl->getReturnType(), S, Extended);
|
|
// Compute size of all parameters.
|
|
// Start with computing size of a pointer in number of bytes.
|
|
// FIXME: There might(should) be a better way of doing this computation!
|
|
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
|
|
// The first two arguments (self and _cmd) are pointers; account for
|
|
// their size.
|
|
CharUnits ParmOffset = 2 * PtrSize;
|
|
for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
|
|
E = Decl->sel_param_end(); PI != E; ++PI) {
|
|
QualType PType = (*PI)->getType();
|
|
CharUnits sz = getObjCEncodingTypeSize(PType);
|
|
if (sz.isZero())
|
|
continue;
|
|
|
|
assert(sz.isPositive() &&
|
|
"getObjCEncodingForMethodDecl - Incomplete param type");
|
|
ParmOffset += sz;
|
|
}
|
|
S += charUnitsToString(ParmOffset);
|
|
S += "@0:";
|
|
S += charUnitsToString(PtrSize);
|
|
|
|
// Argument types.
|
|
ParmOffset = 2 * PtrSize;
|
|
for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
|
|
E = Decl->sel_param_end(); PI != E; ++PI) {
|
|
const ParmVarDecl *PVDecl = *PI;
|
|
QualType PType = PVDecl->getOriginalType();
|
|
if (const auto *AT =
|
|
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
|
|
// Use array's original type only if it has known number of
|
|
// elements.
|
|
if (!isa<ConstantArrayType>(AT))
|
|
PType = PVDecl->getType();
|
|
} else if (PType->isFunctionType())
|
|
PType = PVDecl->getType();
|
|
getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
|
|
PType, S, Extended);
|
|
S += charUnitsToString(ParmOffset);
|
|
ParmOffset += getObjCEncodingTypeSize(PType);
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
ObjCPropertyImplDecl *
|
|
ASTContext::getObjCPropertyImplDeclForPropertyDecl(
|
|
const ObjCPropertyDecl *PD,
|
|
const Decl *Container) const {
|
|
if (!Container)
|
|
return nullptr;
|
|
if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
|
|
for (auto *PID : CID->property_impls())
|
|
if (PID->getPropertyDecl() == PD)
|
|
return PID;
|
|
} else {
|
|
const auto *OID = cast<ObjCImplementationDecl>(Container);
|
|
for (auto *PID : OID->property_impls())
|
|
if (PID->getPropertyDecl() == PD)
|
|
return PID;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
|
|
/// property declaration. If non-NULL, Container must be either an
|
|
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
|
|
/// NULL when getting encodings for protocol properties.
|
|
/// Property attributes are stored as a comma-delimited C string. The simple
|
|
/// attributes readonly and bycopy are encoded as single characters. The
|
|
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
|
|
/// encoded as single characters, followed by an identifier. Property types
|
|
/// are also encoded as a parametrized attribute. The characters used to encode
|
|
/// these attributes are defined by the following enumeration:
|
|
/// @code
|
|
/// enum PropertyAttributes {
|
|
/// kPropertyReadOnly = 'R', // property is read-only.
|
|
/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
|
|
/// kPropertyByref = '&', // property is a reference to the value last assigned
|
|
/// kPropertyDynamic = 'D', // property is dynamic
|
|
/// kPropertyGetter = 'G', // followed by getter selector name
|
|
/// kPropertySetter = 'S', // followed by setter selector name
|
|
/// kPropertyInstanceVariable = 'V' // followed by instance variable name
|
|
/// kPropertyType = 'T' // followed by old-style type encoding.
|
|
/// kPropertyWeak = 'W' // 'weak' property
|
|
/// kPropertyStrong = 'P' // property GC'able
|
|
/// kPropertyNonAtomic = 'N' // property non-atomic
|
|
/// };
|
|
/// @endcode
|
|
std::string
|
|
ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
|
|
const Decl *Container) const {
|
|
// Collect information from the property implementation decl(s).
|
|
bool Dynamic = false;
|
|
ObjCPropertyImplDecl *SynthesizePID = nullptr;
|
|
|
|
if (ObjCPropertyImplDecl *PropertyImpDecl =
|
|
getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
|
|
if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
|
|
Dynamic = true;
|
|
else
|
|
SynthesizePID = PropertyImpDecl;
|
|
}
|
|
|
|
// FIXME: This is not very efficient.
|
|
std::string S = "T";
|
|
|
|
// Encode result type.
|
|
// GCC has some special rules regarding encoding of properties which
|
|
// closely resembles encoding of ivars.
|
|
getObjCEncodingForPropertyType(PD->getType(), S);
|
|
|
|
if (PD->isReadOnly()) {
|
|
S += ",R";
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
|
|
S += ",C";
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
|
|
S += ",&";
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
|
|
S += ",W";
|
|
} else {
|
|
switch (PD->getSetterKind()) {
|
|
case ObjCPropertyDecl::Assign: break;
|
|
case ObjCPropertyDecl::Copy: S += ",C"; break;
|
|
case ObjCPropertyDecl::Retain: S += ",&"; break;
|
|
case ObjCPropertyDecl::Weak: S += ",W"; break;
|
|
}
|
|
}
|
|
|
|
// It really isn't clear at all what this means, since properties
|
|
// are "dynamic by default".
|
|
if (Dynamic)
|
|
S += ",D";
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
|
|
S += ",N";
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
|
|
S += ",G";
|
|
S += PD->getGetterName().getAsString();
|
|
}
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
|
|
S += ",S";
|
|
S += PD->getSetterName().getAsString();
|
|
}
|
|
|
|
if (SynthesizePID) {
|
|
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
|
|
S += ",V";
|
|
S += OID->getNameAsString();
|
|
}
|
|
|
|
// FIXME: OBJCGC: weak & strong
|
|
return S;
|
|
}
|
|
|
|
/// getLegacyIntegralTypeEncoding -
|
|
/// Another legacy compatibility encoding: 32-bit longs are encoded as
|
|
/// 'l' or 'L' , but not always. For typedefs, we need to use
|
|
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
|
|
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
|
|
if (isa<TypedefType>(PointeeTy.getTypePtr())) {
|
|
if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
|
|
PointeeTy = UnsignedIntTy;
|
|
else
|
|
if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
|
|
PointeeTy = IntTy;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
|
|
const FieldDecl *Field,
|
|
QualType *NotEncodedT) const {
|
|
// We follow the behavior of gcc, expanding structures which are
|
|
// directly pointed to, and expanding embedded structures. Note that
|
|
// these rules are sufficient to prevent recursive encoding of the
|
|
// same type.
|
|
getObjCEncodingForTypeImpl(T, S, true, true, Field,
|
|
true /* outermost type */, false, false,
|
|
false, false, false, NotEncodedT);
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForPropertyType(QualType T,
|
|
std::string& S) const {
|
|
// Encode result type.
|
|
// GCC has some special rules regarding encoding of properties which
|
|
// closely resembles encoding of ivars.
|
|
getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
|
|
true /* outermost type */,
|
|
true /* encoding property */);
|
|
}
|
|
|
|
static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
|
|
BuiltinType::Kind kind) {
|
|
switch (kind) {
|
|
case BuiltinType::Void: return 'v';
|
|
case BuiltinType::Bool: return 'B';
|
|
case BuiltinType::Char8:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar: return 'C';
|
|
case BuiltinType::Char16:
|
|
case BuiltinType::UShort: return 'S';
|
|
case BuiltinType::Char32:
|
|
case BuiltinType::UInt: return 'I';
|
|
case BuiltinType::ULong:
|
|
return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
|
|
case BuiltinType::UInt128: return 'T';
|
|
case BuiltinType::ULongLong: return 'Q';
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar: return 'c';
|
|
case BuiltinType::Short: return 's';
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U:
|
|
case BuiltinType::Int: return 'i';
|
|
case BuiltinType::Long:
|
|
return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
|
|
case BuiltinType::LongLong: return 'q';
|
|
case BuiltinType::Int128: return 't';
|
|
case BuiltinType::Float: return 'f';
|
|
case BuiltinType::Double: return 'd';
|
|
case BuiltinType::LongDouble: return 'D';
|
|
case BuiltinType::NullPtr: return '*'; // like char*
|
|
|
|
case BuiltinType::Float16:
|
|
case BuiltinType::Float128:
|
|
case BuiltinType::Half:
|
|
case BuiltinType::ShortAccum:
|
|
case BuiltinType::Accum:
|
|
case BuiltinType::LongAccum:
|
|
case BuiltinType::UShortAccum:
|
|
case BuiltinType::UAccum:
|
|
case BuiltinType::ULongAccum:
|
|
case BuiltinType::ShortFract:
|
|
case BuiltinType::Fract:
|
|
case BuiltinType::LongFract:
|
|
case BuiltinType::UShortFract:
|
|
case BuiltinType::UFract:
|
|
case BuiltinType::ULongFract:
|
|
case BuiltinType::SatShortAccum:
|
|
case BuiltinType::SatAccum:
|
|
case BuiltinType::SatLongAccum:
|
|
case BuiltinType::SatUShortAccum:
|
|
case BuiltinType::SatUAccum:
|
|
case BuiltinType::SatULongAccum:
|
|
case BuiltinType::SatShortFract:
|
|
case BuiltinType::SatFract:
|
|
case BuiltinType::SatLongFract:
|
|
case BuiltinType::SatUShortFract:
|
|
case BuiltinType::SatUFract:
|
|
case BuiltinType::SatULongFract:
|
|
// FIXME: potentially need @encodes for these!
|
|
return ' ';
|
|
|
|
case BuiltinType::ObjCId:
|
|
case BuiltinType::ObjCClass:
|
|
case BuiltinType::ObjCSel:
|
|
llvm_unreachable("@encoding ObjC primitive type");
|
|
|
|
// OpenCL and placeholder types don't need @encodings.
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLExtensionTypes.def"
|
|
case BuiltinType::OCLEvent:
|
|
case BuiltinType::OCLClkEvent:
|
|
case BuiltinType::OCLQueue:
|
|
case BuiltinType::OCLReserveID:
|
|
case BuiltinType::OCLSampler:
|
|
case BuiltinType::Dependent:
|
|
#define BUILTIN_TYPE(KIND, ID)
|
|
#define PLACEHOLDER_TYPE(KIND, ID) \
|
|
case BuiltinType::KIND:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
llvm_unreachable("invalid builtin type for @encode");
|
|
}
|
|
llvm_unreachable("invalid BuiltinType::Kind value");
|
|
}
|
|
|
|
static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
|
|
EnumDecl *Enum = ET->getDecl();
|
|
|
|
// The encoding of an non-fixed enum type is always 'i', regardless of size.
|
|
if (!Enum->isFixed())
|
|
return 'i';
|
|
|
|
// The encoding of a fixed enum type matches its fixed underlying type.
|
|
const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
|
|
return getObjCEncodingForPrimitiveKind(C, BT->getKind());
|
|
}
|
|
|
|
static void EncodeBitField(const ASTContext *Ctx, std::string& S,
|
|
QualType T, const FieldDecl *FD) {
|
|
assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
|
|
S += 'b';
|
|
// The NeXT runtime encodes bit fields as b followed by the number of bits.
|
|
// The GNU runtime requires more information; bitfields are encoded as b,
|
|
// then the offset (in bits) of the first element, then the type of the
|
|
// bitfield, then the size in bits. For example, in this structure:
|
|
//
|
|
// struct
|
|
// {
|
|
// int integer;
|
|
// int flags:2;
|
|
// };
|
|
// On a 32-bit system, the encoding for flags would be b2 for the NeXT
|
|
// runtime, but b32i2 for the GNU runtime. The reason for this extra
|
|
// information is not especially sensible, but we're stuck with it for
|
|
// compatibility with GCC, although providing it breaks anything that
|
|
// actually uses runtime introspection and wants to work on both runtimes...
|
|
if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
|
|
uint64_t Offset;
|
|
|
|
if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
|
|
Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
|
|
IVD);
|
|
} else {
|
|
const RecordDecl *RD = FD->getParent();
|
|
const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
|
|
Offset = RL.getFieldOffset(FD->getFieldIndex());
|
|
}
|
|
|
|
S += llvm::utostr(Offset);
|
|
|
|
if (const auto *ET = T->getAs<EnumType>())
|
|
S += ObjCEncodingForEnumType(Ctx, ET);
|
|
else {
|
|
const auto *BT = T->castAs<BuiltinType>();
|
|
S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
|
|
}
|
|
}
|
|
S += llvm::utostr(FD->getBitWidthValue(*Ctx));
|
|
}
|
|
|
|
// FIXME: Use SmallString for accumulating string.
|
|
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
|
|
bool ExpandPointedToStructures,
|
|
bool ExpandStructures,
|
|
const FieldDecl *FD,
|
|
bool OutermostType,
|
|
bool EncodingProperty,
|
|
bool StructField,
|
|
bool EncodeBlockParameters,
|
|
bool EncodeClassNames,
|
|
bool EncodePointerToObjCTypedef,
|
|
QualType *NotEncodedT) const {
|
|
CanQualType CT = getCanonicalType(T);
|
|
switch (CT->getTypeClass()) {
|
|
case Type::Builtin:
|
|
case Type::Enum:
|
|
if (FD && FD->isBitField())
|
|
return EncodeBitField(this, S, T, FD);
|
|
if (const auto *BT = dyn_cast<BuiltinType>(CT))
|
|
S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
|
|
else
|
|
S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
|
|
return;
|
|
|
|
case Type::Complex: {
|
|
const auto *CT = T->castAs<ComplexType>();
|
|
S += 'j';
|
|
getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
|
|
return;
|
|
}
|
|
|
|
case Type::Atomic: {
|
|
const auto *AT = T->castAs<AtomicType>();
|
|
S += 'A';
|
|
getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
|
|
return;
|
|
}
|
|
|
|
// encoding for pointer or reference types.
|
|
case Type::Pointer:
|
|
case Type::LValueReference:
|
|
case Type::RValueReference: {
|
|
QualType PointeeTy;
|
|
if (isa<PointerType>(CT)) {
|
|
const auto *PT = T->castAs<PointerType>();
|
|
if (PT->isObjCSelType()) {
|
|
S += ':';
|
|
return;
|
|
}
|
|
PointeeTy = PT->getPointeeType();
|
|
} else {
|
|
PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
|
|
}
|
|
|
|
bool isReadOnly = false;
|
|
// For historical/compatibility reasons, the read-only qualifier of the
|
|
// pointee gets emitted _before_ the '^'. The read-only qualifier of
|
|
// the pointer itself gets ignored, _unless_ we are looking at a typedef!
|
|
// Also, do not emit the 'r' for anything but the outermost type!
|
|
if (isa<TypedefType>(T.getTypePtr())) {
|
|
if (OutermostType && T.isConstQualified()) {
|
|
isReadOnly = true;
|
|
S += 'r';
|
|
}
|
|
} else if (OutermostType) {
|
|
QualType P = PointeeTy;
|
|
while (P->getAs<PointerType>())
|
|
P = P->getAs<PointerType>()->getPointeeType();
|
|
if (P.isConstQualified()) {
|
|
isReadOnly = true;
|
|
S += 'r';
|
|
}
|
|
}
|
|
if (isReadOnly) {
|
|
// Another legacy compatibility encoding. Some ObjC qualifier and type
|
|
// combinations need to be rearranged.
|
|
// Rewrite "in const" from "nr" to "rn"
|
|
if (StringRef(S).endswith("nr"))
|
|
S.replace(S.end()-2, S.end(), "rn");
|
|
}
|
|
|
|
if (PointeeTy->isCharType()) {
|
|
// char pointer types should be encoded as '*' unless it is a
|
|
// type that has been typedef'd to 'BOOL'.
|
|
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
|
|
S += '*';
|
|
return;
|
|
}
|
|
} else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
|
|
// GCC binary compat: Need to convert "struct objc_class *" to "#".
|
|
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
|
|
S += '#';
|
|
return;
|
|
}
|
|
// GCC binary compat: Need to convert "struct objc_object *" to "@".
|
|
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
|
|
S += '@';
|
|
return;
|
|
}
|
|
// fall through...
|
|
}
|
|
S += '^';
|
|
getLegacyIntegralTypeEncoding(PointeeTy);
|
|
|
|
getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
|
|
nullptr, false, false, false, false, false, false,
|
|
NotEncodedT);
|
|
return;
|
|
}
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray: {
|
|
const auto *AT = cast<ArrayType>(CT);
|
|
|
|
if (isa<IncompleteArrayType>(AT) && !StructField) {
|
|
// Incomplete arrays are encoded as a pointer to the array element.
|
|
S += '^';
|
|
|
|
getObjCEncodingForTypeImpl(AT->getElementType(), S,
|
|
false, ExpandStructures, FD);
|
|
} else {
|
|
S += '[';
|
|
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
S += llvm::utostr(CAT->getSize().getZExtValue());
|
|
else {
|
|
//Variable length arrays are encoded as a regular array with 0 elements.
|
|
assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
|
|
"Unknown array type!");
|
|
S += '0';
|
|
}
|
|
|
|
getObjCEncodingForTypeImpl(AT->getElementType(), S,
|
|
false, ExpandStructures, FD,
|
|
false, false, false, false, false, false,
|
|
NotEncodedT);
|
|
S += ']';
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto:
|
|
S += '?';
|
|
return;
|
|
|
|
case Type::Record: {
|
|
RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
|
|
S += RDecl->isUnion() ? '(' : '{';
|
|
// Anonymous structures print as '?'
|
|
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
|
|
S += II->getName();
|
|
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
|
|
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
|
llvm::raw_string_ostream OS(S);
|
|
printTemplateArgumentList(OS, TemplateArgs.asArray(),
|
|
getPrintingPolicy());
|
|
}
|
|
} else {
|
|
S += '?';
|
|
}
|
|
if (ExpandStructures) {
|
|
S += '=';
|
|
if (!RDecl->isUnion()) {
|
|
getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
|
|
} else {
|
|
for (const auto *Field : RDecl->fields()) {
|
|
if (FD) {
|
|
S += '"';
|
|
S += Field->getNameAsString();
|
|
S += '"';
|
|
}
|
|
|
|
// Special case bit-fields.
|
|
if (Field->isBitField()) {
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
|
|
Field);
|
|
} else {
|
|
QualType qt = Field->getType();
|
|
getLegacyIntegralTypeEncoding(qt);
|
|
getObjCEncodingForTypeImpl(qt, S, false, true,
|
|
FD, /*OutermostType*/false,
|
|
/*EncodingProperty*/false,
|
|
/*StructField*/true,
|
|
false, false, false, NotEncodedT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
S += RDecl->isUnion() ? ')' : '}';
|
|
return;
|
|
}
|
|
|
|
case Type::BlockPointer: {
|
|
const auto *BT = T->castAs<BlockPointerType>();
|
|
S += "@?"; // Unlike a pointer-to-function, which is "^?".
|
|
if (EncodeBlockParameters) {
|
|
const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
|
|
|
|
S += '<';
|
|
// Block return type
|
|
getObjCEncodingForTypeImpl(
|
|
FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
|
|
FD, false /* OutermostType */, EncodingProperty,
|
|
false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
|
|
NotEncodedT);
|
|
// Block self
|
|
S += "@?";
|
|
// Block parameters
|
|
if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
|
|
for (const auto &I : FPT->param_types())
|
|
getObjCEncodingForTypeImpl(
|
|
I, S, ExpandPointedToStructures, ExpandStructures, FD,
|
|
false /* OutermostType */, EncodingProperty,
|
|
false /* StructField */, EncodeBlockParameters, EncodeClassNames,
|
|
false, NotEncodedT);
|
|
}
|
|
S += '>';
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Type::ObjCObject: {
|
|
// hack to match legacy encoding of *id and *Class
|
|
QualType Ty = getObjCObjectPointerType(CT);
|
|
if (Ty->isObjCIdType()) {
|
|
S += "{objc_object=}";
|
|
return;
|
|
}
|
|
else if (Ty->isObjCClassType()) {
|
|
S += "{objc_class=}";
|
|
return;
|
|
}
|
|
// TODO: Double check to make sure this intentionally falls through.
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
|
|
case Type::ObjCInterface: {
|
|
// Ignore protocol qualifiers when mangling at this level.
|
|
// @encode(class_name)
|
|
ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
|
|
S += '{';
|
|
S += OI->getObjCRuntimeNameAsString();
|
|
if (ExpandStructures) {
|
|
S += '=';
|
|
SmallVector<const ObjCIvarDecl*, 32> Ivars;
|
|
DeepCollectObjCIvars(OI, true, Ivars);
|
|
for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
|
|
const FieldDecl *Field = Ivars[i];
|
|
if (Field->isBitField())
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
|
|
else
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
|
|
false, false, false, false, false,
|
|
EncodePointerToObjCTypedef,
|
|
NotEncodedT);
|
|
}
|
|
}
|
|
S += '}';
|
|
return;
|
|
}
|
|
|
|
case Type::ObjCObjectPointer: {
|
|
const auto *OPT = T->castAs<ObjCObjectPointerType>();
|
|
if (OPT->isObjCIdType()) {
|
|
S += '@';
|
|
return;
|
|
}
|
|
|
|
if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
|
|
// FIXME: Consider if we need to output qualifiers for 'Class<p>'.
|
|
// Since this is a binary compatibility issue, need to consult with runtime
|
|
// folks. Fortunately, this is a *very* obscure construct.
|
|
S += '#';
|
|
return;
|
|
}
|
|
|
|
if (OPT->isObjCQualifiedIdType()) {
|
|
getObjCEncodingForTypeImpl(getObjCIdType(), S,
|
|
ExpandPointedToStructures,
|
|
ExpandStructures, FD);
|
|
if (FD || EncodingProperty || EncodeClassNames) {
|
|
// Note that we do extended encoding of protocol qualifer list
|
|
// Only when doing ivar or property encoding.
|
|
S += '"';
|
|
for (const auto *I : OPT->quals()) {
|
|
S += '<';
|
|
S += I->getObjCRuntimeNameAsString();
|
|
S += '>';
|
|
}
|
|
S += '"';
|
|
}
|
|
return;
|
|
}
|
|
|
|
QualType PointeeTy = OPT->getPointeeType();
|
|
if (!EncodingProperty &&
|
|
isa<TypedefType>(PointeeTy.getTypePtr()) &&
|
|
!EncodePointerToObjCTypedef) {
|
|
// Another historical/compatibility reason.
|
|
// We encode the underlying type which comes out as
|
|
// {...};
|
|
S += '^';
|
|
if (FD && OPT->getInterfaceDecl()) {
|
|
// Prevent recursive encoding of fields in some rare cases.
|
|
ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
|
|
SmallVector<const ObjCIvarDecl*, 32> Ivars;
|
|
DeepCollectObjCIvars(OI, true, Ivars);
|
|
for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
|
|
if (Ivars[i] == FD) {
|
|
S += '{';
|
|
S += OI->getObjCRuntimeNameAsString();
|
|
S += '}';
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
getObjCEncodingForTypeImpl(PointeeTy, S,
|
|
false, ExpandPointedToStructures,
|
|
nullptr,
|
|
false, false, false, false, false,
|
|
/*EncodePointerToObjCTypedef*/true);
|
|
return;
|
|
}
|
|
|
|
S += '@';
|
|
if (OPT->getInterfaceDecl() &&
|
|
(FD || EncodingProperty || EncodeClassNames)) {
|
|
S += '"';
|
|
S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
|
|
for (const auto *I : OPT->quals()) {
|
|
S += '<';
|
|
S += I->getObjCRuntimeNameAsString();
|
|
S += '>';
|
|
}
|
|
S += '"';
|
|
}
|
|
return;
|
|
}
|
|
|
|
// gcc just blithely ignores member pointers.
|
|
// FIXME: we shoul do better than that. 'M' is available.
|
|
case Type::MemberPointer:
|
|
// This matches gcc's encoding, even though technically it is insufficient.
|
|
//FIXME. We should do a better job than gcc.
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
// Until we have a coherent encoding of these three types, issue warning.
|
|
if (NotEncodedT)
|
|
*NotEncodedT = T;
|
|
return;
|
|
|
|
// We could see an undeduced auto type here during error recovery.
|
|
// Just ignore it.
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization:
|
|
return;
|
|
|
|
case Type::Pipe:
|
|
#define ABSTRACT_TYPE(KIND, BASE)
|
|
#define TYPE(KIND, BASE)
|
|
#define DEPENDENT_TYPE(KIND, BASE) \
|
|
case Type::KIND:
|
|
#define NON_CANONICAL_TYPE(KIND, BASE) \
|
|
case Type::KIND:
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
|
|
case Type::KIND:
|
|
#include "clang/AST/TypeNodes.def"
|
|
llvm_unreachable("@encode for dependent type!");
|
|
}
|
|
llvm_unreachable("bad type kind!");
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
|
|
std::string &S,
|
|
const FieldDecl *FD,
|
|
bool includeVBases,
|
|
QualType *NotEncodedT) const {
|
|
assert(RDecl && "Expected non-null RecordDecl");
|
|
assert(!RDecl->isUnion() && "Should not be called for unions");
|
|
if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
|
|
return;
|
|
|
|
const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
|
|
std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
|
|
const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
|
|
|
|
if (CXXRec) {
|
|
for (const auto &BI : CXXRec->bases()) {
|
|
if (!BI.isVirtual()) {
|
|
CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
|
|
if (base->isEmpty())
|
|
continue;
|
|
uint64_t offs = toBits(layout.getBaseClassOffset(base));
|
|
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
|
|
std::make_pair(offs, base));
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned i = 0;
|
|
for (auto *Field : RDecl->fields()) {
|
|
uint64_t offs = layout.getFieldOffset(i);
|
|
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
|
|
std::make_pair(offs, Field));
|
|
++i;
|
|
}
|
|
|
|
if (CXXRec && includeVBases) {
|
|
for (const auto &BI : CXXRec->vbases()) {
|
|
CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
|
|
if (base->isEmpty())
|
|
continue;
|
|
uint64_t offs = toBits(layout.getVBaseClassOffset(base));
|
|
if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
|
|
FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
|
|
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
|
|
std::make_pair(offs, base));
|
|
}
|
|
}
|
|
|
|
CharUnits size;
|
|
if (CXXRec) {
|
|
size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
|
|
} else {
|
|
size = layout.getSize();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
uint64_t CurOffs = 0;
|
|
#endif
|
|
std::multimap<uint64_t, NamedDecl *>::iterator
|
|
CurLayObj = FieldOrBaseOffsets.begin();
|
|
|
|
if (CXXRec && CXXRec->isDynamicClass() &&
|
|
(CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
|
|
if (FD) {
|
|
S += "\"_vptr$";
|
|
std::string recname = CXXRec->getNameAsString();
|
|
if (recname.empty()) recname = "?";
|
|
S += recname;
|
|
S += '"';
|
|
}
|
|
S += "^^?";
|
|
#ifndef NDEBUG
|
|
CurOffs += getTypeSize(VoidPtrTy);
|
|
#endif
|
|
}
|
|
|
|
if (!RDecl->hasFlexibleArrayMember()) {
|
|
// Mark the end of the structure.
|
|
uint64_t offs = toBits(size);
|
|
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
|
|
std::make_pair(offs, nullptr));
|
|
}
|
|
|
|
for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
|
|
#ifndef NDEBUG
|
|
assert(CurOffs <= CurLayObj->first);
|
|
if (CurOffs < CurLayObj->first) {
|
|
uint64_t padding = CurLayObj->first - CurOffs;
|
|
// FIXME: There doesn't seem to be a way to indicate in the encoding that
|
|
// packing/alignment of members is different that normal, in which case
|
|
// the encoding will be out-of-sync with the real layout.
|
|
// If the runtime switches to just consider the size of types without
|
|
// taking into account alignment, we could make padding explicit in the
|
|
// encoding (e.g. using arrays of chars). The encoding strings would be
|
|
// longer then though.
|
|
CurOffs += padding;
|
|
}
|
|
#endif
|
|
|
|
NamedDecl *dcl = CurLayObj->second;
|
|
if (!dcl)
|
|
break; // reached end of structure.
|
|
|
|
if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
|
|
// We expand the bases without their virtual bases since those are going
|
|
// in the initial structure. Note that this differs from gcc which
|
|
// expands virtual bases each time one is encountered in the hierarchy,
|
|
// making the encoding type bigger than it really is.
|
|
getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
|
|
NotEncodedT);
|
|
assert(!base->isEmpty());
|
|
#ifndef NDEBUG
|
|
CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
|
|
#endif
|
|
} else {
|
|
const auto *field = cast<FieldDecl>(dcl);
|
|
if (FD) {
|
|
S += '"';
|
|
S += field->getNameAsString();
|
|
S += '"';
|
|
}
|
|
|
|
if (field->isBitField()) {
|
|
EncodeBitField(this, S, field->getType(), field);
|
|
#ifndef NDEBUG
|
|
CurOffs += field->getBitWidthValue(*this);
|
|
#endif
|
|
} else {
|
|
QualType qt = field->getType();
|
|
getLegacyIntegralTypeEncoding(qt);
|
|
getObjCEncodingForTypeImpl(qt, S, false, true, FD,
|
|
/*OutermostType*/false,
|
|
/*EncodingProperty*/false,
|
|
/*StructField*/true,
|
|
false, false, false, NotEncodedT);
|
|
#ifndef NDEBUG
|
|
CurOffs += getTypeSize(field->getType());
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
|
|
std::string& S) const {
|
|
if (QT & Decl::OBJC_TQ_In)
|
|
S += 'n';
|
|
if (QT & Decl::OBJC_TQ_Inout)
|
|
S += 'N';
|
|
if (QT & Decl::OBJC_TQ_Out)
|
|
S += 'o';
|
|
if (QT & Decl::OBJC_TQ_Bycopy)
|
|
S += 'O';
|
|
if (QT & Decl::OBJC_TQ_Byref)
|
|
S += 'R';
|
|
if (QT & Decl::OBJC_TQ_Oneway)
|
|
S += 'V';
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getObjCIdDecl() const {
|
|
if (!ObjCIdDecl) {
|
|
QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
|
|
T = getObjCObjectPointerType(T);
|
|
ObjCIdDecl = buildImplicitTypedef(T, "id");
|
|
}
|
|
return ObjCIdDecl;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getObjCSelDecl() const {
|
|
if (!ObjCSelDecl) {
|
|
QualType T = getPointerType(ObjCBuiltinSelTy);
|
|
ObjCSelDecl = buildImplicitTypedef(T, "SEL");
|
|
}
|
|
return ObjCSelDecl;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getObjCClassDecl() const {
|
|
if (!ObjCClassDecl) {
|
|
QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
|
|
T = getObjCObjectPointerType(T);
|
|
ObjCClassDecl = buildImplicitTypedef(T, "Class");
|
|
}
|
|
return ObjCClassDecl;
|
|
}
|
|
|
|
ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
|
|
if (!ObjCProtocolClassDecl) {
|
|
ObjCProtocolClassDecl
|
|
= ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
|
|
SourceLocation(),
|
|
&Idents.get("Protocol"),
|
|
/*typeParamList=*/nullptr,
|
|
/*PrevDecl=*/nullptr,
|
|
SourceLocation(), true);
|
|
}
|
|
|
|
return ObjCProtocolClassDecl;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// __builtin_va_list Construction Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
|
|
StringRef Name) {
|
|
// typedef char* __builtin[_ms]_va_list;
|
|
QualType T = Context->getPointerType(Context->CharTy);
|
|
return Context->buildImplicitTypedef(T, Name);
|
|
}
|
|
|
|
static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
|
|
return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
|
|
}
|
|
|
|
static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
|
|
return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
|
|
// typedef void* __builtin_va_list;
|
|
QualType T = Context->getPointerType(Context->VoidTy);
|
|
return Context->buildImplicitTypedef(T, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *
|
|
CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
|
|
// struct __va_list
|
|
RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
|
|
if (Context->getLangOpts().CPlusPlus) {
|
|
// namespace std { struct __va_list {
|
|
NamespaceDecl *NS;
|
|
NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
|
|
Context->getTranslationUnitDecl(),
|
|
/*Inline*/ false, SourceLocation(),
|
|
SourceLocation(), &Context->Idents.get("std"),
|
|
/*PrevDecl*/ nullptr);
|
|
NS->setImplicit();
|
|
VaListTagDecl->setDeclContext(NS);
|
|
}
|
|
|
|
VaListTagDecl->startDefinition();
|
|
|
|
const size_t NumFields = 5;
|
|
QualType FieldTypes[NumFields];
|
|
const char *FieldNames[NumFields];
|
|
|
|
// void *__stack;
|
|
FieldTypes[0] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[0] = "__stack";
|
|
|
|
// void *__gr_top;
|
|
FieldTypes[1] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[1] = "__gr_top";
|
|
|
|
// void *__vr_top;
|
|
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[2] = "__vr_top";
|
|
|
|
// int __gr_offs;
|
|
FieldTypes[3] = Context->IntTy;
|
|
FieldNames[3] = "__gr_offs";
|
|
|
|
// int __vr_offs;
|
|
FieldTypes[4] = Context->IntTy;
|
|
FieldNames[4] = "__vr_offs";
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < NumFields; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
|
|
VaListTagDecl,
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
&Context->Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
VaListTagDecl->addDecl(Field);
|
|
}
|
|
VaListTagDecl->completeDefinition();
|
|
Context->VaListTagDecl = VaListTagDecl;
|
|
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
|
|
|
|
// } __builtin_va_list;
|
|
return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
|
|
// typedef struct __va_list_tag {
|
|
RecordDecl *VaListTagDecl;
|
|
|
|
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
|
|
VaListTagDecl->startDefinition();
|
|
|
|
const size_t NumFields = 5;
|
|
QualType FieldTypes[NumFields];
|
|
const char *FieldNames[NumFields];
|
|
|
|
// unsigned char gpr;
|
|
FieldTypes[0] = Context->UnsignedCharTy;
|
|
FieldNames[0] = "gpr";
|
|
|
|
// unsigned char fpr;
|
|
FieldTypes[1] = Context->UnsignedCharTy;
|
|
FieldNames[1] = "fpr";
|
|
|
|
// unsigned short reserved;
|
|
FieldTypes[2] = Context->UnsignedShortTy;
|
|
FieldNames[2] = "reserved";
|
|
|
|
// void* overflow_arg_area;
|
|
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[3] = "overflow_arg_area";
|
|
|
|
// void* reg_save_area;
|
|
FieldTypes[4] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[4] = "reg_save_area";
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < NumFields; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
&Context->Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
VaListTagDecl->addDecl(Field);
|
|
}
|
|
VaListTagDecl->completeDefinition();
|
|
Context->VaListTagDecl = VaListTagDecl;
|
|
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
|
|
|
|
// } __va_list_tag;
|
|
TypedefDecl *VaListTagTypedefDecl =
|
|
Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
|
|
|
|
QualType VaListTagTypedefType =
|
|
Context->getTypedefType(VaListTagTypedefDecl);
|
|
|
|
// typedef __va_list_tag __builtin_va_list[1];
|
|
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
|
|
QualType VaListTagArrayType
|
|
= Context->getConstantArrayType(VaListTagTypedefType,
|
|
Size, ArrayType::Normal, 0);
|
|
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *
|
|
CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
|
|
// struct __va_list_tag {
|
|
RecordDecl *VaListTagDecl;
|
|
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
|
|
VaListTagDecl->startDefinition();
|
|
|
|
const size_t NumFields = 4;
|
|
QualType FieldTypes[NumFields];
|
|
const char *FieldNames[NumFields];
|
|
|
|
// unsigned gp_offset;
|
|
FieldTypes[0] = Context->UnsignedIntTy;
|
|
FieldNames[0] = "gp_offset";
|
|
|
|
// unsigned fp_offset;
|
|
FieldTypes[1] = Context->UnsignedIntTy;
|
|
FieldNames[1] = "fp_offset";
|
|
|
|
// void* overflow_arg_area;
|
|
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[2] = "overflow_arg_area";
|
|
|
|
// void* reg_save_area;
|
|
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[3] = "reg_save_area";
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < NumFields; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
|
|
VaListTagDecl,
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
&Context->Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
VaListTagDecl->addDecl(Field);
|
|
}
|
|
VaListTagDecl->completeDefinition();
|
|
Context->VaListTagDecl = VaListTagDecl;
|
|
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
|
|
|
|
// };
|
|
|
|
// typedef struct __va_list_tag __builtin_va_list[1];
|
|
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
|
|
QualType VaListTagArrayType =
|
|
Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
|
|
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
|
|
// typedef int __builtin_va_list[4];
|
|
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
|
|
QualType IntArrayType =
|
|
Context->getConstantArrayType(Context->IntTy, Size, ArrayType::Normal, 0);
|
|
return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *
|
|
CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
|
|
// struct __va_list
|
|
RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
|
|
if (Context->getLangOpts().CPlusPlus) {
|
|
// namespace std { struct __va_list {
|
|
NamespaceDecl *NS;
|
|
NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
|
|
Context->getTranslationUnitDecl(),
|
|
/*Inline*/false, SourceLocation(),
|
|
SourceLocation(), &Context->Idents.get("std"),
|
|
/*PrevDecl*/ nullptr);
|
|
NS->setImplicit();
|
|
VaListDecl->setDeclContext(NS);
|
|
}
|
|
|
|
VaListDecl->startDefinition();
|
|
|
|
// void * __ap;
|
|
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
|
|
VaListDecl,
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
&Context->Idents.get("__ap"),
|
|
Context->getPointerType(Context->VoidTy),
|
|
/*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
VaListDecl->addDecl(Field);
|
|
|
|
// };
|
|
VaListDecl->completeDefinition();
|
|
Context->VaListTagDecl = VaListDecl;
|
|
|
|
// typedef struct __va_list __builtin_va_list;
|
|
QualType T = Context->getRecordType(VaListDecl);
|
|
return Context->buildImplicitTypedef(T, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *
|
|
CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
|
|
// struct __va_list_tag {
|
|
RecordDecl *VaListTagDecl;
|
|
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
|
|
VaListTagDecl->startDefinition();
|
|
|
|
const size_t NumFields = 4;
|
|
QualType FieldTypes[NumFields];
|
|
const char *FieldNames[NumFields];
|
|
|
|
// long __gpr;
|
|
FieldTypes[0] = Context->LongTy;
|
|
FieldNames[0] = "__gpr";
|
|
|
|
// long __fpr;
|
|
FieldTypes[1] = Context->LongTy;
|
|
FieldNames[1] = "__fpr";
|
|
|
|
// void *__overflow_arg_area;
|
|
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[2] = "__overflow_arg_area";
|
|
|
|
// void *__reg_save_area;
|
|
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
|
|
FieldNames[3] = "__reg_save_area";
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < NumFields; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
|
|
VaListTagDecl,
|
|
SourceLocation(),
|
|
SourceLocation(),
|
|
&Context->Idents.get(FieldNames[i]),
|
|
FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
VaListTagDecl->addDecl(Field);
|
|
}
|
|
VaListTagDecl->completeDefinition();
|
|
Context->VaListTagDecl = VaListTagDecl;
|
|
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
|
|
|
|
// };
|
|
|
|
// typedef __va_list_tag __builtin_va_list[1];
|
|
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
|
|
QualType VaListTagArrayType =
|
|
Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
|
|
|
|
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
|
|
}
|
|
|
|
static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
|
|
TargetInfo::BuiltinVaListKind Kind) {
|
|
switch (Kind) {
|
|
case TargetInfo::CharPtrBuiltinVaList:
|
|
return CreateCharPtrBuiltinVaListDecl(Context);
|
|
case TargetInfo::VoidPtrBuiltinVaList:
|
|
return CreateVoidPtrBuiltinVaListDecl(Context);
|
|
case TargetInfo::AArch64ABIBuiltinVaList:
|
|
return CreateAArch64ABIBuiltinVaListDecl(Context);
|
|
case TargetInfo::PowerABIBuiltinVaList:
|
|
return CreatePowerABIBuiltinVaListDecl(Context);
|
|
case TargetInfo::X86_64ABIBuiltinVaList:
|
|
return CreateX86_64ABIBuiltinVaListDecl(Context);
|
|
case TargetInfo::PNaClABIBuiltinVaList:
|
|
return CreatePNaClABIBuiltinVaListDecl(Context);
|
|
case TargetInfo::AAPCSABIBuiltinVaList:
|
|
return CreateAAPCSABIBuiltinVaListDecl(Context);
|
|
case TargetInfo::SystemZBuiltinVaList:
|
|
return CreateSystemZBuiltinVaListDecl(Context);
|
|
}
|
|
|
|
llvm_unreachable("Unhandled __builtin_va_list type kind");
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
|
|
if (!BuiltinVaListDecl) {
|
|
BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
|
|
assert(BuiltinVaListDecl->isImplicit());
|
|
}
|
|
|
|
return BuiltinVaListDecl;
|
|
}
|
|
|
|
Decl *ASTContext::getVaListTagDecl() const {
|
|
// Force the creation of VaListTagDecl by building the __builtin_va_list
|
|
// declaration.
|
|
if (!VaListTagDecl)
|
|
(void)getBuiltinVaListDecl();
|
|
|
|
return VaListTagDecl;
|
|
}
|
|
|
|
TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
|
|
if (!BuiltinMSVaListDecl)
|
|
BuiltinMSVaListDecl = CreateMSVaListDecl(this);
|
|
|
|
return BuiltinMSVaListDecl;
|
|
}
|
|
|
|
bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
|
|
return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
|
|
}
|
|
|
|
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
|
|
assert(ObjCConstantStringType.isNull() &&
|
|
"'NSConstantString' type already set!");
|
|
|
|
ObjCConstantStringType = getObjCInterfaceType(Decl);
|
|
}
|
|
|
|
/// Retrieve the template name that corresponds to a non-empty
|
|
/// lookup.
|
|
TemplateName
|
|
ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
|
|
UnresolvedSetIterator End) const {
|
|
unsigned size = End - Begin;
|
|
assert(size > 1 && "set is not overloaded!");
|
|
|
|
void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
|
|
size * sizeof(FunctionTemplateDecl*));
|
|
auto *OT = new (memory) OverloadedTemplateStorage(size);
|
|
|
|
NamedDecl **Storage = OT->getStorage();
|
|
for (UnresolvedSetIterator I = Begin; I != End; ++I) {
|
|
NamedDecl *D = *I;
|
|
assert(isa<FunctionTemplateDecl>(D) ||
|
|
isa<UnresolvedUsingValueDecl>(D) ||
|
|
(isa<UsingShadowDecl>(D) &&
|
|
isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
|
|
*Storage++ = D;
|
|
}
|
|
|
|
return TemplateName(OT);
|
|
}
|
|
|
|
/// Retrieve the template name that represents a qualified
|
|
/// template name such as \c std::vector.
|
|
TemplateName
|
|
ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
|
|
bool TemplateKeyword,
|
|
TemplateDecl *Template) const {
|
|
assert(NNS && "Missing nested-name-specifier in qualified template name");
|
|
|
|
// FIXME: Canonicalization?
|
|
llvm::FoldingSetNodeID ID;
|
|
QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
|
|
|
|
void *InsertPos = nullptr;
|
|
QualifiedTemplateName *QTN =
|
|
QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (!QTN) {
|
|
QTN = new (*this, alignof(QualifiedTemplateName))
|
|
QualifiedTemplateName(NNS, TemplateKeyword, Template);
|
|
QualifiedTemplateNames.InsertNode(QTN, InsertPos);
|
|
}
|
|
|
|
return TemplateName(QTN);
|
|
}
|
|
|
|
/// Retrieve the template name that represents a dependent
|
|
/// template name such as \c MetaFun::template apply.
|
|
TemplateName
|
|
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name) const {
|
|
assert((!NNS || NNS->isDependent()) &&
|
|
"Nested name specifier must be dependent");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTemplateName::Profile(ID, NNS, Name);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentTemplateName *QTN =
|
|
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (QTN)
|
|
return TemplateName(QTN);
|
|
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
if (CanonNNS == NNS) {
|
|
QTN = new (*this, alignof(DependentTemplateName))
|
|
DependentTemplateName(NNS, Name);
|
|
} else {
|
|
TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
|
|
QTN = new (*this, alignof(DependentTemplateName))
|
|
DependentTemplateName(NNS, Name, Canon);
|
|
DependentTemplateName *CheckQTN =
|
|
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckQTN && "Dependent type name canonicalization broken");
|
|
(void)CheckQTN;
|
|
}
|
|
|
|
DependentTemplateNames.InsertNode(QTN, InsertPos);
|
|
return TemplateName(QTN);
|
|
}
|
|
|
|
/// Retrieve the template name that represents a dependent
|
|
/// template name such as \c MetaFun::template operator+.
|
|
TemplateName
|
|
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
|
|
OverloadedOperatorKind Operator) const {
|
|
assert((!NNS || NNS->isDependent()) &&
|
|
"Nested name specifier must be dependent");
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
DependentTemplateName::Profile(ID, NNS, Operator);
|
|
|
|
void *InsertPos = nullptr;
|
|
DependentTemplateName *QTN
|
|
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (QTN)
|
|
return TemplateName(QTN);
|
|
|
|
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
|
|
if (CanonNNS == NNS) {
|
|
QTN = new (*this, alignof(DependentTemplateName))
|
|
DependentTemplateName(NNS, Operator);
|
|
} else {
|
|
TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
|
|
QTN = new (*this, alignof(DependentTemplateName))
|
|
DependentTemplateName(NNS, Operator, Canon);
|
|
|
|
DependentTemplateName *CheckQTN
|
|
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(!CheckQTN && "Dependent template name canonicalization broken");
|
|
(void)CheckQTN;
|
|
}
|
|
|
|
DependentTemplateNames.InsertNode(QTN, InsertPos);
|
|
return TemplateName(QTN);
|
|
}
|
|
|
|
TemplateName
|
|
ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
|
|
TemplateName replacement) const {
|
|
llvm::FoldingSetNodeID ID;
|
|
SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
|
|
|
|
void *insertPos = nullptr;
|
|
SubstTemplateTemplateParmStorage *subst
|
|
= SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
|
|
|
|
if (!subst) {
|
|
subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
|
|
SubstTemplateTemplateParms.InsertNode(subst, insertPos);
|
|
}
|
|
|
|
return TemplateName(subst);
|
|
}
|
|
|
|
TemplateName
|
|
ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
|
|
const TemplateArgument &ArgPack) const {
|
|
auto &Self = const_cast<ASTContext &>(*this);
|
|
llvm::FoldingSetNodeID ID;
|
|
SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
|
|
|
|
void *InsertPos = nullptr;
|
|
SubstTemplateTemplateParmPackStorage *Subst
|
|
= SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!Subst) {
|
|
Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
|
|
ArgPack.pack_size(),
|
|
ArgPack.pack_begin());
|
|
SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
|
|
}
|
|
|
|
return TemplateName(Subst);
|
|
}
|
|
|
|
/// getFromTargetType - Given one of the integer types provided by
|
|
/// TargetInfo, produce the corresponding type. The unsigned @p Type
|
|
/// is actually a value of type @c TargetInfo::IntType.
|
|
CanQualType ASTContext::getFromTargetType(unsigned Type) const {
|
|
switch (Type) {
|
|
case TargetInfo::NoInt: return {};
|
|
case TargetInfo::SignedChar: return SignedCharTy;
|
|
case TargetInfo::UnsignedChar: return UnsignedCharTy;
|
|
case TargetInfo::SignedShort: return ShortTy;
|
|
case TargetInfo::UnsignedShort: return UnsignedShortTy;
|
|
case TargetInfo::SignedInt: return IntTy;
|
|
case TargetInfo::UnsignedInt: return UnsignedIntTy;
|
|
case TargetInfo::SignedLong: return LongTy;
|
|
case TargetInfo::UnsignedLong: return UnsignedLongTy;
|
|
case TargetInfo::SignedLongLong: return LongLongTy;
|
|
case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled TargetInfo::IntType value");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Predicates.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
|
|
/// garbage collection attribute.
|
|
///
|
|
Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
|
|
if (getLangOpts().getGC() == LangOptions::NonGC)
|
|
return Qualifiers::GCNone;
|
|
|
|
assert(getLangOpts().ObjC);
|
|
Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
|
|
|
|
// Default behaviour under objective-C's gc is for ObjC pointers
|
|
// (or pointers to them) be treated as though they were declared
|
|
// as __strong.
|
|
if (GCAttrs == Qualifiers::GCNone) {
|
|
if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
|
|
return Qualifiers::Strong;
|
|
else if (Ty->isPointerType())
|
|
return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
|
|
} else {
|
|
// It's not valid to set GC attributes on anything that isn't a
|
|
// pointer.
|
|
#ifndef NDEBUG
|
|
QualType CT = Ty->getCanonicalTypeInternal();
|
|
while (const auto *AT = dyn_cast<ArrayType>(CT))
|
|
CT = AT->getElementType();
|
|
assert(CT->isAnyPointerType() || CT->isBlockPointerType());
|
|
#endif
|
|
}
|
|
return GCAttrs;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Compatibility Testing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// areCompatVectorTypes - Return true if the two specified vector types are
|
|
/// compatible.
|
|
static bool areCompatVectorTypes(const VectorType *LHS,
|
|
const VectorType *RHS) {
|
|
assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
|
|
return LHS->getElementType() == RHS->getElementType() &&
|
|
LHS->getNumElements() == RHS->getNumElements();
|
|
}
|
|
|
|
bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
|
|
QualType SecondVec) {
|
|
assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
|
|
assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
|
|
|
|
if (hasSameUnqualifiedType(FirstVec, SecondVec))
|
|
return true;
|
|
|
|
// Treat Neon vector types and most AltiVec vector types as if they are the
|
|
// equivalent GCC vector types.
|
|
const auto *First = FirstVec->getAs<VectorType>();
|
|
const auto *Second = SecondVec->getAs<VectorType>();
|
|
if (First->getNumElements() == Second->getNumElements() &&
|
|
hasSameType(First->getElementType(), Second->getElementType()) &&
|
|
First->getVectorKind() != VectorType::AltiVecPixel &&
|
|
First->getVectorKind() != VectorType::AltiVecBool &&
|
|
Second->getVectorKind() != VectorType::AltiVecPixel &&
|
|
Second->getVectorKind() != VectorType::AltiVecBool)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
|
|
/// inheritance hierarchy of 'rProto'.
|
|
bool
|
|
ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
|
|
ObjCProtocolDecl *rProto) const {
|
|
if (declaresSameEntity(lProto, rProto))
|
|
return true;
|
|
for (auto *PI : rProto->protocols())
|
|
if (ProtocolCompatibleWithProtocol(lProto, PI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
|
|
/// Class<pr1, ...>.
|
|
bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
|
|
QualType rhs) {
|
|
const auto *lhsQID = lhs->getAs<ObjCObjectPointerType>();
|
|
const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
|
|
assert((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
|
|
|
|
for (auto *lhsProto : lhsQID->quals()) {
|
|
bool match = false;
|
|
for (auto *rhsProto : rhsOPT->quals()) {
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
|
|
/// ObjCQualifiedIDType.
|
|
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
|
|
bool compare) {
|
|
// Allow id<P..> and an 'id' or void* type in all cases.
|
|
if (lhs->isVoidPointerType() ||
|
|
lhs->isObjCIdType() || lhs->isObjCClassType())
|
|
return true;
|
|
else if (rhs->isVoidPointerType() ||
|
|
rhs->isObjCIdType() || rhs->isObjCClassType())
|
|
return true;
|
|
|
|
if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
|
|
const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
|
|
|
|
if (!rhsOPT) return false;
|
|
|
|
if (rhsOPT->qual_empty()) {
|
|
// If the RHS is a unqualified interface pointer "NSString*",
|
|
// make sure we check the class hierarchy.
|
|
if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
|
|
for (auto *I : lhsQID->quals()) {
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
if (!rhsID->ClassImplementsProtocol(I, true))
|
|
return false;
|
|
}
|
|
}
|
|
// If there are no qualifiers and no interface, we have an 'id'.
|
|
return true;
|
|
}
|
|
// Both the right and left sides have qualifiers.
|
|
for (auto *lhsProto : lhsQID->quals()) {
|
|
bool match = false;
|
|
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
for (auto *rhsProto : rhsOPT->quals()) {
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
|
|
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
// If the RHS is a qualified interface pointer "NSString<P>*",
|
|
// make sure we check the class hierarchy.
|
|
if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
|
|
for (auto *I : lhsQID->quals()) {
|
|
// when comparing an id<P> on lhs with a static type on rhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
if (rhsID->ClassImplementsProtocol(I, true)) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
|
|
assert(rhsQID && "One of the LHS/RHS should be id<x>");
|
|
|
|
if (const ObjCObjectPointerType *lhsOPT =
|
|
lhs->getAsObjCInterfacePointerType()) {
|
|
// If both the right and left sides have qualifiers.
|
|
for (auto *lhsProto : lhsOPT->quals()) {
|
|
bool match = false;
|
|
|
|
// when comparing an id<P> on rhs with a static type on lhs,
|
|
// see if static class implements all of id's protocols, directly or
|
|
// through its super class and categories.
|
|
// First, lhs protocols in the qualifier list must be found, direct
|
|
// or indirect in rhs's qualifier list or it is a mismatch.
|
|
for (auto *rhsProto : rhsQID->quals()) {
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
|
|
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
|
|
// Static class's protocols, or its super class or category protocols
|
|
// must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
|
|
if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
|
|
CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
|
|
// This is rather dubious but matches gcc's behavior. If lhs has
|
|
// no type qualifier and its class has no static protocol(s)
|
|
// assume that it is mismatch.
|
|
if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
|
|
return false;
|
|
for (auto *lhsProto : LHSInheritedProtocols) {
|
|
bool match = false;
|
|
for (auto *rhsProto : rhsQID->quals()) {
|
|
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
|
|
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
|
|
match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!match)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// canAssignObjCInterfaces - Return true if the two interface types are
|
|
/// compatible for assignment from RHS to LHS. This handles validation of any
|
|
/// protocol qualifiers on the LHS or RHS.
|
|
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT) {
|
|
const ObjCObjectType* LHS = LHSOPT->getObjectType();
|
|
const ObjCObjectType* RHS = RHSOPT->getObjectType();
|
|
|
|
// If either type represents the built-in 'id' or 'Class' types, return true.
|
|
if (LHS->isObjCUnqualifiedIdOrClass() ||
|
|
RHS->isObjCUnqualifiedIdOrClass())
|
|
return true;
|
|
|
|
// Function object that propagates a successful result or handles
|
|
// __kindof types.
|
|
auto finish = [&](bool succeeded) -> bool {
|
|
if (succeeded)
|
|
return true;
|
|
|
|
if (!RHS->isKindOfType())
|
|
return false;
|
|
|
|
// Strip off __kindof and protocol qualifiers, then check whether
|
|
// we can assign the other way.
|
|
return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
|
|
LHSOPT->stripObjCKindOfTypeAndQuals(*this));
|
|
};
|
|
|
|
if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
|
|
return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
|
|
QualType(RHSOPT,0),
|
|
false));
|
|
}
|
|
|
|
if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
|
|
return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
|
|
QualType(RHSOPT,0)));
|
|
}
|
|
|
|
// If we have 2 user-defined types, fall into that path.
|
|
if (LHS->getInterface() && RHS->getInterface()) {
|
|
return finish(canAssignObjCInterfaces(LHS, RHS));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
|
|
/// for providing type-safety for objective-c pointers used to pass/return
|
|
/// arguments in block literals. When passed as arguments, passing 'A*' where
|
|
/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
|
|
/// not OK. For the return type, the opposite is not OK.
|
|
bool ASTContext::canAssignObjCInterfacesInBlockPointer(
|
|
const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT,
|
|
bool BlockReturnType) {
|
|
|
|
// Function object that propagates a successful result or handles
|
|
// __kindof types.
|
|
auto finish = [&](bool succeeded) -> bool {
|
|
if (succeeded)
|
|
return true;
|
|
|
|
const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
|
|
if (!Expected->isKindOfType())
|
|
return false;
|
|
|
|
// Strip off __kindof and protocol qualifiers, then check whether
|
|
// we can assign the other way.
|
|
return canAssignObjCInterfacesInBlockPointer(
|
|
RHSOPT->stripObjCKindOfTypeAndQuals(*this),
|
|
LHSOPT->stripObjCKindOfTypeAndQuals(*this),
|
|
BlockReturnType);
|
|
};
|
|
|
|
if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
|
|
return true;
|
|
|
|
if (LHSOPT->isObjCBuiltinType()) {
|
|
return finish(RHSOPT->isObjCBuiltinType() ||
|
|
RHSOPT->isObjCQualifiedIdType());
|
|
}
|
|
|
|
if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
|
|
return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
|
|
QualType(RHSOPT,0),
|
|
false));
|
|
|
|
const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
|
|
const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
|
|
if (LHS && RHS) { // We have 2 user-defined types.
|
|
if (LHS != RHS) {
|
|
if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
|
|
return finish(BlockReturnType);
|
|
if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
|
|
return finish(!BlockReturnType);
|
|
}
|
|
else
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Comparison routine for Objective-C protocols to be used with
|
|
/// llvm::array_pod_sort.
|
|
static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
|
|
ObjCProtocolDecl * const *rhs) {
|
|
return (*lhs)->getName().compare((*rhs)->getName());
|
|
}
|
|
|
|
/// getIntersectionOfProtocols - This routine finds the intersection of set
|
|
/// of protocols inherited from two distinct objective-c pointer objects with
|
|
/// the given common base.
|
|
/// It is used to build composite qualifier list of the composite type of
|
|
/// the conditional expression involving two objective-c pointer objects.
|
|
static
|
|
void getIntersectionOfProtocols(ASTContext &Context,
|
|
const ObjCInterfaceDecl *CommonBase,
|
|
const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT,
|
|
SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
|
|
|
|
const ObjCObjectType* LHS = LHSOPT->getObjectType();
|
|
const ObjCObjectType* RHS = RHSOPT->getObjectType();
|
|
assert(LHS->getInterface() && "LHS must have an interface base");
|
|
assert(RHS->getInterface() && "RHS must have an interface base");
|
|
|
|
// Add all of the protocols for the LHS.
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
|
|
|
|
// Start with the protocol qualifiers.
|
|
for (auto proto : LHS->quals()) {
|
|
Context.CollectInheritedProtocols(proto, LHSProtocolSet);
|
|
}
|
|
|
|
// Also add the protocols associated with the LHS interface.
|
|
Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
|
|
|
|
// Add all of the protocols for the RHS.
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
|
|
|
|
// Start with the protocol qualifiers.
|
|
for (auto proto : RHS->quals()) {
|
|
Context.CollectInheritedProtocols(proto, RHSProtocolSet);
|
|
}
|
|
|
|
// Also add the protocols associated with the RHS interface.
|
|
Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
|
|
|
|
// Compute the intersection of the collected protocol sets.
|
|
for (auto proto : LHSProtocolSet) {
|
|
if (RHSProtocolSet.count(proto))
|
|
IntersectionSet.push_back(proto);
|
|
}
|
|
|
|
// Compute the set of protocols that is implied by either the common type or
|
|
// the protocols within the intersection.
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
|
|
Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
|
|
|
|
// Remove any implied protocols from the list of inherited protocols.
|
|
if (!ImpliedProtocols.empty()) {
|
|
IntersectionSet.erase(
|
|
std::remove_if(IntersectionSet.begin(),
|
|
IntersectionSet.end(),
|
|
[&](ObjCProtocolDecl *proto) -> bool {
|
|
return ImpliedProtocols.count(proto) > 0;
|
|
}),
|
|
IntersectionSet.end());
|
|
}
|
|
|
|
// Sort the remaining protocols by name.
|
|
llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
|
|
compareObjCProtocolsByName);
|
|
}
|
|
|
|
/// Determine whether the first type is a subtype of the second.
|
|
static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
|
|
QualType rhs) {
|
|
// Common case: two object pointers.
|
|
const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
|
|
const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
|
|
if (lhsOPT && rhsOPT)
|
|
return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
|
|
|
|
// Two block pointers.
|
|
const auto *lhsBlock = lhs->getAs<BlockPointerType>();
|
|
const auto *rhsBlock = rhs->getAs<BlockPointerType>();
|
|
if (lhsBlock && rhsBlock)
|
|
return ctx.typesAreBlockPointerCompatible(lhs, rhs);
|
|
|
|
// If either is an unqualified 'id' and the other is a block, it's
|
|
// acceptable.
|
|
if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
|
|
(rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check that the given Objective-C type argument lists are equivalent.
|
|
static bool sameObjCTypeArgs(ASTContext &ctx,
|
|
const ObjCInterfaceDecl *iface,
|
|
ArrayRef<QualType> lhsArgs,
|
|
ArrayRef<QualType> rhsArgs,
|
|
bool stripKindOf) {
|
|
if (lhsArgs.size() != rhsArgs.size())
|
|
return false;
|
|
|
|
ObjCTypeParamList *typeParams = iface->getTypeParamList();
|
|
for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
|
|
if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
|
|
continue;
|
|
|
|
switch (typeParams->begin()[i]->getVariance()) {
|
|
case ObjCTypeParamVariance::Invariant:
|
|
if (!stripKindOf ||
|
|
!ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
|
|
rhsArgs[i].stripObjCKindOfType(ctx))) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ObjCTypeParamVariance::Covariant:
|
|
if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
|
|
return false;
|
|
break;
|
|
|
|
case ObjCTypeParamVariance::Contravariant:
|
|
if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
QualType ASTContext::areCommonBaseCompatible(
|
|
const ObjCObjectPointerType *Lptr,
|
|
const ObjCObjectPointerType *Rptr) {
|
|
const ObjCObjectType *LHS = Lptr->getObjectType();
|
|
const ObjCObjectType *RHS = Rptr->getObjectType();
|
|
const ObjCInterfaceDecl* LDecl = LHS->getInterface();
|
|
const ObjCInterfaceDecl* RDecl = RHS->getInterface();
|
|
|
|
if (!LDecl || !RDecl)
|
|
return {};
|
|
|
|
// When either LHS or RHS is a kindof type, we should return a kindof type.
|
|
// For example, for common base of kindof(ASub1) and kindof(ASub2), we return
|
|
// kindof(A).
|
|
bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
|
|
|
|
// Follow the left-hand side up the class hierarchy until we either hit a
|
|
// root or find the RHS. Record the ancestors in case we don't find it.
|
|
llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
|
|
LHSAncestors;
|
|
while (true) {
|
|
// Record this ancestor. We'll need this if the common type isn't in the
|
|
// path from the LHS to the root.
|
|
LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
|
|
|
|
if (declaresSameEntity(LHS->getInterface(), RDecl)) {
|
|
// Get the type arguments.
|
|
ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
|
|
bool anyChanges = false;
|
|
if (LHS->isSpecialized() && RHS->isSpecialized()) {
|
|
// Both have type arguments, compare them.
|
|
if (!sameObjCTypeArgs(*this, LHS->getInterface(),
|
|
LHS->getTypeArgs(), RHS->getTypeArgs(),
|
|
/*stripKindOf=*/true))
|
|
return {};
|
|
} else if (LHS->isSpecialized() != RHS->isSpecialized()) {
|
|
// If only one has type arguments, the result will not have type
|
|
// arguments.
|
|
LHSTypeArgs = {};
|
|
anyChanges = true;
|
|
}
|
|
|
|
// Compute the intersection of protocols.
|
|
SmallVector<ObjCProtocolDecl *, 8> Protocols;
|
|
getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
|
|
Protocols);
|
|
if (!Protocols.empty())
|
|
anyChanges = true;
|
|
|
|
// If anything in the LHS will have changed, build a new result type.
|
|
// If we need to return a kindof type but LHS is not a kindof type, we
|
|
// build a new result type.
|
|
if (anyChanges || LHS->isKindOfType() != anyKindOf) {
|
|
QualType Result = getObjCInterfaceType(LHS->getInterface());
|
|
Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
|
|
anyKindOf || LHS->isKindOfType());
|
|
return getObjCObjectPointerType(Result);
|
|
}
|
|
|
|
return getObjCObjectPointerType(QualType(LHS, 0));
|
|
}
|
|
|
|
// Find the superclass.
|
|
QualType LHSSuperType = LHS->getSuperClassType();
|
|
if (LHSSuperType.isNull())
|
|
break;
|
|
|
|
LHS = LHSSuperType->castAs<ObjCObjectType>();
|
|
}
|
|
|
|
// We didn't find anything by following the LHS to its root; now check
|
|
// the RHS against the cached set of ancestors.
|
|
while (true) {
|
|
auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
|
|
if (KnownLHS != LHSAncestors.end()) {
|
|
LHS = KnownLHS->second;
|
|
|
|
// Get the type arguments.
|
|
ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
|
|
bool anyChanges = false;
|
|
if (LHS->isSpecialized() && RHS->isSpecialized()) {
|
|
// Both have type arguments, compare them.
|
|
if (!sameObjCTypeArgs(*this, LHS->getInterface(),
|
|
LHS->getTypeArgs(), RHS->getTypeArgs(),
|
|
/*stripKindOf=*/true))
|
|
return {};
|
|
} else if (LHS->isSpecialized() != RHS->isSpecialized()) {
|
|
// If only one has type arguments, the result will not have type
|
|
// arguments.
|
|
RHSTypeArgs = {};
|
|
anyChanges = true;
|
|
}
|
|
|
|
// Compute the intersection of protocols.
|
|
SmallVector<ObjCProtocolDecl *, 8> Protocols;
|
|
getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
|
|
Protocols);
|
|
if (!Protocols.empty())
|
|
anyChanges = true;
|
|
|
|
// If we need to return a kindof type but RHS is not a kindof type, we
|
|
// build a new result type.
|
|
if (anyChanges || RHS->isKindOfType() != anyKindOf) {
|
|
QualType Result = getObjCInterfaceType(RHS->getInterface());
|
|
Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
|
|
anyKindOf || RHS->isKindOfType());
|
|
return getObjCObjectPointerType(Result);
|
|
}
|
|
|
|
return getObjCObjectPointerType(QualType(RHS, 0));
|
|
}
|
|
|
|
// Find the superclass of the RHS.
|
|
QualType RHSSuperType = RHS->getSuperClassType();
|
|
if (RHSSuperType.isNull())
|
|
break;
|
|
|
|
RHS = RHSSuperType->castAs<ObjCObjectType>();
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
|
|
const ObjCObjectType *RHS) {
|
|
assert(LHS->getInterface() && "LHS is not an interface type");
|
|
assert(RHS->getInterface() && "RHS is not an interface type");
|
|
|
|
// Verify that the base decls are compatible: the RHS must be a subclass of
|
|
// the LHS.
|
|
ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
|
|
bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
|
|
if (!IsSuperClass)
|
|
return false;
|
|
|
|
// If the LHS has protocol qualifiers, determine whether all of them are
|
|
// satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
|
|
// LHS).
|
|
if (LHS->getNumProtocols() > 0) {
|
|
// OK if conversion of LHS to SuperClass results in narrowing of types
|
|
// ; i.e., SuperClass may implement at least one of the protocols
|
|
// in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
|
|
// But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
|
|
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
|
|
CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
|
|
// Also, if RHS has explicit quelifiers, include them for comparing with LHS's
|
|
// qualifiers.
|
|
for (auto *RHSPI : RHS->quals())
|
|
CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
|
|
// If there is no protocols associated with RHS, it is not a match.
|
|
if (SuperClassInheritedProtocols.empty())
|
|
return false;
|
|
|
|
for (const auto *LHSProto : LHS->quals()) {
|
|
bool SuperImplementsProtocol = false;
|
|
for (auto *SuperClassProto : SuperClassInheritedProtocols)
|
|
if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
|
|
SuperImplementsProtocol = true;
|
|
break;
|
|
}
|
|
if (!SuperImplementsProtocol)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the LHS is specialized, we may need to check type arguments.
|
|
if (LHS->isSpecialized()) {
|
|
// Follow the superclass chain until we've matched the LHS class in the
|
|
// hierarchy. This substitutes type arguments through.
|
|
const ObjCObjectType *RHSSuper = RHS;
|
|
while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
|
|
RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
|
|
|
|
// If the RHS is specializd, compare type arguments.
|
|
if (RHSSuper->isSpecialized() &&
|
|
!sameObjCTypeArgs(*this, LHS->getInterface(),
|
|
LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
|
|
/*stripKindOf=*/true)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
|
|
// get the "pointed to" types
|
|
const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
|
|
const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
|
|
|
|
if (!LHSOPT || !RHSOPT)
|
|
return false;
|
|
|
|
return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
|
|
canAssignObjCInterfaces(RHSOPT, LHSOPT);
|
|
}
|
|
|
|
bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
|
|
return canAssignObjCInterfaces(
|
|
getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
|
|
getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
|
|
}
|
|
|
|
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
|
|
/// both shall have the identically qualified version of a compatible type.
|
|
/// C99 6.2.7p1: Two types have compatible types if their types are the
|
|
/// same. See 6.7.[2,3,5] for additional rules.
|
|
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
|
|
bool CompareUnqualified) {
|
|
if (getLangOpts().CPlusPlus)
|
|
return hasSameType(LHS, RHS);
|
|
|
|
return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
|
|
}
|
|
|
|
bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
|
|
return typesAreCompatible(LHS, RHS);
|
|
}
|
|
|
|
bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
|
|
return !mergeTypes(LHS, RHS, true).isNull();
|
|
}
|
|
|
|
/// mergeTransparentUnionType - if T is a transparent union type and a member
|
|
/// of T is compatible with SubType, return the merged type, else return
|
|
/// QualType()
|
|
QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
|
|
bool OfBlockPointer,
|
|
bool Unqualified) {
|
|
if (const RecordType *UT = T->getAsUnionType()) {
|
|
RecordDecl *UD = UT->getDecl();
|
|
if (UD->hasAttr<TransparentUnionAttr>()) {
|
|
for (const auto *I : UD->fields()) {
|
|
QualType ET = I->getType().getUnqualifiedType();
|
|
QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
|
|
if (!MT.isNull())
|
|
return MT;
|
|
}
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
/// mergeFunctionParameterTypes - merge two types which appear as function
|
|
/// parameter types
|
|
QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
|
|
bool OfBlockPointer,
|
|
bool Unqualified) {
|
|
// GNU extension: two types are compatible if they appear as a function
|
|
// argument, one of the types is a transparent union type and the other
|
|
// type is compatible with a union member
|
|
QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
|
|
Unqualified);
|
|
if (!lmerge.isNull())
|
|
return lmerge;
|
|
|
|
QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
|
|
Unqualified);
|
|
if (!rmerge.isNull())
|
|
return rmerge;
|
|
|
|
return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
|
|
}
|
|
|
|
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
|
|
bool OfBlockPointer,
|
|
bool Unqualified) {
|
|
const auto *lbase = lhs->getAs<FunctionType>();
|
|
const auto *rbase = rhs->getAs<FunctionType>();
|
|
const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
|
|
const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
|
|
bool allLTypes = true;
|
|
bool allRTypes = true;
|
|
|
|
// Check return type
|
|
QualType retType;
|
|
if (OfBlockPointer) {
|
|
QualType RHS = rbase->getReturnType();
|
|
QualType LHS = lbase->getReturnType();
|
|
bool UnqualifiedResult = Unqualified;
|
|
if (!UnqualifiedResult)
|
|
UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
|
|
retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
|
|
}
|
|
else
|
|
retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
|
|
Unqualified);
|
|
if (retType.isNull())
|
|
return {};
|
|
|
|
if (Unqualified)
|
|
retType = retType.getUnqualifiedType();
|
|
|
|
CanQualType LRetType = getCanonicalType(lbase->getReturnType());
|
|
CanQualType RRetType = getCanonicalType(rbase->getReturnType());
|
|
if (Unqualified) {
|
|
LRetType = LRetType.getUnqualifiedType();
|
|
RRetType = RRetType.getUnqualifiedType();
|
|
}
|
|
|
|
if (getCanonicalType(retType) != LRetType)
|
|
allLTypes = false;
|
|
if (getCanonicalType(retType) != RRetType)
|
|
allRTypes = false;
|
|
|
|
// FIXME: double check this
|
|
// FIXME: should we error if lbase->getRegParmAttr() != 0 &&
|
|
// rbase->getRegParmAttr() != 0 &&
|
|
// lbase->getRegParmAttr() != rbase->getRegParmAttr()?
|
|
FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
|
|
FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
|
|
|
|
// Compatible functions must have compatible calling conventions
|
|
if (lbaseInfo.getCC() != rbaseInfo.getCC())
|
|
return {};
|
|
|
|
// Regparm is part of the calling convention.
|
|
if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
|
|
return {};
|
|
if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
|
|
return {};
|
|
|
|
if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
|
|
return {};
|
|
if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
|
|
return {};
|
|
if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
|
|
return {};
|
|
|
|
// FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
|
|
bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
|
|
|
|
if (lbaseInfo.getNoReturn() != NoReturn)
|
|
allLTypes = false;
|
|
if (rbaseInfo.getNoReturn() != NoReturn)
|
|
allRTypes = false;
|
|
|
|
FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
|
|
|
|
if (lproto && rproto) { // two C99 style function prototypes
|
|
assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
|
|
"C++ shouldn't be here");
|
|
// Compatible functions must have the same number of parameters
|
|
if (lproto->getNumParams() != rproto->getNumParams())
|
|
return {};
|
|
|
|
// Variadic and non-variadic functions aren't compatible
|
|
if (lproto->isVariadic() != rproto->isVariadic())
|
|
return {};
|
|
|
|
if (lproto->getTypeQuals() != rproto->getTypeQuals())
|
|
return {};
|
|
|
|
SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
|
|
bool canUseLeft, canUseRight;
|
|
if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
|
|
newParamInfos))
|
|
return {};
|
|
|
|
if (!canUseLeft)
|
|
allLTypes = false;
|
|
if (!canUseRight)
|
|
allRTypes = false;
|
|
|
|
// Check parameter type compatibility
|
|
SmallVector<QualType, 10> types;
|
|
for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
|
|
QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
|
|
QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
|
|
QualType paramType = mergeFunctionParameterTypes(
|
|
lParamType, rParamType, OfBlockPointer, Unqualified);
|
|
if (paramType.isNull())
|
|
return {};
|
|
|
|
if (Unqualified)
|
|
paramType = paramType.getUnqualifiedType();
|
|
|
|
types.push_back(paramType);
|
|
if (Unqualified) {
|
|
lParamType = lParamType.getUnqualifiedType();
|
|
rParamType = rParamType.getUnqualifiedType();
|
|
}
|
|
|
|
if (getCanonicalType(paramType) != getCanonicalType(lParamType))
|
|
allLTypes = false;
|
|
if (getCanonicalType(paramType) != getCanonicalType(rParamType))
|
|
allRTypes = false;
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
|
|
EPI.ExtInfo = einfo;
|
|
EPI.ExtParameterInfos =
|
|
newParamInfos.empty() ? nullptr : newParamInfos.data();
|
|
return getFunctionType(retType, types, EPI);
|
|
}
|
|
|
|
if (lproto) allRTypes = false;
|
|
if (rproto) allLTypes = false;
|
|
|
|
const FunctionProtoType *proto = lproto ? lproto : rproto;
|
|
if (proto) {
|
|
assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
|
|
if (proto->isVariadic())
|
|
return {};
|
|
// Check that the types are compatible with the types that
|
|
// would result from default argument promotions (C99 6.7.5.3p15).
|
|
// The only types actually affected are promotable integer
|
|
// types and floats, which would be passed as a different
|
|
// type depending on whether the prototype is visible.
|
|
for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
|
|
QualType paramTy = proto->getParamType(i);
|
|
|
|
// Look at the converted type of enum types, since that is the type used
|
|
// to pass enum values.
|
|
if (const auto *Enum = paramTy->getAs<EnumType>()) {
|
|
paramTy = Enum->getDecl()->getIntegerType();
|
|
if (paramTy.isNull())
|
|
return {};
|
|
}
|
|
|
|
if (paramTy->isPromotableIntegerType() ||
|
|
getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
|
|
return {};
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
|
|
EPI.ExtInfo = einfo;
|
|
return getFunctionType(retType, proto->getParamTypes(), EPI);
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
return getFunctionNoProtoType(retType, einfo);
|
|
}
|
|
|
|
/// Given that we have an enum type and a non-enum type, try to merge them.
|
|
static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
|
|
QualType other, bool isBlockReturnType) {
|
|
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
|
|
// a signed integer type, or an unsigned integer type.
|
|
// Compatibility is based on the underlying type, not the promotion
|
|
// type.
|
|
QualType underlyingType = ET->getDecl()->getIntegerType();
|
|
if (underlyingType.isNull())
|
|
return {};
|
|
if (Context.hasSameType(underlyingType, other))
|
|
return other;
|
|
|
|
// In block return types, we're more permissive and accept any
|
|
// integral type of the same size.
|
|
if (isBlockReturnType && other->isIntegerType() &&
|
|
Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
|
|
return other;
|
|
|
|
return {};
|
|
}
|
|
|
|
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
|
|
bool OfBlockPointer,
|
|
bool Unqualified, bool BlockReturnType) {
|
|
// C++ [expr]: If an expression initially has the type "reference to T", the
|
|
// type is adjusted to "T" prior to any further analysis, the expression
|
|
// designates the object or function denoted by the reference, and the
|
|
// expression is an lvalue unless the reference is an rvalue reference and
|
|
// the expression is a function call (possibly inside parentheses).
|
|
assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
|
|
assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
|
|
|
|
if (Unqualified) {
|
|
LHS = LHS.getUnqualifiedType();
|
|
RHS = RHS.getUnqualifiedType();
|
|
}
|
|
|
|
QualType LHSCan = getCanonicalType(LHS),
|
|
RHSCan = getCanonicalType(RHS);
|
|
|
|
// If two types are identical, they are compatible.
|
|
if (LHSCan == RHSCan)
|
|
return LHS;
|
|
|
|
// If the qualifiers are different, the types aren't compatible... mostly.
|
|
Qualifiers LQuals = LHSCan.getLocalQualifiers();
|
|
Qualifiers RQuals = RHSCan.getLocalQualifiers();
|
|
if (LQuals != RQuals) {
|
|
// If any of these qualifiers are different, we have a type
|
|
// mismatch.
|
|
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
|
|
LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
|
|
LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
|
|
LQuals.hasUnaligned() != RQuals.hasUnaligned())
|
|
return {};
|
|
|
|
// Exactly one GC qualifier difference is allowed: __strong is
|
|
// okay if the other type has no GC qualifier but is an Objective
|
|
// C object pointer (i.e. implicitly strong by default). We fix
|
|
// this by pretending that the unqualified type was actually
|
|
// qualified __strong.
|
|
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
|
|
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
|
|
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
|
|
|
|
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
|
|
return {};
|
|
|
|
if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
|
|
return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
|
|
}
|
|
if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
|
|
return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
|
|
}
|
|
return {};
|
|
}
|
|
|
|
// Okay, qualifiers are equal.
|
|
|
|
Type::TypeClass LHSClass = LHSCan->getTypeClass();
|
|
Type::TypeClass RHSClass = RHSCan->getTypeClass();
|
|
|
|
// We want to consider the two function types to be the same for these
|
|
// comparisons, just force one to the other.
|
|
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
|
|
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
|
|
|
|
// Same as above for arrays
|
|
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
|
|
LHSClass = Type::ConstantArray;
|
|
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
|
|
RHSClass = Type::ConstantArray;
|
|
|
|
// ObjCInterfaces are just specialized ObjCObjects.
|
|
if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
|
|
if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
|
|
|
|
// Canonicalize ExtVector -> Vector.
|
|
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
|
|
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
|
|
|
|
// If the canonical type classes don't match.
|
|
if (LHSClass != RHSClass) {
|
|
// Note that we only have special rules for turning block enum
|
|
// returns into block int returns, not vice-versa.
|
|
if (const auto *ETy = LHS->getAs<EnumType>()) {
|
|
return mergeEnumWithInteger(*this, ETy, RHS, false);
|
|
}
|
|
if (const EnumType* ETy = RHS->getAs<EnumType>()) {
|
|
return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
|
|
}
|
|
// allow block pointer type to match an 'id' type.
|
|
if (OfBlockPointer && !BlockReturnType) {
|
|
if (LHS->isObjCIdType() && RHS->isBlockPointerType())
|
|
return LHS;
|
|
if (RHS->isObjCIdType() && LHS->isBlockPointerType())
|
|
return RHS;
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
// The canonical type classes match.
|
|
switch (LHSClass) {
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
llvm_unreachable("Non-canonical and dependent types shouldn't get here");
|
|
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization:
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
case Type::MemberPointer:
|
|
llvm_unreachable("C++ should never be in mergeTypes");
|
|
|
|
case Type::ObjCInterface:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::FunctionProto:
|
|
case Type::ExtVector:
|
|
llvm_unreachable("Types are eliminated above");
|
|
|
|
case Type::Pointer:
|
|
{
|
|
// Merge two pointer types, while trying to preserve typedef info
|
|
QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
|
|
QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
|
|
if (Unqualified) {
|
|
LHSPointee = LHSPointee.getUnqualifiedType();
|
|
RHSPointee = RHSPointee.getUnqualifiedType();
|
|
}
|
|
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
|
|
Unqualified);
|
|
if (ResultType.isNull())
|
|
return {};
|
|
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getPointerType(ResultType);
|
|
}
|
|
case Type::BlockPointer:
|
|
{
|
|
// Merge two block pointer types, while trying to preserve typedef info
|
|
QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
|
|
QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
|
|
if (Unqualified) {
|
|
LHSPointee = LHSPointee.getUnqualifiedType();
|
|
RHSPointee = RHSPointee.getUnqualifiedType();
|
|
}
|
|
if (getLangOpts().OpenCL) {
|
|
Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
|
|
Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
|
|
// Blocks can't be an expression in a ternary operator (OpenCL v2.0
|
|
// 6.12.5) thus the following check is asymmetric.
|
|
if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
|
|
return {};
|
|
LHSPteeQual.removeAddressSpace();
|
|
RHSPteeQual.removeAddressSpace();
|
|
LHSPointee =
|
|
QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
|
|
RHSPointee =
|
|
QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
|
|
}
|
|
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
|
|
Unqualified);
|
|
if (ResultType.isNull())
|
|
return {};
|
|
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getBlockPointerType(ResultType);
|
|
}
|
|
case Type::Atomic:
|
|
{
|
|
// Merge two pointer types, while trying to preserve typedef info
|
|
QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
|
|
QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
|
|
if (Unqualified) {
|
|
LHSValue = LHSValue.getUnqualifiedType();
|
|
RHSValue = RHSValue.getUnqualifiedType();
|
|
}
|
|
QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
|
|
Unqualified);
|
|
if (ResultType.isNull())
|
|
return {};
|
|
if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getAtomicType(ResultType);
|
|
}
|
|
case Type::ConstantArray:
|
|
{
|
|
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
|
|
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
|
|
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
|
|
return {};
|
|
|
|
QualType LHSElem = getAsArrayType(LHS)->getElementType();
|
|
QualType RHSElem = getAsArrayType(RHS)->getElementType();
|
|
if (Unqualified) {
|
|
LHSElem = LHSElem.getUnqualifiedType();
|
|
RHSElem = RHSElem.getUnqualifiedType();
|
|
}
|
|
|
|
QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
|
|
if (ResultType.isNull())
|
|
return {};
|
|
|
|
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
|
|
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
|
|
|
|
// If either side is a variable array, and both are complete, check whether
|
|
// the current dimension is definite.
|
|
if (LVAT || RVAT) {
|
|
auto SizeFetch = [this](const VariableArrayType* VAT,
|
|
const ConstantArrayType* CAT)
|
|
-> std::pair<bool,llvm::APInt> {
|
|
if (VAT) {
|
|
llvm::APSInt TheInt;
|
|
Expr *E = VAT->getSizeExpr();
|
|
if (E && E->isIntegerConstantExpr(TheInt, *this))
|
|
return std::make_pair(true, TheInt);
|
|
else
|
|
return std::make_pair(false, TheInt);
|
|
} else if (CAT) {
|
|
return std::make_pair(true, CAT->getSize());
|
|
} else {
|
|
return std::make_pair(false, llvm::APInt());
|
|
}
|
|
};
|
|
|
|
bool HaveLSize, HaveRSize;
|
|
llvm::APInt LSize, RSize;
|
|
std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
|
|
std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
|
|
if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
|
|
return {}; // Definite, but unequal, array dimension
|
|
}
|
|
|
|
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
if (LVAT) {
|
|
// FIXME: This isn't correct! But tricky to implement because
|
|
// the array's size has to be the size of LHS, but the type
|
|
// has to be different.
|
|
return LHS;
|
|
}
|
|
if (RVAT) {
|
|
// FIXME: This isn't correct! But tricky to implement because
|
|
// the array's size has to be the size of RHS, but the type
|
|
// has to be different.
|
|
return RHS;
|
|
}
|
|
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
|
|
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
|
|
return getIncompleteArrayType(ResultType,
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
}
|
|
case Type::FunctionNoProto:
|
|
return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
return {};
|
|
case Type::Builtin:
|
|
// Only exactly equal builtin types are compatible, which is tested above.
|
|
return {};
|
|
case Type::Complex:
|
|
// Distinct complex types are incompatible.
|
|
return {};
|
|
case Type::Vector:
|
|
// FIXME: The merged type should be an ExtVector!
|
|
if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
|
|
RHSCan->getAs<VectorType>()))
|
|
return LHS;
|
|
return {};
|
|
case Type::ObjCObject: {
|
|
// Check if the types are assignment compatible.
|
|
// FIXME: This should be type compatibility, e.g. whether
|
|
// "LHS x; RHS x;" at global scope is legal.
|
|
const auto *LHSIface = LHS->getAs<ObjCObjectType>();
|
|
const auto *RHSIface = RHS->getAs<ObjCObjectType>();
|
|
if (canAssignObjCInterfaces(LHSIface, RHSIface))
|
|
return LHS;
|
|
|
|
return {};
|
|
}
|
|
case Type::ObjCObjectPointer:
|
|
if (OfBlockPointer) {
|
|
if (canAssignObjCInterfacesInBlockPointer(
|
|
LHS->getAs<ObjCObjectPointerType>(),
|
|
RHS->getAs<ObjCObjectPointerType>(),
|
|
BlockReturnType))
|
|
return LHS;
|
|
return {};
|
|
}
|
|
if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
|
|
RHS->getAs<ObjCObjectPointerType>()))
|
|
return LHS;
|
|
|
|
return {};
|
|
case Type::Pipe:
|
|
assert(LHS != RHS &&
|
|
"Equivalent pipe types should have already been handled!");
|
|
return {};
|
|
}
|
|
|
|
llvm_unreachable("Invalid Type::Class!");
|
|
}
|
|
|
|
bool ASTContext::mergeExtParameterInfo(
|
|
const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
|
|
bool &CanUseFirst, bool &CanUseSecond,
|
|
SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
|
|
assert(NewParamInfos.empty() && "param info list not empty");
|
|
CanUseFirst = CanUseSecond = true;
|
|
bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
|
|
bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
|
|
|
|
// Fast path: if the first type doesn't have ext parameter infos,
|
|
// we match if and only if the second type also doesn't have them.
|
|
if (!FirstHasInfo && !SecondHasInfo)
|
|
return true;
|
|
|
|
bool NeedParamInfo = false;
|
|
size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
|
|
: SecondFnType->getExtParameterInfos().size();
|
|
|
|
for (size_t I = 0; I < E; ++I) {
|
|
FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
|
|
if (FirstHasInfo)
|
|
FirstParam = FirstFnType->getExtParameterInfo(I);
|
|
if (SecondHasInfo)
|
|
SecondParam = SecondFnType->getExtParameterInfo(I);
|
|
|
|
// Cannot merge unless everything except the noescape flag matches.
|
|
if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
|
|
return false;
|
|
|
|
bool FirstNoEscape = FirstParam.isNoEscape();
|
|
bool SecondNoEscape = SecondParam.isNoEscape();
|
|
bool IsNoEscape = FirstNoEscape && SecondNoEscape;
|
|
NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
|
|
if (NewParamInfos.back().getOpaqueValue())
|
|
NeedParamInfo = true;
|
|
if (FirstNoEscape != IsNoEscape)
|
|
CanUseFirst = false;
|
|
if (SecondNoEscape != IsNoEscape)
|
|
CanUseSecond = false;
|
|
}
|
|
|
|
if (!NeedParamInfo)
|
|
NewParamInfos.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
|
|
ObjCLayouts[CD] = nullptr;
|
|
}
|
|
|
|
/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
|
|
/// 'RHS' attributes and returns the merged version; including for function
|
|
/// return types.
|
|
QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
|
|
QualType LHSCan = getCanonicalType(LHS),
|
|
RHSCan = getCanonicalType(RHS);
|
|
// If two types are identical, they are compatible.
|
|
if (LHSCan == RHSCan)
|
|
return LHS;
|
|
if (RHSCan->isFunctionType()) {
|
|
if (!LHSCan->isFunctionType())
|
|
return {};
|
|
QualType OldReturnType =
|
|
cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
|
|
QualType NewReturnType =
|
|
cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
|
|
QualType ResReturnType =
|
|
mergeObjCGCQualifiers(NewReturnType, OldReturnType);
|
|
if (ResReturnType.isNull())
|
|
return {};
|
|
if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
|
|
// id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
|
|
// In either case, use OldReturnType to build the new function type.
|
|
const auto *F = LHS->getAs<FunctionType>();
|
|
if (const auto *FPT = cast<FunctionProtoType>(F)) {
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.ExtInfo = getFunctionExtInfo(LHS);
|
|
QualType ResultType =
|
|
getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
|
|
return ResultType;
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
// If the qualifiers are different, the types can still be merged.
|
|
Qualifiers LQuals = LHSCan.getLocalQualifiers();
|
|
Qualifiers RQuals = RHSCan.getLocalQualifiers();
|
|
if (LQuals != RQuals) {
|
|
// If any of these qualifiers are different, we have a type mismatch.
|
|
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
|
|
LQuals.getAddressSpace() != RQuals.getAddressSpace())
|
|
return {};
|
|
|
|
// Exactly one GC qualifier difference is allowed: __strong is
|
|
// okay if the other type has no GC qualifier but is an Objective
|
|
// C object pointer (i.e. implicitly strong by default). We fix
|
|
// this by pretending that the unqualified type was actually
|
|
// qualified __strong.
|
|
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
|
|
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
|
|
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
|
|
|
|
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
|
|
return {};
|
|
|
|
if (GC_L == Qualifiers::Strong)
|
|
return LHS;
|
|
if (GC_R == Qualifiers::Strong)
|
|
return RHS;
|
|
return {};
|
|
}
|
|
|
|
if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
|
|
QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
|
|
if (ResQT == LHSBaseQT)
|
|
return LHS;
|
|
if (ResQT == RHSBaseQT)
|
|
return RHS;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Predicates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned ASTContext::getIntWidth(QualType T) const {
|
|
if (const auto *ET = T->getAs<EnumType>())
|
|
T = ET->getDecl()->getIntegerType();
|
|
if (T->isBooleanType())
|
|
return 1;
|
|
// For builtin types, just use the standard type sizing method
|
|
return (unsigned)getTypeSize(T);
|
|
}
|
|
|
|
QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
|
|
assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
|
|
"Unexpected type");
|
|
|
|
// Turn <4 x signed int> -> <4 x unsigned int>
|
|
if (const auto *VTy = T->getAs<VectorType>())
|
|
return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
|
|
VTy->getNumElements(), VTy->getVectorKind());
|
|
|
|
// For enums, we return the unsigned version of the base type.
|
|
if (const auto *ETy = T->getAs<EnumType>())
|
|
T = ETy->getDecl()->getIntegerType();
|
|
|
|
const auto *BTy = T->getAs<BuiltinType>();
|
|
assert(BTy && "Unexpected signed integer or fixed point type");
|
|
switch (BTy->getKind()) {
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar:
|
|
return UnsignedCharTy;
|
|
case BuiltinType::Short:
|
|
return UnsignedShortTy;
|
|
case BuiltinType::Int:
|
|
return UnsignedIntTy;
|
|
case BuiltinType::Long:
|
|
return UnsignedLongTy;
|
|
case BuiltinType::LongLong:
|
|
return UnsignedLongLongTy;
|
|
case BuiltinType::Int128:
|
|
return UnsignedInt128Ty;
|
|
|
|
case BuiltinType::ShortAccum:
|
|
return UnsignedShortAccumTy;
|
|
case BuiltinType::Accum:
|
|
return UnsignedAccumTy;
|
|
case BuiltinType::LongAccum:
|
|
return UnsignedLongAccumTy;
|
|
case BuiltinType::SatShortAccum:
|
|
return SatUnsignedShortAccumTy;
|
|
case BuiltinType::SatAccum:
|
|
return SatUnsignedAccumTy;
|
|
case BuiltinType::SatLongAccum:
|
|
return SatUnsignedLongAccumTy;
|
|
case BuiltinType::ShortFract:
|
|
return UnsignedShortFractTy;
|
|
case BuiltinType::Fract:
|
|
return UnsignedFractTy;
|
|
case BuiltinType::LongFract:
|
|
return UnsignedLongFractTy;
|
|
case BuiltinType::SatShortFract:
|
|
return SatUnsignedShortFractTy;
|
|
case BuiltinType::SatFract:
|
|
return SatUnsignedFractTy;
|
|
case BuiltinType::SatLongFract:
|
|
return SatUnsignedLongFractTy;
|
|
default:
|
|
llvm_unreachable("Unexpected signed integer or fixed point type");
|
|
}
|
|
}
|
|
|
|
ASTMutationListener::~ASTMutationListener() = default;
|
|
|
|
void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
|
|
QualType ReturnType) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Builtin Type Computation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
|
|
/// pointer over the consumed characters. This returns the resultant type. If
|
|
/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
|
|
/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
|
|
/// a vector of "i*".
|
|
///
|
|
/// RequiresICE is filled in on return to indicate whether the value is required
|
|
/// to be an Integer Constant Expression.
|
|
static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
|
|
ASTContext::GetBuiltinTypeError &Error,
|
|
bool &RequiresICE,
|
|
bool AllowTypeModifiers) {
|
|
// Modifiers.
|
|
int HowLong = 0;
|
|
bool Signed = false, Unsigned = false;
|
|
RequiresICE = false;
|
|
|
|
// Read the prefixed modifiers first.
|
|
bool Done = false;
|
|
#ifndef NDEBUG
|
|
bool IsSpecialLong = false;
|
|
#endif
|
|
while (!Done) {
|
|
switch (*Str++) {
|
|
default: Done = true; --Str; break;
|
|
case 'I':
|
|
RequiresICE = true;
|
|
break;
|
|
case 'S':
|
|
assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
|
|
assert(!Signed && "Can't use 'S' modifier multiple times!");
|
|
Signed = true;
|
|
break;
|
|
case 'U':
|
|
assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
|
|
assert(!Unsigned && "Can't use 'U' modifier multiple times!");
|
|
Unsigned = true;
|
|
break;
|
|
case 'L':
|
|
assert(!IsSpecialLong && "Can't use 'L' with 'W' or 'N' modifiers");
|
|
assert(HowLong <= 2 && "Can't have LLLL modifier");
|
|
++HowLong;
|
|
break;
|
|
case 'N':
|
|
// 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
|
|
assert(!IsSpecialLong && "Can't use two 'N' or 'W' modifiers!");
|
|
assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
|
|
#ifndef NDEBUG
|
|
IsSpecialLong = true;
|
|
#endif
|
|
if (Context.getTargetInfo().getLongWidth() == 32)
|
|
++HowLong;
|
|
break;
|
|
case 'W':
|
|
// This modifier represents int64 type.
|
|
assert(!IsSpecialLong && "Can't use two 'N' or 'W' modifiers!");
|
|
assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
|
|
#ifndef NDEBUG
|
|
IsSpecialLong = true;
|
|
#endif
|
|
switch (Context.getTargetInfo().getInt64Type()) {
|
|
default:
|
|
llvm_unreachable("Unexpected integer type");
|
|
case TargetInfo::SignedLong:
|
|
HowLong = 1;
|
|
break;
|
|
case TargetInfo::SignedLongLong:
|
|
HowLong = 2;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
QualType Type;
|
|
|
|
// Read the base type.
|
|
switch (*Str++) {
|
|
default: llvm_unreachable("Unknown builtin type letter!");
|
|
case 'v':
|
|
assert(HowLong == 0 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'v'!");
|
|
Type = Context.VoidTy;
|
|
break;
|
|
case 'h':
|
|
assert(HowLong == 0 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'h'!");
|
|
Type = Context.HalfTy;
|
|
break;
|
|
case 'f':
|
|
assert(HowLong == 0 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'f'!");
|
|
Type = Context.FloatTy;
|
|
break;
|
|
case 'd':
|
|
assert(HowLong < 3 && !Signed && !Unsigned &&
|
|
"Bad modifiers used with 'd'!");
|
|
if (HowLong == 1)
|
|
Type = Context.LongDoubleTy;
|
|
else if (HowLong == 2)
|
|
Type = Context.Float128Ty;
|
|
else
|
|
Type = Context.DoubleTy;
|
|
break;
|
|
case 's':
|
|
assert(HowLong == 0 && "Bad modifiers used with 's'!");
|
|
if (Unsigned)
|
|
Type = Context.UnsignedShortTy;
|
|
else
|
|
Type = Context.ShortTy;
|
|
break;
|
|
case 'i':
|
|
if (HowLong == 3)
|
|
Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
|
|
else if (HowLong == 2)
|
|
Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
|
|
else if (HowLong == 1)
|
|
Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
|
|
else
|
|
Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
|
|
break;
|
|
case 'c':
|
|
assert(HowLong == 0 && "Bad modifiers used with 'c'!");
|
|
if (Signed)
|
|
Type = Context.SignedCharTy;
|
|
else if (Unsigned)
|
|
Type = Context.UnsignedCharTy;
|
|
else
|
|
Type = Context.CharTy;
|
|
break;
|
|
case 'b': // boolean
|
|
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
|
|
Type = Context.BoolTy;
|
|
break;
|
|
case 'z': // size_t.
|
|
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
|
|
Type = Context.getSizeType();
|
|
break;
|
|
case 'w': // wchar_t.
|
|
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
|
|
Type = Context.getWideCharType();
|
|
break;
|
|
case 'F':
|
|
Type = Context.getCFConstantStringType();
|
|
break;
|
|
case 'G':
|
|
Type = Context.getObjCIdType();
|
|
break;
|
|
case 'H':
|
|
Type = Context.getObjCSelType();
|
|
break;
|
|
case 'M':
|
|
Type = Context.getObjCSuperType();
|
|
break;
|
|
case 'a':
|
|
Type = Context.getBuiltinVaListType();
|
|
assert(!Type.isNull() && "builtin va list type not initialized!");
|
|
break;
|
|
case 'A':
|
|
// This is a "reference" to a va_list; however, what exactly
|
|
// this means depends on how va_list is defined. There are two
|
|
// different kinds of va_list: ones passed by value, and ones
|
|
// passed by reference. An example of a by-value va_list is
|
|
// x86, where va_list is a char*. An example of by-ref va_list
|
|
// is x86-64, where va_list is a __va_list_tag[1]. For x86,
|
|
// we want this argument to be a char*&; for x86-64, we want
|
|
// it to be a __va_list_tag*.
|
|
Type = Context.getBuiltinVaListType();
|
|
assert(!Type.isNull() && "builtin va list type not initialized!");
|
|
if (Type->isArrayType())
|
|
Type = Context.getArrayDecayedType(Type);
|
|
else
|
|
Type = Context.getLValueReferenceType(Type);
|
|
break;
|
|
case 'V': {
|
|
char *End;
|
|
unsigned NumElements = strtoul(Str, &End, 10);
|
|
assert(End != Str && "Missing vector size");
|
|
Str = End;
|
|
|
|
QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
|
|
RequiresICE, false);
|
|
assert(!RequiresICE && "Can't require vector ICE");
|
|
|
|
// TODO: No way to make AltiVec vectors in builtins yet.
|
|
Type = Context.getVectorType(ElementType, NumElements,
|
|
VectorType::GenericVector);
|
|
break;
|
|
}
|
|
case 'E': {
|
|
char *End;
|
|
|
|
unsigned NumElements = strtoul(Str, &End, 10);
|
|
assert(End != Str && "Missing vector size");
|
|
|
|
Str = End;
|
|
|
|
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
|
|
false);
|
|
Type = Context.getExtVectorType(ElementType, NumElements);
|
|
break;
|
|
}
|
|
case 'X': {
|
|
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
|
|
false);
|
|
assert(!RequiresICE && "Can't require complex ICE");
|
|
Type = Context.getComplexType(ElementType);
|
|
break;
|
|
}
|
|
case 'Y':
|
|
Type = Context.getPointerDiffType();
|
|
break;
|
|
case 'P':
|
|
Type = Context.getFILEType();
|
|
if (Type.isNull()) {
|
|
Error = ASTContext::GE_Missing_stdio;
|
|
return {};
|
|
}
|
|
break;
|
|
case 'J':
|
|
if (Signed)
|
|
Type = Context.getsigjmp_bufType();
|
|
else
|
|
Type = Context.getjmp_bufType();
|
|
|
|
if (Type.isNull()) {
|
|
Error = ASTContext::GE_Missing_setjmp;
|
|
return {};
|
|
}
|
|
break;
|
|
case 'K':
|
|
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
|
|
Type = Context.getucontext_tType();
|
|
|
|
if (Type.isNull()) {
|
|
Error = ASTContext::GE_Missing_ucontext;
|
|
return {};
|
|
}
|
|
break;
|
|
case 'p':
|
|
Type = Context.getProcessIDType();
|
|
break;
|
|
}
|
|
|
|
// If there are modifiers and if we're allowed to parse them, go for it.
|
|
Done = !AllowTypeModifiers;
|
|
while (!Done) {
|
|
switch (char c = *Str++) {
|
|
default: Done = true; --Str; break;
|
|
case '*':
|
|
case '&': {
|
|
// Both pointers and references can have their pointee types
|
|
// qualified with an address space.
|
|
char *End;
|
|
unsigned AddrSpace = strtoul(Str, &End, 10);
|
|
if (End != Str) {
|
|
// Note AddrSpace == 0 is not the same as an unspecified address space.
|
|
Type = Context.getAddrSpaceQualType(
|
|
Type,
|
|
Context.getLangASForBuiltinAddressSpace(AddrSpace));
|
|
Str = End;
|
|
}
|
|
if (c == '*')
|
|
Type = Context.getPointerType(Type);
|
|
else
|
|
Type = Context.getLValueReferenceType(Type);
|
|
break;
|
|
}
|
|
// FIXME: There's no way to have a built-in with an rvalue ref arg.
|
|
case 'C':
|
|
Type = Type.withConst();
|
|
break;
|
|
case 'D':
|
|
Type = Context.getVolatileType(Type);
|
|
break;
|
|
case 'R':
|
|
Type = Type.withRestrict();
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
|
|
"Integer constant 'I' type must be an integer");
|
|
|
|
return Type;
|
|
}
|
|
|
|
/// GetBuiltinType - Return the type for the specified builtin.
|
|
QualType ASTContext::GetBuiltinType(unsigned Id,
|
|
GetBuiltinTypeError &Error,
|
|
unsigned *IntegerConstantArgs) const {
|
|
const char *TypeStr = BuiltinInfo.getTypeString(Id);
|
|
if (TypeStr[0] == '\0') {
|
|
Error = GE_Missing_type;
|
|
return {};
|
|
}
|
|
|
|
SmallVector<QualType, 8> ArgTypes;
|
|
|
|
bool RequiresICE = false;
|
|
Error = GE_None;
|
|
QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
|
|
RequiresICE, true);
|
|
if (Error != GE_None)
|
|
return {};
|
|
|
|
assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
|
|
|
|
while (TypeStr[0] && TypeStr[0] != '.') {
|
|
QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
|
|
if (Error != GE_None)
|
|
return {};
|
|
|
|
// If this argument is required to be an IntegerConstantExpression and the
|
|
// caller cares, fill in the bitmask we return.
|
|
if (RequiresICE && IntegerConstantArgs)
|
|
*IntegerConstantArgs |= 1 << ArgTypes.size();
|
|
|
|
// Do array -> pointer decay. The builtin should use the decayed type.
|
|
if (Ty->isArrayType())
|
|
Ty = getArrayDecayedType(Ty);
|
|
|
|
ArgTypes.push_back(Ty);
|
|
}
|
|
|
|
if (Id == Builtin::BI__GetExceptionInfo)
|
|
return {};
|
|
|
|
assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
|
|
"'.' should only occur at end of builtin type list!");
|
|
|
|
FunctionType::ExtInfo EI(CC_C);
|
|
if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
|
|
|
|
bool Variadic = (TypeStr[0] == '.');
|
|
|
|
// We really shouldn't be making a no-proto type here.
|
|
if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
|
|
return getFunctionNoProtoType(ResType, EI);
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExtInfo = EI;
|
|
EPI.Variadic = Variadic;
|
|
if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
|
|
EPI.ExceptionSpec.Type =
|
|
getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
|
|
|
|
return getFunctionType(ResType, ArgTypes, EPI);
|
|
}
|
|
|
|
static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
|
|
const FunctionDecl *FD) {
|
|
if (!FD->isExternallyVisible())
|
|
return GVA_Internal;
|
|
|
|
// Non-user-provided functions get emitted as weak definitions with every
|
|
// use, no matter whether they've been explicitly instantiated etc.
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
if (!MD->isUserProvided())
|
|
return GVA_DiscardableODR;
|
|
|
|
GVALinkage External;
|
|
switch (FD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
External = GVA_StrongExternal;
|
|
break;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return GVA_StrongODR;
|
|
|
|
// C++11 [temp.explicit]p10:
|
|
// [ Note: The intent is that an inline function that is the subject of
|
|
// an explicit instantiation declaration will still be implicitly
|
|
// instantiated when used so that the body can be considered for
|
|
// inlining, but that no out-of-line copy of the inline function would be
|
|
// generated in the translation unit. -- end note ]
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
return GVA_AvailableExternally;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
External = GVA_DiscardableODR;
|
|
break;
|
|
}
|
|
|
|
if (!FD->isInlined())
|
|
return External;
|
|
|
|
if ((!Context.getLangOpts().CPlusPlus &&
|
|
!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
!FD->hasAttr<DLLExportAttr>()) ||
|
|
FD->hasAttr<GNUInlineAttr>()) {
|
|
// FIXME: This doesn't match gcc's behavior for dllexport inline functions.
|
|
|
|
// GNU or C99 inline semantics. Determine whether this symbol should be
|
|
// externally visible.
|
|
if (FD->isInlineDefinitionExternallyVisible())
|
|
return External;
|
|
|
|
// C99 inline semantics, where the symbol is not externally visible.
|
|
return GVA_AvailableExternally;
|
|
}
|
|
|
|
// Functions specified with extern and inline in -fms-compatibility mode
|
|
// forcibly get emitted. While the body of the function cannot be later
|
|
// replaced, the function definition cannot be discarded.
|
|
if (FD->isMSExternInline())
|
|
return GVA_StrongODR;
|
|
|
|
return GVA_DiscardableODR;
|
|
}
|
|
|
|
static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
|
|
const Decl *D, GVALinkage L) {
|
|
// See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
|
|
// dllexport/dllimport on inline functions.
|
|
if (D->hasAttr<DLLImportAttr>()) {
|
|
if (L == GVA_DiscardableODR || L == GVA_StrongODR)
|
|
return GVA_AvailableExternally;
|
|
} else if (D->hasAttr<DLLExportAttr>()) {
|
|
if (L == GVA_DiscardableODR)
|
|
return GVA_StrongODR;
|
|
} else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
|
|
D->hasAttr<CUDAGlobalAttr>()) {
|
|
// Device-side functions with __global__ attribute must always be
|
|
// visible externally so they can be launched from host.
|
|
if (L == GVA_DiscardableODR || L == GVA_Internal)
|
|
return GVA_StrongODR;
|
|
}
|
|
return L;
|
|
}
|
|
|
|
/// Adjust the GVALinkage for a declaration based on what an external AST source
|
|
/// knows about whether there can be other definitions of this declaration.
|
|
static GVALinkage
|
|
adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
|
|
GVALinkage L) {
|
|
ExternalASTSource *Source = Ctx.getExternalSource();
|
|
if (!Source)
|
|
return L;
|
|
|
|
switch (Source->hasExternalDefinitions(D)) {
|
|
case ExternalASTSource::EK_Never:
|
|
// Other translation units rely on us to provide the definition.
|
|
if (L == GVA_DiscardableODR)
|
|
return GVA_StrongODR;
|
|
break;
|
|
|
|
case ExternalASTSource::EK_Always:
|
|
return GVA_AvailableExternally;
|
|
|
|
case ExternalASTSource::EK_ReplyHazy:
|
|
break;
|
|
}
|
|
return L;
|
|
}
|
|
|
|
GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
|
|
return adjustGVALinkageForExternalDefinitionKind(*this, FD,
|
|
adjustGVALinkageForAttributes(*this, FD,
|
|
basicGVALinkageForFunction(*this, FD)));
|
|
}
|
|
|
|
static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
|
|
const VarDecl *VD) {
|
|
if (!VD->isExternallyVisible())
|
|
return GVA_Internal;
|
|
|
|
if (VD->isStaticLocal()) {
|
|
const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
|
|
while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
|
|
LexicalContext = LexicalContext->getLexicalParent();
|
|
|
|
// ObjC Blocks can create local variables that don't have a FunctionDecl
|
|
// LexicalContext.
|
|
if (!LexicalContext)
|
|
return GVA_DiscardableODR;
|
|
|
|
// Otherwise, let the static local variable inherit its linkage from the
|
|
// nearest enclosing function.
|
|
auto StaticLocalLinkage =
|
|
Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
|
|
|
|
// Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
|
|
// be emitted in any object with references to the symbol for the object it
|
|
// contains, whether inline or out-of-line."
|
|
// Similar behavior is observed with MSVC. An alternative ABI could use
|
|
// StrongODR/AvailableExternally to match the function, but none are
|
|
// known/supported currently.
|
|
if (StaticLocalLinkage == GVA_StrongODR ||
|
|
StaticLocalLinkage == GVA_AvailableExternally)
|
|
return GVA_DiscardableODR;
|
|
return StaticLocalLinkage;
|
|
}
|
|
|
|
// MSVC treats in-class initialized static data members as definitions.
|
|
// By giving them non-strong linkage, out-of-line definitions won't
|
|
// cause link errors.
|
|
if (Context.isMSStaticDataMemberInlineDefinition(VD))
|
|
return GVA_DiscardableODR;
|
|
|
|
// Most non-template variables have strong linkage; inline variables are
|
|
// linkonce_odr or (occasionally, for compatibility) weak_odr.
|
|
GVALinkage StrongLinkage;
|
|
switch (Context.getInlineVariableDefinitionKind(VD)) {
|
|
case ASTContext::InlineVariableDefinitionKind::None:
|
|
StrongLinkage = GVA_StrongExternal;
|
|
break;
|
|
case ASTContext::InlineVariableDefinitionKind::Weak:
|
|
case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
|
|
StrongLinkage = GVA_DiscardableODR;
|
|
break;
|
|
case ASTContext::InlineVariableDefinitionKind::Strong:
|
|
StrongLinkage = GVA_StrongODR;
|
|
break;
|
|
}
|
|
|
|
switch (VD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
return StrongLinkage;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
VD->isStaticDataMember()
|
|
? GVA_StrongODR
|
|
: StrongLinkage;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return GVA_StrongODR;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
return GVA_AvailableExternally;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
return GVA_DiscardableODR;
|
|
}
|
|
|
|
llvm_unreachable("Invalid Linkage!");
|
|
}
|
|
|
|
GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
|
|
return adjustGVALinkageForExternalDefinitionKind(*this, VD,
|
|
adjustGVALinkageForAttributes(*this, VD,
|
|
basicGVALinkageForVariable(*this, VD)));
|
|
}
|
|
|
|
bool ASTContext::DeclMustBeEmitted(const Decl *D) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
if (!VD->isFileVarDecl())
|
|
return false;
|
|
// Global named register variables (GNU extension) are never emitted.
|
|
if (VD->getStorageClass() == SC_Register)
|
|
return false;
|
|
if (VD->getDescribedVarTemplate() ||
|
|
isa<VarTemplatePartialSpecializationDecl>(VD))
|
|
return false;
|
|
} else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// We never need to emit an uninstantiated function template.
|
|
if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
|
|
return false;
|
|
} else if (isa<PragmaCommentDecl>(D))
|
|
return true;
|
|
else if (isa<OMPThreadPrivateDecl>(D))
|
|
return true;
|
|
else if (isa<PragmaDetectMismatchDecl>(D))
|
|
return true;
|
|
else if (isa<OMPThreadPrivateDecl>(D))
|
|
return !D->getDeclContext()->isDependentContext();
|
|
else if (isa<OMPDeclareReductionDecl>(D))
|
|
return !D->getDeclContext()->isDependentContext();
|
|
else if (isa<ImportDecl>(D))
|
|
return true;
|
|
else
|
|
return false;
|
|
|
|
if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
|
|
assert(getExternalSource() && "It's from an AST file; must have a source.");
|
|
// On Windows, PCH files are built together with an object file. If this
|
|
// declaration comes from such a PCH and DeclMustBeEmitted would return
|
|
// true, it would have returned true and the decl would have been emitted
|
|
// into that object file, so it doesn't need to be emitted here.
|
|
// Note that decls are still emitted if they're referenced, as usual;
|
|
// DeclMustBeEmitted is used to decide whether a decl must be emitted even
|
|
// if it's not referenced.
|
|
//
|
|
// Explicit template instantiation definitions are tricky. If there was an
|
|
// explicit template instantiation decl in the PCH before, it will look like
|
|
// the definition comes from there, even if that was just the declaration.
|
|
// (Explicit instantiation defs of variable templates always get emitted.)
|
|
bool IsExpInstDef =
|
|
isa<FunctionDecl>(D) &&
|
|
cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitInstantiationDefinition;
|
|
|
|
// Implicit member function definitions, such as operator= might not be
|
|
// marked as template specializations, since they're not coming from a
|
|
// template but synthesized directly on the class.
|
|
IsExpInstDef |=
|
|
isa<CXXMethodDecl>(D) &&
|
|
cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitInstantiationDefinition;
|
|
|
|
if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
|
|
return false;
|
|
}
|
|
|
|
// If this is a member of a class template, we do not need to emit it.
|
|
if (D->getDeclContext()->isDependentContext())
|
|
return false;
|
|
|
|
// Weak references don't produce any output by themselves.
|
|
if (D->hasAttr<WeakRefAttr>())
|
|
return false;
|
|
|
|
// Aliases and used decls are required.
|
|
if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
|
|
return true;
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Forward declarations aren't required.
|
|
if (!FD->doesThisDeclarationHaveABody())
|
|
return FD->doesDeclarationForceExternallyVisibleDefinition();
|
|
|
|
// Constructors and destructors are required.
|
|
if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
|
|
return true;
|
|
|
|
// The key function for a class is required. This rule only comes
|
|
// into play when inline functions can be key functions, though.
|
|
if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
const CXXRecordDecl *RD = MD->getParent();
|
|
if (MD->isOutOfLine() && RD->isDynamicClass()) {
|
|
const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
|
|
if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
GVALinkage Linkage = GetGVALinkageForFunction(FD);
|
|
|
|
// static, static inline, always_inline, and extern inline functions can
|
|
// always be deferred. Normal inline functions can be deferred in C99/C++.
|
|
// Implicit template instantiations can also be deferred in C++.
|
|
return !isDiscardableGVALinkage(Linkage);
|
|
}
|
|
|
|
const auto *VD = cast<VarDecl>(D);
|
|
assert(VD->isFileVarDecl() && "Expected file scoped var");
|
|
|
|
// If the decl is marked as `declare target to`, it should be emitted for the
|
|
// host and for the device.
|
|
if (LangOpts.OpenMP &&
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
|
|
return true;
|
|
|
|
if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
|
|
!isMSStaticDataMemberInlineDefinition(VD))
|
|
return false;
|
|
|
|
// Variables that can be needed in other TUs are required.
|
|
auto Linkage = GetGVALinkageForVariable(VD);
|
|
if (!isDiscardableGVALinkage(Linkage))
|
|
return true;
|
|
|
|
// We never need to emit a variable that is available in another TU.
|
|
if (Linkage == GVA_AvailableExternally)
|
|
return false;
|
|
|
|
// Variables that have destruction with side-effects are required.
|
|
if (VD->getType().isDestructedType())
|
|
return true;
|
|
|
|
// Variables that have initialization with side-effects are required.
|
|
if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
|
|
// We can get a value-dependent initializer during error recovery.
|
|
(VD->getInit()->isValueDependent() || !VD->evaluateValue()))
|
|
return true;
|
|
|
|
// Likewise, variables with tuple-like bindings are required if their
|
|
// bindings have side-effects.
|
|
if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
|
|
for (const auto *BD : DD->bindings())
|
|
if (const auto *BindingVD = BD->getHoldingVar())
|
|
if (DeclMustBeEmitted(BindingVD))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void ASTContext::forEachMultiversionedFunctionVersion(
|
|
const FunctionDecl *FD,
|
|
llvm::function_ref<void(FunctionDecl *)> Pred) const {
|
|
assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
|
|
llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
|
|
FD = FD->getMostRecentDecl();
|
|
for (auto *CurDecl :
|
|
FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
|
|
FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
|
|
if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
|
|
std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
|
|
SeenDecls.insert(CurFD);
|
|
Pred(CurFD);
|
|
}
|
|
}
|
|
}
|
|
|
|
CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
|
|
bool IsCXXMethod) const {
|
|
// Pass through to the C++ ABI object
|
|
if (IsCXXMethod)
|
|
return ABI->getDefaultMethodCallConv(IsVariadic);
|
|
|
|
switch (LangOpts.getDefaultCallingConv()) {
|
|
case LangOptions::DCC_None:
|
|
break;
|
|
case LangOptions::DCC_CDecl:
|
|
return CC_C;
|
|
case LangOptions::DCC_FastCall:
|
|
if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
|
|
return CC_X86FastCall;
|
|
break;
|
|
case LangOptions::DCC_StdCall:
|
|
if (!IsVariadic)
|
|
return CC_X86StdCall;
|
|
break;
|
|
case LangOptions::DCC_VectorCall:
|
|
// __vectorcall cannot be applied to variadic functions.
|
|
if (!IsVariadic)
|
|
return CC_X86VectorCall;
|
|
break;
|
|
case LangOptions::DCC_RegCall:
|
|
// __regcall cannot be applied to variadic functions.
|
|
if (!IsVariadic)
|
|
return CC_X86RegCall;
|
|
break;
|
|
}
|
|
return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
|
|
}
|
|
|
|
bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
|
|
// Pass through to the C++ ABI object
|
|
return ABI->isNearlyEmpty(RD);
|
|
}
|
|
|
|
VTableContextBase *ASTContext::getVTableContext() {
|
|
if (!VTContext.get()) {
|
|
if (Target->getCXXABI().isMicrosoft())
|
|
VTContext.reset(new MicrosoftVTableContext(*this));
|
|
else
|
|
VTContext.reset(new ItaniumVTableContext(*this));
|
|
}
|
|
return VTContext.get();
|
|
}
|
|
|
|
MangleContext *ASTContext::createMangleContext() {
|
|
switch (Target->getCXXABI().getKind()) {
|
|
case TargetCXXABI::GenericAArch64:
|
|
case TargetCXXABI::GenericItanium:
|
|
case TargetCXXABI::GenericARM:
|
|
case TargetCXXABI::GenericMIPS:
|
|
case TargetCXXABI::iOS:
|
|
case TargetCXXABI::iOS64:
|
|
case TargetCXXABI::WebAssembly:
|
|
case TargetCXXABI::WatchOS:
|
|
return ItaniumMangleContext::create(*this, getDiagnostics());
|
|
case TargetCXXABI::Microsoft:
|
|
return MicrosoftMangleContext::create(*this, getDiagnostics());
|
|
}
|
|
llvm_unreachable("Unsupported ABI");
|
|
}
|
|
|
|
CXXABI::~CXXABI() = default;
|
|
|
|
size_t ASTContext::getSideTableAllocatedMemory() const {
|
|
return ASTRecordLayouts.getMemorySize() +
|
|
llvm::capacity_in_bytes(ObjCLayouts) +
|
|
llvm::capacity_in_bytes(KeyFunctions) +
|
|
llvm::capacity_in_bytes(ObjCImpls) +
|
|
llvm::capacity_in_bytes(BlockVarCopyInits) +
|
|
llvm::capacity_in_bytes(DeclAttrs) +
|
|
llvm::capacity_in_bytes(TemplateOrInstantiation) +
|
|
llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
|
|
llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
|
|
llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
|
|
llvm::capacity_in_bytes(OverriddenMethods) +
|
|
llvm::capacity_in_bytes(Types) +
|
|
llvm::capacity_in_bytes(VariableArrayTypes) +
|
|
llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
|
|
}
|
|
|
|
/// getIntTypeForBitwidth -
|
|
/// sets integer QualTy according to specified details:
|
|
/// bitwidth, signed/unsigned.
|
|
/// Returns empty type if there is no appropriate target types.
|
|
QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
|
|
unsigned Signed) const {
|
|
TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
|
|
CanQualType QualTy = getFromTargetType(Ty);
|
|
if (!QualTy && DestWidth == 128)
|
|
return Signed ? Int128Ty : UnsignedInt128Ty;
|
|
return QualTy;
|
|
}
|
|
|
|
/// getRealTypeForBitwidth -
|
|
/// sets floating point QualTy according to specified bitwidth.
|
|
/// Returns empty type if there is no appropriate target types.
|
|
QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
|
|
TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
|
|
switch (Ty) {
|
|
case TargetInfo::Float:
|
|
return FloatTy;
|
|
case TargetInfo::Double:
|
|
return DoubleTy;
|
|
case TargetInfo::LongDouble:
|
|
return LongDoubleTy;
|
|
case TargetInfo::Float128:
|
|
return Float128Ty;
|
|
case TargetInfo::NoFloat:
|
|
return {};
|
|
}
|
|
|
|
llvm_unreachable("Unhandled TargetInfo::RealType value");
|
|
}
|
|
|
|
void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
|
|
if (Number > 1)
|
|
MangleNumbers[ND] = Number;
|
|
}
|
|
|
|
unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
|
|
auto I = MangleNumbers.find(ND);
|
|
return I != MangleNumbers.end() ? I->second : 1;
|
|
}
|
|
|
|
void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
|
|
if (Number > 1)
|
|
StaticLocalNumbers[VD] = Number;
|
|
}
|
|
|
|
unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
|
|
auto I = StaticLocalNumbers.find(VD);
|
|
return I != StaticLocalNumbers.end() ? I->second : 1;
|
|
}
|
|
|
|
MangleNumberingContext &
|
|
ASTContext::getManglingNumberContext(const DeclContext *DC) {
|
|
assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
|
|
std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
|
|
if (!MCtx)
|
|
MCtx = createMangleNumberingContext();
|
|
return *MCtx;
|
|
}
|
|
|
|
std::unique_ptr<MangleNumberingContext>
|
|
ASTContext::createMangleNumberingContext() const {
|
|
return ABI->createMangleNumberingContext();
|
|
}
|
|
|
|
const CXXConstructorDecl *
|
|
ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
|
|
return ABI->getCopyConstructorForExceptionObject(
|
|
cast<CXXRecordDecl>(RD->getFirstDecl()));
|
|
}
|
|
|
|
void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
|
|
CXXConstructorDecl *CD) {
|
|
return ABI->addCopyConstructorForExceptionObject(
|
|
cast<CXXRecordDecl>(RD->getFirstDecl()),
|
|
cast<CXXConstructorDecl>(CD->getFirstDecl()));
|
|
}
|
|
|
|
void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
|
|
TypedefNameDecl *DD) {
|
|
return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
|
|
}
|
|
|
|
TypedefNameDecl *
|
|
ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
|
|
return ABI->getTypedefNameForUnnamedTagDecl(TD);
|
|
}
|
|
|
|
void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
|
|
DeclaratorDecl *DD) {
|
|
return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
|
|
}
|
|
|
|
DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
|
|
return ABI->getDeclaratorForUnnamedTagDecl(TD);
|
|
}
|
|
|
|
void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
|
|
ParamIndices[D] = index;
|
|
}
|
|
|
|
unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
|
|
ParameterIndexTable::const_iterator I = ParamIndices.find(D);
|
|
assert(I != ParamIndices.end() &&
|
|
"ParmIndices lacks entry set by ParmVarDecl");
|
|
return I->second;
|
|
}
|
|
|
|
APValue *
|
|
ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
|
|
bool MayCreate) {
|
|
assert(E && E->getStorageDuration() == SD_Static &&
|
|
"don't need to cache the computed value for this temporary");
|
|
if (MayCreate) {
|
|
APValue *&MTVI = MaterializedTemporaryValues[E];
|
|
if (!MTVI)
|
|
MTVI = new (*this) APValue;
|
|
return MTVI;
|
|
}
|
|
|
|
return MaterializedTemporaryValues.lookup(E);
|
|
}
|
|
|
|
bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
|
|
const llvm::Triple &T = getTargetInfo().getTriple();
|
|
if (!T.isOSDarwin())
|
|
return false;
|
|
|
|
if (!(T.isiOS() && T.isOSVersionLT(7)) &&
|
|
!(T.isMacOSX() && T.isOSVersionLT(10, 9)))
|
|
return false;
|
|
|
|
QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
|
|
CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
|
|
uint64_t Size = sizeChars.getQuantity();
|
|
CharUnits alignChars = getTypeAlignInChars(AtomicTy);
|
|
unsigned Align = alignChars.getQuantity();
|
|
unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
|
|
return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
|
|
}
|
|
|
|
/// Template specializations to abstract away from pointers and TypeLocs.
|
|
/// @{
|
|
template <typename T>
|
|
static ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
|
|
return ast_type_traits::DynTypedNode::create(*Node);
|
|
}
|
|
template <>
|
|
ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
|
|
return ast_type_traits::DynTypedNode::create(Node);
|
|
}
|
|
template <>
|
|
ast_type_traits::DynTypedNode
|
|
createDynTypedNode(const NestedNameSpecifierLoc &Node) {
|
|
return ast_type_traits::DynTypedNode::create(Node);
|
|
}
|
|
/// @}
|
|
|
|
/// A \c RecursiveASTVisitor that builds a map from nodes to their
|
|
/// parents as defined by the \c RecursiveASTVisitor.
|
|
///
|
|
/// Note that the relationship described here is purely in terms of AST
|
|
/// traversal - there are other relationships (for example declaration context)
|
|
/// in the AST that are better modeled by special matchers.
|
|
///
|
|
/// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
|
|
class ASTContext::ParentMap::ASTVisitor
|
|
: public RecursiveASTVisitor<ASTVisitor> {
|
|
public:
|
|
ASTVisitor(ParentMap &Map) : Map(Map) {}
|
|
|
|
private:
|
|
friend class RecursiveASTVisitor<ASTVisitor>;
|
|
|
|
using VisitorBase = RecursiveASTVisitor<ASTVisitor>;
|
|
|
|
bool shouldVisitTemplateInstantiations() const { return true; }
|
|
|
|
bool shouldVisitImplicitCode() const { return true; }
|
|
|
|
template <typename T, typename MapNodeTy, typename BaseTraverseFn,
|
|
typename MapTy>
|
|
bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse,
|
|
MapTy *Parents) {
|
|
if (!Node)
|
|
return true;
|
|
if (ParentStack.size() > 0) {
|
|
// FIXME: Currently we add the same parent multiple times, but only
|
|
// when no memoization data is available for the type.
|
|
// For example when we visit all subexpressions of template
|
|
// instantiations; this is suboptimal, but benign: the only way to
|
|
// visit those is with hasAncestor / hasParent, and those do not create
|
|
// new matches.
|
|
// The plan is to enable DynTypedNode to be storable in a map or hash
|
|
// map. The main problem there is to implement hash functions /
|
|
// comparison operators for all types that DynTypedNode supports that
|
|
// do not have pointer identity.
|
|
auto &NodeOrVector = (*Parents)[MapNode];
|
|
if (NodeOrVector.isNull()) {
|
|
if (const auto *D = ParentStack.back().get<Decl>())
|
|
NodeOrVector = D;
|
|
else if (const auto *S = ParentStack.back().get<Stmt>())
|
|
NodeOrVector = S;
|
|
else
|
|
NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
|
|
} else {
|
|
if (!NodeOrVector.template is<ParentVector *>()) {
|
|
auto *Vector = new ParentVector(
|
|
1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
|
|
delete NodeOrVector
|
|
.template dyn_cast<ast_type_traits::DynTypedNode *>();
|
|
NodeOrVector = Vector;
|
|
}
|
|
|
|
auto *Vector = NodeOrVector.template get<ParentVector *>();
|
|
// Skip duplicates for types that have memoization data.
|
|
// We must check that the type has memoization data before calling
|
|
// std::find() because DynTypedNode::operator== can't compare all
|
|
// types.
|
|
bool Found = ParentStack.back().getMemoizationData() &&
|
|
std::find(Vector->begin(), Vector->end(),
|
|
ParentStack.back()) != Vector->end();
|
|
if (!Found)
|
|
Vector->push_back(ParentStack.back());
|
|
}
|
|
}
|
|
ParentStack.push_back(createDynTypedNode(Node));
|
|
bool Result = BaseTraverse();
|
|
ParentStack.pop_back();
|
|
return Result;
|
|
}
|
|
|
|
bool TraverseDecl(Decl *DeclNode) {
|
|
return TraverseNode(
|
|
DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); },
|
|
&Map.PointerParents);
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *StmtNode) {
|
|
return TraverseNode(
|
|
StmtNode, StmtNode, [&] { return VisitorBase::TraverseStmt(StmtNode); },
|
|
&Map.PointerParents);
|
|
}
|
|
|
|
bool TraverseTypeLoc(TypeLoc TypeLocNode) {
|
|
return TraverseNode(
|
|
TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
|
|
[&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
|
|
&Map.OtherParents);
|
|
}
|
|
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
|
|
return TraverseNode(
|
|
NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
|
|
[&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); },
|
|
&Map.OtherParents);
|
|
}
|
|
|
|
ParentMap ⤅
|
|
llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
|
|
};
|
|
|
|
ASTContext::ParentMap::ParentMap(ASTContext &Ctx) {
|
|
ASTVisitor(*this).TraverseAST(Ctx);
|
|
}
|
|
|
|
ASTContext::DynTypedNodeList
|
|
ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
|
|
if (!Parents)
|
|
// We build the parent map for the traversal scope (usually whole TU), as
|
|
// hasAncestor can escape any subtree.
|
|
Parents = llvm::make_unique<ParentMap>(*this);
|
|
return Parents->getParents(Node);
|
|
}
|
|
|
|
bool
|
|
ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
|
|
const ObjCMethodDecl *MethodImpl) {
|
|
// No point trying to match an unavailable/deprecated mothod.
|
|
if (MethodDecl->hasAttr<UnavailableAttr>()
|
|
|| MethodDecl->hasAttr<DeprecatedAttr>())
|
|
return false;
|
|
if (MethodDecl->getObjCDeclQualifier() !=
|
|
MethodImpl->getObjCDeclQualifier())
|
|
return false;
|
|
if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
|
|
return false;
|
|
|
|
if (MethodDecl->param_size() != MethodImpl->param_size())
|
|
return false;
|
|
|
|
for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
|
|
IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
|
|
EF = MethodDecl->param_end();
|
|
IM != EM && IF != EF; ++IM, ++IF) {
|
|
const ParmVarDecl *DeclVar = (*IF);
|
|
const ParmVarDecl *ImplVar = (*IM);
|
|
if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
|
|
return false;
|
|
if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
|
|
return false;
|
|
}
|
|
|
|
return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
|
|
}
|
|
|
|
uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
|
|
LangAS AS;
|
|
if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
|
|
AS = LangAS::Default;
|
|
else
|
|
AS = QT->getPointeeType().getAddressSpace();
|
|
|
|
return getTargetInfo().getNullPointerValue(AS);
|
|
}
|
|
|
|
unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
|
|
if (isTargetAddressSpace(AS))
|
|
return toTargetAddressSpace(AS);
|
|
else
|
|
return (*AddrSpaceMap)[(unsigned)AS];
|
|
}
|
|
|
|
QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
|
|
assert(Ty->isFixedPointType());
|
|
|
|
if (Ty->isSaturatedFixedPointType()) return Ty;
|
|
|
|
const auto &BT = Ty->getAs<BuiltinType>();
|
|
switch (BT->getKind()) {
|
|
default:
|
|
llvm_unreachable("Not a fixed point type!");
|
|
case BuiltinType::ShortAccum:
|
|
return SatShortAccumTy;
|
|
case BuiltinType::Accum:
|
|
return SatAccumTy;
|
|
case BuiltinType::LongAccum:
|
|
return SatLongAccumTy;
|
|
case BuiltinType::UShortAccum:
|
|
return SatUnsignedShortAccumTy;
|
|
case BuiltinType::UAccum:
|
|
return SatUnsignedAccumTy;
|
|
case BuiltinType::ULongAccum:
|
|
return SatUnsignedLongAccumTy;
|
|
case BuiltinType::ShortFract:
|
|
return SatShortFractTy;
|
|
case BuiltinType::Fract:
|
|
return SatFractTy;
|
|
case BuiltinType::LongFract:
|
|
return SatLongFractTy;
|
|
case BuiltinType::UShortFract:
|
|
return SatUnsignedShortFractTy;
|
|
case BuiltinType::UFract:
|
|
return SatUnsignedFractTy;
|
|
case BuiltinType::ULongFract:
|
|
return SatUnsignedLongFractTy;
|
|
}
|
|
}
|
|
|
|
LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
|
|
if (LangOpts.OpenCL)
|
|
return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
|
|
|
|
if (LangOpts.CUDA)
|
|
return getTargetInfo().getCUDABuiltinAddressSpace(AS);
|
|
|
|
return getLangASFromTargetAS(AS);
|
|
}
|
|
|
|
// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
|
|
// doesn't include ASTContext.h
|
|
template
|
|
clang::LazyGenerationalUpdatePtr<
|
|
const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
|
|
clang::LazyGenerationalUpdatePtr<
|
|
const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
|
|
const clang::ASTContext &Ctx, Decl *Value);
|
|
|
|
unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
|
|
assert(Ty->isFixedPointType());
|
|
|
|
const auto *BT = Ty->getAs<BuiltinType>();
|
|
const TargetInfo &Target = getTargetInfo();
|
|
switch (BT->getKind()) {
|
|
default:
|
|
llvm_unreachable("Not a fixed point type!");
|
|
case BuiltinType::ShortAccum:
|
|
case BuiltinType::SatShortAccum:
|
|
return Target.getShortAccumScale();
|
|
case BuiltinType::Accum:
|
|
case BuiltinType::SatAccum:
|
|
return Target.getAccumScale();
|
|
case BuiltinType::LongAccum:
|
|
case BuiltinType::SatLongAccum:
|
|
return Target.getLongAccumScale();
|
|
case BuiltinType::UShortAccum:
|
|
case BuiltinType::SatUShortAccum:
|
|
return Target.getUnsignedShortAccumScale();
|
|
case BuiltinType::UAccum:
|
|
case BuiltinType::SatUAccum:
|
|
return Target.getUnsignedAccumScale();
|
|
case BuiltinType::ULongAccum:
|
|
case BuiltinType::SatULongAccum:
|
|
return Target.getUnsignedLongAccumScale();
|
|
case BuiltinType::ShortFract:
|
|
case BuiltinType::SatShortFract:
|
|
return Target.getShortFractScale();
|
|
case BuiltinType::Fract:
|
|
case BuiltinType::SatFract:
|
|
return Target.getFractScale();
|
|
case BuiltinType::LongFract:
|
|
case BuiltinType::SatLongFract:
|
|
return Target.getLongFractScale();
|
|
case BuiltinType::UShortFract:
|
|
case BuiltinType::SatUShortFract:
|
|
return Target.getUnsignedShortFractScale();
|
|
case BuiltinType::UFract:
|
|
case BuiltinType::SatUFract:
|
|
return Target.getUnsignedFractScale();
|
|
case BuiltinType::ULongFract:
|
|
case BuiltinType::SatULongFract:
|
|
return Target.getUnsignedLongFractScale();
|
|
}
|
|
}
|
|
|
|
unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
|
|
assert(Ty->isFixedPointType());
|
|
|
|
const auto *BT = Ty->getAs<BuiltinType>();
|
|
const TargetInfo &Target = getTargetInfo();
|
|
switch (BT->getKind()) {
|
|
default:
|
|
llvm_unreachable("Not a fixed point type!");
|
|
case BuiltinType::ShortAccum:
|
|
case BuiltinType::SatShortAccum:
|
|
return Target.getShortAccumIBits();
|
|
case BuiltinType::Accum:
|
|
case BuiltinType::SatAccum:
|
|
return Target.getAccumIBits();
|
|
case BuiltinType::LongAccum:
|
|
case BuiltinType::SatLongAccum:
|
|
return Target.getLongAccumIBits();
|
|
case BuiltinType::UShortAccum:
|
|
case BuiltinType::SatUShortAccum:
|
|
return Target.getUnsignedShortAccumIBits();
|
|
case BuiltinType::UAccum:
|
|
case BuiltinType::SatUAccum:
|
|
return Target.getUnsignedAccumIBits();
|
|
case BuiltinType::ULongAccum:
|
|
case BuiltinType::SatULongAccum:
|
|
return Target.getUnsignedLongAccumIBits();
|
|
case BuiltinType::ShortFract:
|
|
case BuiltinType::SatShortFract:
|
|
case BuiltinType::Fract:
|
|
case BuiltinType::SatFract:
|
|
case BuiltinType::LongFract:
|
|
case BuiltinType::SatLongFract:
|
|
case BuiltinType::UShortFract:
|
|
case BuiltinType::SatUShortFract:
|
|
case BuiltinType::UFract:
|
|
case BuiltinType::SatUFract:
|
|
case BuiltinType::ULongFract:
|
|
case BuiltinType::SatULongFract:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
|
|
assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
|
|
"Can only get the fixed point semantics for a "
|
|
"fixed point or integer type.");
|
|
if (Ty->isIntegerType())
|
|
return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
|
|
Ty->isSignedIntegerType());
|
|
|
|
bool isSigned = Ty->isSignedFixedPointType();
|
|
return FixedPointSemantics(
|
|
static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
|
|
Ty->isSaturatedFixedPointType(),
|
|
!isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
|
|
}
|
|
|
|
APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
|
|
assert(Ty->isFixedPointType());
|
|
return APFixedPoint::getMax(getFixedPointSemantics(Ty));
|
|
}
|
|
|
|
APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
|
|
assert(Ty->isFixedPointType());
|
|
return APFixedPoint::getMin(getFixedPointSemantics(Ty));
|
|
}
|
|
|
|
QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
|
|
assert(Ty->isUnsignedFixedPointType() &&
|
|
"Expected unsigned fixed point type");
|
|
const auto *BTy = Ty->getAs<BuiltinType>();
|
|
|
|
switch (BTy->getKind()) {
|
|
case BuiltinType::UShortAccum:
|
|
return ShortAccumTy;
|
|
case BuiltinType::UAccum:
|
|
return AccumTy;
|
|
case BuiltinType::ULongAccum:
|
|
return LongAccumTy;
|
|
case BuiltinType::SatUShortAccum:
|
|
return SatShortAccumTy;
|
|
case BuiltinType::SatUAccum:
|
|
return SatAccumTy;
|
|
case BuiltinType::SatULongAccum:
|
|
return SatLongAccumTy;
|
|
case BuiltinType::UShortFract:
|
|
return ShortFractTy;
|
|
case BuiltinType::UFract:
|
|
return FractTy;
|
|
case BuiltinType::ULongFract:
|
|
return LongFractTy;
|
|
case BuiltinType::SatUShortFract:
|
|
return SatShortFractTy;
|
|
case BuiltinType::SatUFract:
|
|
return SatFractTy;
|
|
case BuiltinType::SatULongFract:
|
|
return SatLongFractTy;
|
|
default:
|
|
llvm_unreachable("Unexpected unsigned fixed point type");
|
|
}
|
|
}
|