llvm-project/mlir/lib/Analysis/AffineAnalysis.cpp

1103 lines
48 KiB
C++

//===- AffineAnalysis.cpp - Affine structures analysis routines -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for affine structures
// (expressions, maps, sets), and other utilities relying on such analysis.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "affine-analysis"
using namespace mlir;
using llvm::dbgs;
/// Get the value that is being reduced by `pos`-th reduction in the loop if
/// such a reduction can be performed by affine parallel loops. This assumes
/// floating-point operations are commutative. On success, `kind` will be the
/// reduction kind suitable for use in affine parallel loop builder. If the
/// reduction is not supported, returns null.
static Value getSupportedReduction(AffineForOp forOp, unsigned pos,
AtomicRMWKind &kind) {
SmallVector<Operation *> combinerOps;
Value reducedVal =
matchReduction(forOp.getRegionIterArgs(), pos, combinerOps);
if (!reducedVal)
return nullptr;
// Expected only one combiner operation.
if (combinerOps.size() > 1)
return nullptr;
Operation *combinerOp = combinerOps.back();
Optional<AtomicRMWKind> maybeKind =
TypeSwitch<Operation *, Optional<AtomicRMWKind>>(combinerOp)
.Case<AddFOp>([](Operation *) { return AtomicRMWKind::addf; })
.Case<MulFOp>([](Operation *) { return AtomicRMWKind::mulf; })
.Case<AddIOp>([](Operation *) { return AtomicRMWKind::addi; })
.Case<MulIOp>([](Operation *) { return AtomicRMWKind::muli; })
.Default([](Operation *) -> Optional<AtomicRMWKind> {
// TODO: AtomicRMW supports other kinds of reductions this is
// currently not detecting, add those when the need arises.
return llvm::None;
});
if (!maybeKind)
return nullptr;
kind = *maybeKind;
return reducedVal;
}
/// Populate `supportedReductions` with descriptors of the supported reductions.
void mlir::getSupportedReductions(
AffineForOp forOp, SmallVectorImpl<LoopReduction> &supportedReductions) {
unsigned numIterArgs = forOp.getNumIterOperands();
if (numIterArgs == 0)
return;
supportedReductions.reserve(numIterArgs);
for (unsigned i = 0; i < numIterArgs; ++i) {
AtomicRMWKind kind;
if (Value value = getSupportedReduction(forOp, i, kind))
supportedReductions.emplace_back(LoopReduction{kind, i, value});
}
}
/// Returns true if `forOp' is a parallel loop. If `parallelReductions` is
/// provided, populates it with descriptors of the parallelizable reductions and
/// treats them as not preventing parallelization.
bool mlir::isLoopParallel(AffineForOp forOp,
SmallVectorImpl<LoopReduction> *parallelReductions) {
unsigned numIterArgs = forOp.getNumIterOperands();
// Loop is not parallel if it has SSA loop-carried dependences and reduction
// detection is not requested.
if (numIterArgs > 0 && !parallelReductions)
return false;
// Find supported reductions of requested.
if (parallelReductions) {
getSupportedReductions(forOp, *parallelReductions);
// Return later to allow for identifying all parallel reductions even if the
// loop is not parallel.
if (parallelReductions->size() != numIterArgs)
return false;
}
// Check memory dependences.
return isLoopMemoryParallel(forOp);
}
/// Returns true if `forOp' doesn't have memory dependences preventing
/// parallelization. This function doesn't check iter_args and should be used
/// only as a building block for full parallel-checking functions.
bool mlir::isLoopMemoryParallel(AffineForOp forOp) {
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOps;
auto walkResult = forOp.walk([&](Operation *op) -> WalkResult {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
else if (!isa<AffineForOp, AffineYieldOp, AffineIfOp>(op) &&
!MemoryEffectOpInterface::hasNoEffect(op))
return WalkResult::interrupt();
return WalkResult::advance();
});
// Stop early if the loop has unknown ops with side effects.
if (walkResult.wasInterrupted())
return false;
// Dep check depth would be number of enclosing loops + 1.
unsigned depth = getNestingDepth(forOp) + 1;
// Check dependences between all pairs of ops in 'loadAndStoreOps'.
for (auto *srcOp : loadAndStoreOps) {
MemRefAccess srcAccess(srcOp);
for (auto *dstOp : loadAndStoreOps) {
MemRefAccess dstAccess(dstOp);
FlatAffineValueConstraints dependenceConstraints;
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, depth, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (result.value != DependenceResult::NoDependence)
return false;
}
}
return true;
}
/// Returns the sequence of AffineApplyOp Operations operation in
/// 'affineApplyOps', which are reachable via a search starting from 'operands',
/// and ending at operands which are not defined by AffineApplyOps.
// TODO: Add a method to AffineApplyOp which forward substitutes the
// AffineApplyOp into any user AffineApplyOps.
void mlir::getReachableAffineApplyOps(
ArrayRef<Value> operands, SmallVectorImpl<Operation *> &affineApplyOps) {
struct State {
// The ssa value for this node in the DFS traversal.
Value value;
// The operand index of 'value' to explore next during DFS traversal.
unsigned operandIndex;
};
SmallVector<State, 4> worklist;
for (auto operand : operands) {
worklist.push_back({operand, 0});
}
while (!worklist.empty()) {
State &state = worklist.back();
auto *opInst = state.value.getDefiningOp();
// Note: getDefiningOp will return nullptr if the operand is not an
// Operation (i.e. block argument), which is a terminator for the search.
if (!isa_and_nonnull<AffineApplyOp>(opInst)) {
worklist.pop_back();
continue;
}
if (state.operandIndex == 0) {
// Pre-Visit: Add 'opInst' to reachable sequence.
affineApplyOps.push_back(opInst);
}
if (state.operandIndex < opInst->getNumOperands()) {
// Visit: Add next 'affineApplyOp' operand to worklist.
// Get next operand to visit at 'operandIndex'.
auto nextOperand = opInst->getOperand(state.operandIndex);
// Increment 'operandIndex' in 'state'.
++state.operandIndex;
// Add 'nextOperand' to worklist.
worklist.push_back({nextOperand, 0});
} else {
// Post-visit: done visiting operands AffineApplyOp, pop off stack.
worklist.pop_back();
}
}
}
// Builds a system of constraints with dimensional identifiers corresponding to
// the loop IVs of the forOps appearing in that order. Any symbols founds in
// the bound operands are added as symbols in the system. Returns failure for
// the yet unimplemented cases.
// TODO: Handle non-unit steps through local variables or stride information in
// FlatAffineValueConstraints. (For eg., by using iv - lb % step = 0 and/or by
// introducing a method in FlatAffineValueConstraints
// setExprStride(ArrayRef<int64_t> expr, int64_t stride)
LogicalResult mlir::getIndexSet(MutableArrayRef<Operation *> ops,
FlatAffineValueConstraints *domain) {
SmallVector<Value, 4> indices;
SmallVector<AffineForOp, 8> forOps;
for (Operation *op : ops) {
assert((isa<AffineForOp, AffineIfOp>(op)) &&
"ops should have either AffineForOp or AffineIfOp");
if (AffineForOp forOp = dyn_cast<AffineForOp>(op))
forOps.push_back(forOp);
}
extractForInductionVars(forOps, &indices);
// Reset while associated Values in 'indices' to the domain.
domain->reset(forOps.size(), /*numSymbols=*/0, /*numLocals=*/0, indices);
for (Operation *op : ops) {
// Add constraints from forOp's bounds.
if (AffineForOp forOp = dyn_cast<AffineForOp>(op)) {
if (failed(domain->addAffineForOpDomain(forOp)))
return failure();
} else if (AffineIfOp ifOp = dyn_cast<AffineIfOp>(op)) {
domain->addAffineIfOpDomain(ifOp);
}
}
return success();
}
/// Computes the iteration domain for 'op' and populates 'indexSet', which
/// encapsulates the constraints involving loops surrounding 'op' and
/// potentially involving any Function symbols. The dimensional identifiers in
/// 'indexSet' correspond to the loops surrounding 'op' from outermost to
/// innermost.
static LogicalResult getOpIndexSet(Operation *op,
FlatAffineValueConstraints *indexSet) {
SmallVector<Operation *, 4> ops;
getEnclosingAffineForAndIfOps(*op, &ops);
return getIndexSet(ops, indexSet);
}
namespace {
// ValuePositionMap manages the mapping from Values which represent dimension
// and symbol identifiers from 'src' and 'dst' access functions to positions
// in new space where some Values are kept separate (using addSrc/DstValue)
// and some Values are merged (addSymbolValue).
// Position lookups return the absolute position in the new space which
// has the following format:
//
// [src-dim-identifiers] [dst-dim-identifiers] [symbol-identifiers]
//
// Note: access function non-IV dimension identifiers (that have 'dimension'
// positions in the access function position space) are assigned as symbols
// in the output position space. Convenience access functions which lookup
// an Value in multiple maps are provided (i.e. getSrcDimOrSymPos) to handle
// the common case of resolving positions for all access function operands.
//
// TODO: Generalize this: could take a template parameter for the number of maps
// (3 in the current case), and lookups could take indices of maps to check. So
// getSrcDimOrSymPos would be "getPos(value, {0, 2})".
class ValuePositionMap {
public:
void addSrcValue(Value value) {
if (addValueAt(value, &srcDimPosMap, numSrcDims))
++numSrcDims;
}
void addDstValue(Value value) {
if (addValueAt(value, &dstDimPosMap, numDstDims))
++numDstDims;
}
void addSymbolValue(Value value) {
if (addValueAt(value, &symbolPosMap, numSymbols))
++numSymbols;
}
unsigned getSrcDimOrSymPos(Value value) const {
return getDimOrSymPos(value, srcDimPosMap, 0);
}
unsigned getDstDimOrSymPos(Value value) const {
return getDimOrSymPos(value, dstDimPosMap, numSrcDims);
}
unsigned getSymPos(Value value) const {
auto it = symbolPosMap.find(value);
assert(it != symbolPosMap.end());
return numSrcDims + numDstDims + it->second;
}
unsigned getNumSrcDims() const { return numSrcDims; }
unsigned getNumDstDims() const { return numDstDims; }
unsigned getNumDims() const { return numSrcDims + numDstDims; }
unsigned getNumSymbols() const { return numSymbols; }
private:
bool addValueAt(Value value, DenseMap<Value, unsigned> *posMap,
unsigned position) {
auto it = posMap->find(value);
if (it == posMap->end()) {
(*posMap)[value] = position;
return true;
}
return false;
}
unsigned getDimOrSymPos(Value value,
const DenseMap<Value, unsigned> &dimPosMap,
unsigned dimPosOffset) const {
auto it = dimPosMap.find(value);
if (it != dimPosMap.end()) {
return dimPosOffset + it->second;
}
it = symbolPosMap.find(value);
assert(it != symbolPosMap.end());
return numSrcDims + numDstDims + it->second;
}
unsigned numSrcDims = 0;
unsigned numDstDims = 0;
unsigned numSymbols = 0;
DenseMap<Value, unsigned> srcDimPosMap;
DenseMap<Value, unsigned> dstDimPosMap;
DenseMap<Value, unsigned> symbolPosMap;
};
} // namespace
// Builds a map from Value to identifier position in a new merged identifier
// list, which is the result of merging dim/symbol lists from src/dst
// iteration domains, the format of which is as follows:
//
// [src-dim-identifiers, dst-dim-identifiers, symbol-identifiers, const_term]
//
// This method populates 'valuePosMap' with mappings from operand Values in
// 'srcAccessMap'/'dstAccessMap' (as well as those in 'srcDomain'/'dstDomain')
// to the position of these values in the merged list.
static void buildDimAndSymbolPositionMaps(
const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
const AffineValueMap &srcAccessMap, const AffineValueMap &dstAccessMap,
ValuePositionMap *valuePosMap,
FlatAffineValueConstraints *dependenceConstraints) {
// IsDimState is a tri-state boolean. It is used to distinguish three
// different cases of the values passed to updateValuePosMap.
// - When it is TRUE, we are certain that all values are dim values.
// - When it is FALSE, we are certain that all values are symbol values.
// - When it is UNKNOWN, we need to further check whether the value is from a
// loop IV to determine its type (dim or symbol).
// We need this enumeration because sometimes we cannot determine whether a
// Value is a symbol or a dim by the information from the Value itself. If a
// Value appears in an affine map of a loop, we can determine whether it is a
// dim or not by the function `isForInductionVar`. But when a Value is in the
// affine set of an if-statement, there is no way to identify its category
// (dim/symbol) by itself. Fortunately, the Values to be inserted into
// `valuePosMap` come from `srcDomain` and `dstDomain`, and they hold such
// information of Value category: `srcDomain` and `dstDomain` organize Values
// by their category, such that the position of each Value stored in
// `srcDomain` and `dstDomain` marks which category that a Value belongs to.
// Therefore, we can separate Values into dim and symbol groups before passing
// them to the function `updateValuePosMap`. Specifically, when passing the
// dim group, we set IsDimState to TRUE; otherwise, we set it to FALSE.
// However, Values from the operands of `srcAccessMap` and `dstAccessMap` are
// not explicitly categorized into dim or symbol, and we have to rely on
// `isForInductionVar` to make the decision. IsDimState is set to UNKNOWN in
// this case.
enum IsDimState { TRUE, FALSE, UNKNOWN };
// This function places each given Value (in `values`) under a respective
// category in `valuePosMap`. Specifically, the placement rules are:
// 1) If `isDim` is FALSE, then every value in `values` are inserted into
// `valuePosMap` as symbols.
// 2) If `isDim` is UNKNOWN and the value of the current iteration is NOT an
// induction variable of a for-loop, we treat it as symbol as well.
// 3) For other cases, we decide whether to add a value to the `src` or the
// `dst` section of the dim category simply by the boolean value `isSrc`.
auto updateValuePosMap = [&](ArrayRef<Value> values, bool isSrc,
IsDimState isDim) {
for (unsigned i = 0, e = values.size(); i < e; ++i) {
auto value = values[i];
if (isDim == FALSE || (isDim == UNKNOWN && !isForInductionVar(value))) {
assert(isValidSymbol(value) &&
"access operand has to be either a loop IV or a symbol");
valuePosMap->addSymbolValue(value);
} else {
if (isSrc)
valuePosMap->addSrcValue(value);
else
valuePosMap->addDstValue(value);
}
}
};
// Collect values from the src and dst domains. For each domain, we separate
// the collected values into dim and symbol parts.
SmallVector<Value, 4> srcDimValues, dstDimValues, srcSymbolValues,
dstSymbolValues;
srcDomain.getValues(0, srcDomain.getNumDimIds(), &srcDimValues);
dstDomain.getValues(0, dstDomain.getNumDimIds(), &dstDimValues);
srcDomain.getValues(srcDomain.getNumDimIds(),
srcDomain.getNumDimAndSymbolIds(), &srcSymbolValues);
dstDomain.getValues(dstDomain.getNumDimIds(),
dstDomain.getNumDimAndSymbolIds(), &dstSymbolValues);
// Update value position map with dim values from src iteration domain.
updateValuePosMap(srcDimValues, /*isSrc=*/true, /*isDim=*/TRUE);
// Update value position map with dim values from dst iteration domain.
updateValuePosMap(dstDimValues, /*isSrc=*/false, /*isDim=*/TRUE);
// Update value position map with symbols from src iteration domain.
updateValuePosMap(srcSymbolValues, /*isSrc=*/true, /*isDim=*/FALSE);
// Update value position map with symbols from dst iteration domain.
updateValuePosMap(dstSymbolValues, /*isSrc=*/false, /*isDim=*/FALSE);
// Update value position map with identifiers from src access function.
updateValuePosMap(srcAccessMap.getOperands(), /*isSrc=*/true,
/*isDim=*/UNKNOWN);
// Update value position map with identifiers from dst access function.
updateValuePosMap(dstAccessMap.getOperands(), /*isSrc=*/false,
/*isDim=*/UNKNOWN);
}
// Sets up dependence constraints columns appropriately, in the format:
// [src-dim-ids, dst-dim-ids, symbol-ids, local-ids, const_term]
static void
initDependenceConstraints(const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
const AffineValueMap &srcAccessMap,
const AffineValueMap &dstAccessMap,
const ValuePositionMap &valuePosMap,
FlatAffineValueConstraints *dependenceConstraints) {
// Calculate number of equalities/inequalities and columns required to
// initialize FlatAffineValueConstraints for 'dependenceDomain'.
unsigned numIneq =
srcDomain.getNumInequalities() + dstDomain.getNumInequalities();
AffineMap srcMap = srcAccessMap.getAffineMap();
assert(srcMap.getNumResults() == dstAccessMap.getAffineMap().getNumResults());
unsigned numEq = srcMap.getNumResults();
unsigned numDims = srcDomain.getNumDimIds() + dstDomain.getNumDimIds();
unsigned numSymbols = valuePosMap.getNumSymbols();
unsigned numLocals = srcDomain.getNumLocalIds() + dstDomain.getNumLocalIds();
unsigned numIds = numDims + numSymbols + numLocals;
unsigned numCols = numIds + 1;
// Set flat affine constraints sizes and reserving space for constraints.
dependenceConstraints->reset(numIneq, numEq, numCols, numDims, numSymbols,
numLocals);
// Set values corresponding to dependence constraint identifiers.
SmallVector<Value, 4> srcLoopIVs, dstLoopIVs;
srcDomain.getValues(0, srcDomain.getNumDimIds(), &srcLoopIVs);
dstDomain.getValues(0, dstDomain.getNumDimIds(), &dstLoopIVs);
dependenceConstraints->setValues(0, srcLoopIVs.size(), srcLoopIVs);
dependenceConstraints->setValues(
srcLoopIVs.size(), srcLoopIVs.size() + dstLoopIVs.size(), dstLoopIVs);
// Set values for the symbolic identifier dimensions. `isSymbolDetermined`
// indicates whether we are certain that the `values` passed in are all
// symbols. If `isSymbolDetermined` is true, then we treat every Value in
// `values` as a symbol; otherwise, we let the function `isForInductionVar` to
// distinguish whether a Value in `values` is a symbol or not.
auto setSymbolIds = [&](ArrayRef<Value> values,
bool isSymbolDetermined = true) {
for (auto value : values) {
if (isSymbolDetermined || !isForInductionVar(value)) {
assert(isValidSymbol(value) && "expected symbol");
dependenceConstraints->setValue(valuePosMap.getSymPos(value), value);
}
}
};
// We are uncertain about whether all operands in `srcAccessMap` and
// `dstAccessMap` are symbols, so we set `isSymbolDetermined` to false.
setSymbolIds(srcAccessMap.getOperands(), /*isSymbolDetermined=*/false);
setSymbolIds(dstAccessMap.getOperands(), /*isSymbolDetermined=*/false);
SmallVector<Value, 8> srcSymbolValues, dstSymbolValues;
srcDomain.getValues(srcDomain.getNumDimIds(),
srcDomain.getNumDimAndSymbolIds(), &srcSymbolValues);
dstDomain.getValues(dstDomain.getNumDimIds(),
dstDomain.getNumDimAndSymbolIds(), &dstSymbolValues);
// Since we only take symbol Values out of `srcDomain` and `dstDomain`,
// `isSymbolDetermined` is kept to its default value: true.
setSymbolIds(srcSymbolValues);
setSymbolIds(dstSymbolValues);
for (unsigned i = 0, e = dependenceConstraints->getNumDimAndSymbolIds();
i < e; i++)
assert(dependenceConstraints->hasValue(i));
}
// Adds iteration domain constraints from 'srcDomain' and 'dstDomain' into
// 'dependenceDomain'.
// Uses 'valuePosMap' to determine the position in 'dependenceDomain' to which a
// srcDomain/dstDomain Value maps.
static void addDomainConstraints(const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
const ValuePositionMap &valuePosMap,
FlatAffineValueConstraints *dependenceDomain) {
unsigned depNumDimsAndSymbolIds = dependenceDomain->getNumDimAndSymbolIds();
SmallVector<int64_t, 4> cst(dependenceDomain->getNumCols());
auto addDomain = [&](bool isSrc, bool isEq, unsigned localOffset) {
const FlatAffineValueConstraints &domain = isSrc ? srcDomain : dstDomain;
unsigned numCsts =
isEq ? domain.getNumEqualities() : domain.getNumInequalities();
unsigned numDimAndSymbolIds = domain.getNumDimAndSymbolIds();
auto at = [&](unsigned i, unsigned j) -> int64_t {
return isEq ? domain.atEq(i, j) : domain.atIneq(i, j);
};
auto map = [&](unsigned i) -> int64_t {
return isSrc ? valuePosMap.getSrcDimOrSymPos(domain.getValue(i))
: valuePosMap.getDstDimOrSymPos(domain.getValue(i));
};
for (unsigned i = 0; i < numCsts; ++i) {
// Zero fill.
std::fill(cst.begin(), cst.end(), 0);
// Set coefficients for identifiers corresponding to domain.
for (unsigned j = 0; j < numDimAndSymbolIds; ++j)
cst[map(j)] = at(i, j);
// Local terms.
for (unsigned j = 0, e = domain.getNumLocalIds(); j < e; j++)
cst[depNumDimsAndSymbolIds + localOffset + j] =
at(i, numDimAndSymbolIds + j);
// Set constant term.
cst[cst.size() - 1] = at(i, domain.getNumCols() - 1);
// Add constraint.
if (isEq)
dependenceDomain->addEquality(cst);
else
dependenceDomain->addInequality(cst);
}
};
// Add equalities from src domain.
addDomain(/*isSrc=*/true, /*isEq=*/true, /*localOffset=*/0);
// Add inequalities from src domain.
addDomain(/*isSrc=*/true, /*isEq=*/false, /*localOffset=*/0);
// Add equalities from dst domain.
addDomain(/*isSrc=*/false, /*isEq=*/true,
/*localOffset=*/srcDomain.getNumLocalIds());
// Add inequalities from dst domain.
addDomain(/*isSrc=*/false, /*isEq=*/false,
/*localOffset=*/srcDomain.getNumLocalIds());
}
// Adds equality constraints that equate src and dst access functions
// represented by 'srcAccessMap' and 'dstAccessMap' for each result.
// Requires that 'srcAccessMap' and 'dstAccessMap' have the same results count.
// For example, given the following two accesses functions to a 2D memref:
//
// Source access function:
// (a0 * d0 + a1 * s0 + a2, b0 * d0 + b1 * s0 + b2)
//
// Destination access function:
// (c0 * d0 + c1 * s0 + c2, f0 * d0 + f1 * s0 + f2)
//
// This method constructs the following equality constraints in
// 'dependenceDomain', by equating the access functions for each result
// (i.e. each memref dim). Notice that 'd0' for the destination access function
// is mapped into 'd0' in the equality constraint:
//
// d0 d1 s0 c
// -- -- -- --
// a0 -c0 (a1 - c1) (a2 - c2) = 0
// b0 -f0 (b1 - f1) (b2 - f2) = 0
//
// Returns failure if any AffineExpr cannot be flattened (due to it being
// semi-affine). Returns success otherwise.
static LogicalResult
addMemRefAccessConstraints(const AffineValueMap &srcAccessMap,
const AffineValueMap &dstAccessMap,
const ValuePositionMap &valuePosMap,
FlatAffineValueConstraints *dependenceDomain) {
AffineMap srcMap = srcAccessMap.getAffineMap();
AffineMap dstMap = dstAccessMap.getAffineMap();
assert(srcMap.getNumResults() == dstMap.getNumResults());
unsigned numResults = srcMap.getNumResults();
unsigned srcNumIds = srcMap.getNumDims() + srcMap.getNumSymbols();
ArrayRef<Value> srcOperands = srcAccessMap.getOperands();
unsigned dstNumIds = dstMap.getNumDims() + dstMap.getNumSymbols();
ArrayRef<Value> dstOperands = dstAccessMap.getOperands();
std::vector<SmallVector<int64_t, 8>> srcFlatExprs;
std::vector<SmallVector<int64_t, 8>> destFlatExprs;
FlatAffineValueConstraints srcLocalVarCst, destLocalVarCst;
// Get flattened expressions for the source destination maps.
if (failed(getFlattenedAffineExprs(srcMap, &srcFlatExprs, &srcLocalVarCst)) ||
failed(getFlattenedAffineExprs(dstMap, &destFlatExprs, &destLocalVarCst)))
return failure();
unsigned domNumLocalIds = dependenceDomain->getNumLocalIds();
unsigned srcNumLocalIds = srcLocalVarCst.getNumLocalIds();
unsigned dstNumLocalIds = destLocalVarCst.getNumLocalIds();
unsigned numLocalIdsToAdd = srcNumLocalIds + dstNumLocalIds;
dependenceDomain->appendLocalId(numLocalIdsToAdd);
unsigned numDims = dependenceDomain->getNumDimIds();
unsigned numSymbols = dependenceDomain->getNumSymbolIds();
unsigned numSrcLocalIds = srcLocalVarCst.getNumLocalIds();
unsigned newLocalIdOffset = numDims + numSymbols + domNumLocalIds;
// Equality to add.
SmallVector<int64_t, 8> eq(dependenceDomain->getNumCols());
for (unsigned i = 0; i < numResults; ++i) {
// Zero fill.
std::fill(eq.begin(), eq.end(), 0);
// Flattened AffineExpr for src result 'i'.
const auto &srcFlatExpr = srcFlatExprs[i];
// Set identifier coefficients from src access function.
for (unsigned j = 0, e = srcOperands.size(); j < e; ++j)
eq[valuePosMap.getSrcDimOrSymPos(srcOperands[j])] = srcFlatExpr[j];
// Local terms.
for (unsigned j = 0, e = srcNumLocalIds; j < e; j++)
eq[newLocalIdOffset + j] = srcFlatExpr[srcNumIds + j];
// Set constant term.
eq[eq.size() - 1] = srcFlatExpr[srcFlatExpr.size() - 1];
// Flattened AffineExpr for dest result 'i'.
const auto &destFlatExpr = destFlatExprs[i];
// Set identifier coefficients from dst access function.
for (unsigned j = 0, e = dstOperands.size(); j < e; ++j)
eq[valuePosMap.getDstDimOrSymPos(dstOperands[j])] -= destFlatExpr[j];
// Local terms.
for (unsigned j = 0, e = dstNumLocalIds; j < e; j++)
eq[newLocalIdOffset + numSrcLocalIds + j] = -destFlatExpr[dstNumIds + j];
// Set constant term.
eq[eq.size() - 1] -= destFlatExpr[destFlatExpr.size() - 1];
// Add equality constraint.
dependenceDomain->addEquality(eq);
}
// Add equality constraints for any operands that are defined by constant ops.
auto addEqForConstOperands = [&](ArrayRef<Value> operands) {
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
if (isForInductionVar(operands[i]))
continue;
auto symbol = operands[i];
assert(isValidSymbol(symbol));
// Check if the symbol is a constant.
if (auto cOp = symbol.getDefiningOp<ConstantIndexOp>())
dependenceDomain->addBound(FlatAffineConstraints::EQ,
valuePosMap.getSymPos(symbol),
cOp.getValue());
}
};
// Add equality constraints for any src symbols defined by constant ops.
addEqForConstOperands(srcOperands);
// Add equality constraints for any dst symbols defined by constant ops.
addEqForConstOperands(dstOperands);
// By construction (see flattener), local var constraints will not have any
// equalities.
assert(srcLocalVarCst.getNumEqualities() == 0 &&
destLocalVarCst.getNumEqualities() == 0);
// Add inequalities from srcLocalVarCst and destLocalVarCst into the
// dependence domain.
SmallVector<int64_t, 8> ineq(dependenceDomain->getNumCols());
for (unsigned r = 0, e = srcLocalVarCst.getNumInequalities(); r < e; r++) {
std::fill(ineq.begin(), ineq.end(), 0);
// Set identifier coefficients from src local var constraints.
for (unsigned j = 0, e = srcOperands.size(); j < e; ++j)
ineq[valuePosMap.getSrcDimOrSymPos(srcOperands[j])] =
srcLocalVarCst.atIneq(r, j);
// Local terms.
for (unsigned j = 0, e = srcNumLocalIds; j < e; j++)
ineq[newLocalIdOffset + j] = srcLocalVarCst.atIneq(r, srcNumIds + j);
// Set constant term.
ineq[ineq.size() - 1] =
srcLocalVarCst.atIneq(r, srcLocalVarCst.getNumCols() - 1);
dependenceDomain->addInequality(ineq);
}
for (unsigned r = 0, e = destLocalVarCst.getNumInequalities(); r < e; r++) {
std::fill(ineq.begin(), ineq.end(), 0);
// Set identifier coefficients from dest local var constraints.
for (unsigned j = 0, e = dstOperands.size(); j < e; ++j)
ineq[valuePosMap.getDstDimOrSymPos(dstOperands[j])] =
destLocalVarCst.atIneq(r, j);
// Local terms.
for (unsigned j = 0, e = dstNumLocalIds; j < e; j++)
ineq[newLocalIdOffset + numSrcLocalIds + j] =
destLocalVarCst.atIneq(r, dstNumIds + j);
// Set constant term.
ineq[ineq.size() - 1] =
destLocalVarCst.atIneq(r, destLocalVarCst.getNumCols() - 1);
dependenceDomain->addInequality(ineq);
}
return success();
}
// Returns the number of outer loop common to 'src/dstDomain'.
// Loops common to 'src/dst' domains are added to 'commonLoops' if non-null.
static unsigned
getNumCommonLoops(const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
SmallVectorImpl<AffineForOp> *commonLoops = nullptr) {
// Find the number of common loops shared by src and dst accesses.
unsigned minNumLoops =
std::min(srcDomain.getNumDimIds(), dstDomain.getNumDimIds());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (!isForInductionVar(srcDomain.getValue(i)) ||
!isForInductionVar(dstDomain.getValue(i)) ||
srcDomain.getValue(i) != dstDomain.getValue(i))
break;
if (commonLoops != nullptr)
commonLoops->push_back(getForInductionVarOwner(srcDomain.getValue(i)));
++numCommonLoops;
}
if (commonLoops != nullptr)
assert(commonLoops->size() == numCommonLoops);
return numCommonLoops;
}
/// Returns Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
static Block *getCommonBlock(const MemRefAccess &srcAccess,
const MemRefAccess &dstAccess,
const FlatAffineValueConstraints &srcDomain,
unsigned numCommonLoops) {
// Get the chain of ancestor blocks to the given `MemRefAccess` instance. The
// search terminates when either an op with the `AffineScope` trait or
// `endBlock` is reached.
auto getChainOfAncestorBlocks = [&](const MemRefAccess &access,
SmallVector<Block *, 4> &ancestorBlocks,
Block *endBlock = nullptr) {
Block *currBlock = access.opInst->getBlock();
// Loop terminates when the currBlock is nullptr or equals to the endBlock,
// or its parent operation holds an affine scope.
while (currBlock && currBlock != endBlock &&
!currBlock->getParentOp()->hasTrait<OpTrait::AffineScope>()) {
ancestorBlocks.push_back(currBlock);
currBlock = currBlock->getParentOp()->getBlock();
}
};
if (numCommonLoops == 0) {
Block *block = srcAccess.opInst->getBlock();
while (!llvm::isa<FuncOp>(block->getParentOp())) {
block = block->getParentOp()->getBlock();
}
return block;
}
Value commonForIV = srcDomain.getValue(numCommonLoops - 1);
AffineForOp forOp = getForInductionVarOwner(commonForIV);
assert(forOp && "commonForValue was not an induction variable");
// Find the closest common block including those in AffineIf.
SmallVector<Block *, 4> srcAncestorBlocks, dstAncestorBlocks;
getChainOfAncestorBlocks(srcAccess, srcAncestorBlocks, forOp.getBody());
getChainOfAncestorBlocks(dstAccess, dstAncestorBlocks, forOp.getBody());
Block *commonBlock = forOp.getBody();
for (int i = srcAncestorBlocks.size() - 1, j = dstAncestorBlocks.size() - 1;
i >= 0 && j >= 0 && srcAncestorBlocks[i] == dstAncestorBlocks[j];
i--, j--)
commonBlock = srcAncestorBlocks[i];
return commonBlock;
}
// Returns true if the ancestor operation of 'srcAccess' appears before the
// ancestor operation of 'dstAccess' in the common ancestral block. Returns
// false otherwise.
// Note that because 'srcAccess' or 'dstAccess' may be nested in conditionals,
// the function is named 'srcAppearsBeforeDstInCommonBlock'. Note that
// 'numCommonLoops' is the number of contiguous surrounding outer loops.
static bool srcAppearsBeforeDstInAncestralBlock(
const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
const FlatAffineValueConstraints &srcDomain, unsigned numCommonLoops) {
// Get Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
auto *commonBlock =
getCommonBlock(srcAccess, dstAccess, srcDomain, numCommonLoops);
// Check the dominance relationship between the respective ancestors of the
// src and dst in the Block of the innermost among the common loops.
auto *srcInst = commonBlock->findAncestorOpInBlock(*srcAccess.opInst);
assert(srcInst != nullptr);
auto *dstInst = commonBlock->findAncestorOpInBlock(*dstAccess.opInst);
assert(dstInst != nullptr);
// Determine whether dstInst comes after srcInst.
return srcInst->isBeforeInBlock(dstInst);
}
// Adds ordering constraints to 'dependenceDomain' based on number of loops
// common to 'src/dstDomain' and requested 'loopDepth'.
// Note that 'loopDepth' cannot exceed the number of common loops plus one.
// EX: Given a loop nest of depth 2 with IVs 'i' and 'j':
// *) If 'loopDepth == 1' then one constraint is added: i' >= i + 1
// *) If 'loopDepth == 2' then two constraints are added: i == i' and j' > j + 1
// *) If 'loopDepth == 3' then two constraints are added: i == i' and j == j'
static void
addOrderingConstraints(const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
unsigned loopDepth,
FlatAffineValueConstraints *dependenceDomain) {
unsigned numCols = dependenceDomain->getNumCols();
SmallVector<int64_t, 4> eq(numCols);
unsigned numSrcDims = srcDomain.getNumDimIds();
unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
unsigned numCommonLoopConstraints = std::min(numCommonLoops, loopDepth);
for (unsigned i = 0; i < numCommonLoopConstraints; ++i) {
std::fill(eq.begin(), eq.end(), 0);
eq[i] = -1;
eq[i + numSrcDims] = 1;
if (i == loopDepth - 1) {
eq[numCols - 1] = -1;
dependenceDomain->addInequality(eq);
} else {
dependenceDomain->addEquality(eq);
}
}
}
// Computes distance and direction vectors in 'dependences', by adding
// variables to 'dependenceDomain' which represent the difference of the IVs,
// eliminating all other variables, and reading off distance vectors from
// equality constraints (if possible), and direction vectors from inequalities.
static void computeDirectionVector(
const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain, unsigned loopDepth,
FlatAffineValueConstraints *dependenceDomain,
SmallVector<DependenceComponent, 2> *dependenceComponents) {
// Find the number of common loops shared by src and dst accesses.
SmallVector<AffineForOp, 4> commonLoops;
unsigned numCommonLoops =
getNumCommonLoops(srcDomain, dstDomain, &commonLoops);
if (numCommonLoops == 0)
return;
// Compute direction vectors for requested loop depth.
unsigned numIdsToEliminate = dependenceDomain->getNumIds();
// Add new variables to 'dependenceDomain' to represent the direction
// constraints for each shared loop.
dependenceDomain->insertDimId(/*pos=*/0, /*num=*/numCommonLoops);
// Add equality constraints for each common loop, setting newly introduced
// variable at column 'j' to the 'dst' IV minus the 'src IV.
SmallVector<int64_t, 4> eq;
eq.resize(dependenceDomain->getNumCols());
unsigned numSrcDims = srcDomain.getNumDimIds();
// Constraint variables format:
// [num-common-loops][num-src-dim-ids][num-dst-dim-ids][num-symbols][constant]
for (unsigned j = 0; j < numCommonLoops; ++j) {
std::fill(eq.begin(), eq.end(), 0);
eq[j] = 1;
eq[j + numCommonLoops] = 1;
eq[j + numCommonLoops + numSrcDims] = -1;
dependenceDomain->addEquality(eq);
}
// Eliminate all variables other than the direction variables just added.
dependenceDomain->projectOut(numCommonLoops, numIdsToEliminate);
// Scan each common loop variable column and set direction vectors based
// on eliminated constraint system.
dependenceComponents->resize(numCommonLoops);
for (unsigned j = 0; j < numCommonLoops; ++j) {
(*dependenceComponents)[j].op = commonLoops[j].getOperation();
auto lbConst =
dependenceDomain->getConstantBound(FlatAffineConstraints::LB, j);
(*dependenceComponents)[j].lb =
lbConst.getValueOr(std::numeric_limits<int64_t>::min());
auto ubConst =
dependenceDomain->getConstantBound(FlatAffineConstraints::UB, j);
(*dependenceComponents)[j].ub =
ubConst.getValueOr(std::numeric_limits<int64_t>::max());
}
}
// Populates 'accessMap' with composition of AffineApplyOps reachable from
// indices of MemRefAccess.
void MemRefAccess::getAccessMap(AffineValueMap *accessMap) const {
// Get affine map from AffineLoad/Store.
AffineMap map;
if (auto loadOp = dyn_cast<AffineReadOpInterface>(opInst))
map = loadOp.getAffineMap();
else
map = cast<AffineWriteOpInterface>(opInst).getAffineMap();
SmallVector<Value, 8> operands(indices.begin(), indices.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
accessMap->reset(map, operands);
}
// Builds a flat affine constraint system to check if there exists a dependence
// between memref accesses 'srcAccess' and 'dstAccess'.
// Returns 'NoDependence' if the accesses can be definitively shown not to
// access the same element.
// Returns 'HasDependence' if the accesses do access the same element.
// Returns 'Failure' if an error or unsupported case was encountered.
// If a dependence exists, returns in 'dependenceComponents' a direction
// vector for the dependence, with a component for each loop IV in loops
// common to both accesses (see Dependence in AffineAnalysis.h for details).
//
// The memref access dependence check is comprised of the following steps:
// *) Compute access functions for each access. Access functions are computed
// using AffineValueMaps initialized with the indices from an access, then
// composed with AffineApplyOps reachable from operands of that access,
// until operands of the AffineValueMap are loop IVs or symbols.
// *) Build iteration domain constraints for each access. Iteration domain
// constraints are pairs of inequality constraints representing the
// upper/lower loop bounds for each AffineForOp in the loop nest associated
// with each access.
// *) Build dimension and symbol position maps for each access, which map
// Values from access functions and iteration domains to their position
// in the merged constraint system built by this method.
//
// This method builds a constraint system with the following column format:
//
// [src-dim-identifiers, dst-dim-identifiers, symbols, constant]
//
// For example, given the following MLIR code with "source" and "destination"
// accesses to the same memref label, and symbols %M, %N, %K:
//
// affine.for %i0 = 0 to 100 {
// affine.for %i1 = 0 to 50 {
// %a0 = affine.apply
// (d0, d1) -> (d0 * 2 - d1 * 4 + s1, d1 * 3 - s0) (%i0, %i1)[%M, %N]
// // Source memref access.
// store %v0, %m[%a0#0, %a0#1] : memref<4x4xf32>
// }
// }
//
// affine.for %i2 = 0 to 100 {
// affine.for %i3 = 0 to 50 {
// %a1 = affine.apply
// (d0, d1) -> (d0 * 7 + d1 * 9 - s1, d1 * 11 + s0) (%i2, %i3)[%K, %M]
// // Destination memref access.
// %v1 = load %m[%a1#0, %a1#1] : memref<4x4xf32>
// }
// }
//
// The access functions would be the following:
//
// src: (%i0 * 2 - %i1 * 4 + %N, %i1 * 3 - %M)
// dst: (%i2 * 7 + %i3 * 9 - %M, %i3 * 11 - %K)
//
// The iteration domains for the src/dst accesses would be the following:
//
// src: 0 <= %i0 <= 100, 0 <= %i1 <= 50
// dst: 0 <= %i2 <= 100, 0 <= %i3 <= 50
//
// The symbols by both accesses would be assigned to a canonical position order
// which will be used in the dependence constraint system:
//
// symbol name: %M %N %K
// symbol pos: 0 1 2
//
// Equality constraints are built by equating each result of src/destination
// access functions. For this example, the following two equality constraints
// will be added to the dependence constraint system:
//
// [src_dim0, src_dim1, dst_dim0, dst_dim1, sym0, sym1, sym2, const]
// 2 -4 -7 -9 1 1 0 0 = 0
// 0 3 0 -11 -1 0 1 0 = 0
//
// Inequality constraints from the iteration domain will be meged into
// the dependence constraint system
//
// [src_dim0, src_dim1, dst_dim0, dst_dim1, sym0, sym1, sym2, const]
// 1 0 0 0 0 0 0 0 >= 0
// -1 0 0 0 0 0 0 100 >= 0
// 0 1 0 0 0 0 0 0 >= 0
// 0 -1 0 0 0 0 0 50 >= 0
// 0 0 1 0 0 0 0 0 >= 0
// 0 0 -1 0 0 0 0 100 >= 0
// 0 0 0 1 0 0 0 0 >= 0
// 0 0 0 -1 0 0 0 50 >= 0
//
//
// TODO: Support AffineExprs mod/floordiv/ceildiv.
DependenceResult mlir::checkMemrefAccessDependence(
const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
unsigned loopDepth, FlatAffineValueConstraints *dependenceConstraints,
SmallVector<DependenceComponent, 2> *dependenceComponents, bool allowRAR) {
LLVM_DEBUG(llvm::dbgs() << "Checking for dependence at depth: "
<< Twine(loopDepth) << " between:\n";);
LLVM_DEBUG(srcAccess.opInst->dump(););
LLVM_DEBUG(dstAccess.opInst->dump(););
// Return 'NoDependence' if these accesses do not access the same memref.
if (srcAccess.memref != dstAccess.memref)
return DependenceResult::NoDependence;
// Return 'NoDependence' if one of these accesses is not an
// AffineWriteOpInterface.
if (!allowRAR && !isa<AffineWriteOpInterface>(srcAccess.opInst) &&
!isa<AffineWriteOpInterface>(dstAccess.opInst))
return DependenceResult::NoDependence;
// Get composed access function for 'srcAccess'.
AffineValueMap srcAccessMap;
srcAccess.getAccessMap(&srcAccessMap);
// Get composed access function for 'dstAccess'.
AffineValueMap dstAccessMap;
dstAccess.getAccessMap(&dstAccessMap);
// Get iteration domain for the 'srcAccess' operation.
FlatAffineValueConstraints srcDomain;
if (failed(getOpIndexSet(srcAccess.opInst, &srcDomain)))
return DependenceResult::Failure;
// Get iteration domain for 'dstAccess' operation.
FlatAffineValueConstraints dstDomain;
if (failed(getOpIndexSet(dstAccess.opInst, &dstDomain)))
return DependenceResult::Failure;
// Return 'NoDependence' if loopDepth > numCommonLoops and if the ancestor
// operation of 'srcAccess' does not properly dominate the ancestor
// operation of 'dstAccess' in the same common operation block.
// Note: this check is skipped if 'allowRAR' is true, because because RAR
// deps can exist irrespective of lexicographic ordering b/w src and dst.
unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
assert(loopDepth <= numCommonLoops + 1);
if (!allowRAR && loopDepth > numCommonLoops &&
!srcAppearsBeforeDstInAncestralBlock(srcAccess, dstAccess, srcDomain,
numCommonLoops)) {
return DependenceResult::NoDependence;
}
// Build dim and symbol position maps for each access from access operand
// Value to position in merged constraint system.
ValuePositionMap valuePosMap;
buildDimAndSymbolPositionMaps(srcDomain, dstDomain, srcAccessMap,
dstAccessMap, &valuePosMap,
dependenceConstraints);
initDependenceConstraints(srcDomain, dstDomain, srcAccessMap, dstAccessMap,
valuePosMap, dependenceConstraints);
assert(valuePosMap.getNumDims() ==
srcDomain.getNumDimIds() + dstDomain.getNumDimIds());
// Create memref access constraint by equating src/dst access functions.
// Note that this check is conservative, and will fail in the future when
// local variables for mod/div exprs are supported.
if (failed(addMemRefAccessConstraints(srcAccessMap, dstAccessMap, valuePosMap,
dependenceConstraints)))
return DependenceResult::Failure;
// Add 'src' happens before 'dst' ordering constraints.
addOrderingConstraints(srcDomain, dstDomain, loopDepth,
dependenceConstraints);
// Add src and dst domain constraints.
addDomainConstraints(srcDomain, dstDomain, valuePosMap,
dependenceConstraints);
// Return 'NoDependence' if the solution space is empty: no dependence.
if (dependenceConstraints->isEmpty()) {
return DependenceResult::NoDependence;
}
// Compute dependence direction vector and return true.
if (dependenceComponents != nullptr) {
computeDirectionVector(srcDomain, dstDomain, loopDepth,
dependenceConstraints, dependenceComponents);
}
LLVM_DEBUG(llvm::dbgs() << "Dependence polyhedron:\n");
LLVM_DEBUG(dependenceConstraints->dump());
return DependenceResult::HasDependence;
}
/// Gathers dependence components for dependences between all ops in loop nest
/// rooted at 'forOp' at loop depths in range [1, maxLoopDepth].
void mlir::getDependenceComponents(
AffineForOp forOp, unsigned maxLoopDepth,
std::vector<SmallVector<DependenceComponent, 2>> *depCompsVec) {
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOps;
forOp->walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
});
unsigned numOps = loadAndStoreOps.size();
for (unsigned d = 1; d <= maxLoopDepth; ++d) {
for (unsigned i = 0; i < numOps; ++i) {
auto *srcOp = loadAndStoreOps[i];
MemRefAccess srcAccess(srcOp);
for (unsigned j = 0; j < numOps; ++j) {
auto *dstOp = loadAndStoreOps[j];
MemRefAccess dstAccess(dstOp);
FlatAffineValueConstraints dependenceConstraints;
SmallVector<DependenceComponent, 2> depComps;
// TODO: Explore whether it would be profitable to pre-compute and store
// deps instead of repeatedly checking.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints, &depComps);
if (hasDependence(result))
depCompsVec->push_back(depComps);
}
}
}
}