llvm-project/llvm/lib/Transforms/Scalar/InductiveRangeCheckEliminat...

1211 lines
41 KiB
C++

//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
// three disjoint ranges. It does that in a way such that the loop running in
// the middle loop provably does not need range checks. As an example, it will
// convert
//
// len = < known positive >
// for (i = 0; i < n; i++) {
// if (0 <= i && i < len) {
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
//
// to
//
// len = < known positive >
// limit = smin(n, len)
// // no first segment
// for (i = 0; i < limit; i++) {
// if (0 <= i && i < len) { // this check is fully redundant
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
// for (i = limit; i < n; i++) {
// if (0 <= i && i < len) {
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Pass.h"
#include <array>
using namespace llvm;
cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
cl::init(64));
cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
cl::init(false));
#define DEBUG_TYPE "irce"
namespace {
/// An inductive range check is conditional branch in a loop with
///
/// 1. a very cold successor (i.e. the branch jumps to that successor very
/// rarely)
///
/// and
///
/// 2. a condition that is provably true for some range of values taken by the
/// containing loop's induction variable.
///
/// Currently all inductive range checks are branches conditional on an
/// expression of the form
///
/// 0 <= (Offset + Scale * I) < Length
///
/// where `I' is the canonical induction variable of a loop to which Offset and
/// Scale are loop invariant, and Length is >= 0. Currently the 'false' branch
/// is considered cold, looking at profiling data to verify that is a TODO.
class InductiveRangeCheck {
const SCEV *Offset;
const SCEV *Scale;
Value *Length;
BranchInst *Branch;
InductiveRangeCheck() :
Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
public:
const SCEV *getOffset() const { return Offset; }
const SCEV *getScale() const { return Scale; }
Value *getLength() const { return Length; }
void print(raw_ostream &OS) const {
OS << "InductiveRangeCheck:\n";
OS << " Offset: ";
Offset->print(OS);
OS << " Scale: ";
Scale->print(OS);
OS << " Length: ";
Length->print(OS);
OS << " Branch: ";
getBranch()->print(OS);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() {
print(dbgs());
}
#endif
BranchInst *getBranch() const { return Branch; }
/// Represents an integer range [Range.first, Range.second). If Range.second
/// < Range.first, then the value denotes the empty range.
typedef std::pair<Value *, Value *> Range;
typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
/// This is the value the condition of the branch needs to evaluate to for the
/// branch to take the hot successor (see (1) above).
bool getPassingDirection() { return true; }
/// Computes a range for the induction variable in which the range check is
/// redundant and can be constant-folded away.
Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
IRBuilder<> &B) const;
/// Create an inductive range check out of BI if possible, else return
/// nullptr.
static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
Loop *L, ScalarEvolution &SE);
};
class InductiveRangeCheckElimination : public LoopPass {
InductiveRangeCheck::AllocatorTy Allocator;
public:
static char ID;
InductiveRangeCheckElimination() : LoopPass(ID) {
initializeInductiveRangeCheckEliminationPass(
*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<ScalarEvolution>();
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
};
char InductiveRangeCheckElimination::ID = 0;
}
INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
"Inductive range check elimination", false, false)
static bool IsLowerBoundCheck(Value *Check, Value *&IndexV) {
using namespace llvm::PatternMatch;
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
Value *LHS = nullptr, *RHS = nullptr;
if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
return false;
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SLE:
std::swap(LHS, RHS);
// fallthrough
case ICmpInst::ICMP_SGE:
if (!match(RHS, m_ConstantInt<0>()))
return false;
IndexV = LHS;
return true;
case ICmpInst::ICMP_SLT:
std::swap(LHS, RHS);
// fallthrough
case ICmpInst::ICMP_SGT:
if (!match(RHS, m_ConstantInt<-1>()))
return false;
IndexV = LHS;
return true;
}
}
static bool IsUpperBoundCheck(Value *Check, Value *Index, Value *&UpperLimit) {
using namespace llvm::PatternMatch;
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
Value *LHS = nullptr, *RHS = nullptr;
if (!match(Check, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
return false;
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SGT:
std::swap(LHS, RHS);
// fallthrough
case ICmpInst::ICMP_SLT:
if (LHS != Index)
return false;
UpperLimit = RHS;
return true;
case ICmpInst::ICMP_UGT:
std::swap(LHS, RHS);
// fallthrough
case ICmpInst::ICMP_ULT:
if (LHS != Index)
return false;
UpperLimit = RHS;
return true;
}
}
/// Split a condition into something semantically equivalent to (0 <= I <
/// Limit), both comparisons signed and Len loop invariant on L and positive.
/// On success, return true and set Index to I and UpperLimit to Limit. Return
/// false on failure (we may still write to UpperLimit and Index on failure).
/// It does not try to interpret I as a loop index.
///
static bool SplitRangeCheckCondition(Loop *L, ScalarEvolution &SE,
Value *Condition, const SCEV *&Index,
Value *&UpperLimit) {
// TODO: currently this catches some silly cases like comparing "%idx slt 1".
// Our transformations are still correct, but less likely to be profitable in
// those cases. We have to come up with some heuristics that pick out the
// range checks that are more profitable to clone a loop for. This function
// in general can be made more robust.
using namespace llvm::PatternMatch;
Value *A = nullptr;
Value *B = nullptr;
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
// In these early checks we assume that the matched UpperLimit is positive.
// We'll verify that fact later, before returning true.
if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
Value *IndexV = nullptr;
Value *ExpectedUpperBoundCheck = nullptr;
if (IsLowerBoundCheck(A, IndexV))
ExpectedUpperBoundCheck = B;
else if (IsLowerBoundCheck(B, IndexV))
ExpectedUpperBoundCheck = A;
else
return false;
if (!IsUpperBoundCheck(ExpectedUpperBoundCheck, IndexV, UpperLimit))
return false;
Index = SE.getSCEV(IndexV);
if (isa<SCEVCouldNotCompute>(Index))
return false;
} else if (match(Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SGT:
std::swap(A, B);
// fall through
case ICmpInst::ICMP_SLT:
UpperLimit = B;
Index = SE.getSCEV(A);
if (isa<SCEVCouldNotCompute>(Index) || !SE.isKnownNonNegative(Index))
return false;
break;
case ICmpInst::ICMP_UGT:
std::swap(A, B);
// fall through
case ICmpInst::ICMP_ULT:
UpperLimit = B;
Index = SE.getSCEV(A);
if (isa<SCEVCouldNotCompute>(Index))
return false;
break;
}
} else {
return false;
}
const SCEV *UpperLimitSCEV = SE.getSCEV(UpperLimit);
if (isa<SCEVCouldNotCompute>(UpperLimitSCEV) ||
!SE.isKnownNonNegative(UpperLimitSCEV))
return false;
if (SE.getLoopDisposition(UpperLimitSCEV, L) !=
ScalarEvolution::LoopInvariant) {
DEBUG(dbgs() << " in function: " << L->getHeader()->getParent()->getName()
<< " ";
dbgs() << " UpperLimit is not loop invariant: "
<< UpperLimit->getName() << "\n";);
return false;
}
return true;
}
InductiveRangeCheck *
InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
Loop *L, ScalarEvolution &SE) {
if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
return nullptr;
Value *Length = nullptr;
const SCEV *IndexSCEV = nullptr;
if (!SplitRangeCheckCondition(L, SE, BI->getCondition(), IndexSCEV, Length))
return nullptr;
assert(IndexSCEV && Length && "contract with SplitRangeCheckCondition!");
const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
bool IsAffineIndex =
IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
if (!IsAffineIndex)
return nullptr;
InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
IRC->Length = Length;
IRC->Offset = IndexAddRec->getStart();
IRC->Scale = IndexAddRec->getStepRecurrence(SE);
IRC->Branch = BI;
return IRC;
}
static Value *MaybeSimplify(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (Value *Simplified = SimplifyInstruction(I))
return Simplified;
return V;
}
static Value *ConstructSMinOf(Value *X, Value *Y, IRBuilder<> &B) {
return MaybeSimplify(B.CreateSelect(B.CreateICmpSLT(X, Y), X, Y));
}
static Value *ConstructSMaxOf(Value *X, Value *Y, IRBuilder<> &B) {
return MaybeSimplify(B.CreateSelect(B.CreateICmpSGT(X, Y), X, Y));
}
namespace {
/// This class is used to constrain loops to run within a given iteration space.
/// The algorithm this class implements is given a Loop and a range [Begin,
/// End). The algorithm then tries to break out a "main loop" out of the loop
/// it is given in a way that the "main loop" runs with the induction variable
/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
/// loops to run any remaining iterations. The pre loop runs any iterations in
/// which the induction variable is < Begin, and the post loop runs any
/// iterations in which the induction variable is >= End.
///
class LoopConstrainer {
// Keeps track of the structure of a loop. This is similar to llvm::Loop,
// except that it is more lightweight and can track the state of a loop
// through changing and potentially invalid IR. This structure also
// formalizes the kinds of loops we can deal with -- ones that have a single
// latch that is also an exiting block *and* have a canonical induction
// variable.
struct LoopStructure {
const char *Tag;
BasicBlock *Header;
BasicBlock *Latch;
// `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
// successor is `LatchExit', the exit block of the loop.
BranchInst *LatchBr;
BasicBlock *LatchExit;
unsigned LatchBrExitIdx;
// The canonical induction variable. It's value is `CIVStart` on the 0th
// itertion and `CIVNext` for all iterations after that.
PHINode *CIV;
Value *CIVStart;
Value *CIVNext;
LoopStructure() : Tag(""), Header(nullptr), Latch(nullptr),
LatchBr(nullptr), LatchExit(nullptr),
LatchBrExitIdx(-1), CIV(nullptr),
CIVStart(nullptr), CIVNext(nullptr) { }
template <typename M> LoopStructure map(M Map) const {
LoopStructure Result;
Result.Tag = Tag;
Result.Header = cast<BasicBlock>(Map(Header));
Result.Latch = cast<BasicBlock>(Map(Latch));
Result.LatchBr = cast<BranchInst>(Map(LatchBr));
Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
Result.LatchBrExitIdx = LatchBrExitIdx;
Result.CIV = cast<PHINode>(Map(CIV));
Result.CIVNext = Map(CIVNext);
Result.CIVStart = Map(CIVStart);
return Result;
}
};
// The representation of a clone of the original loop we started out with.
struct ClonedLoop {
// The cloned blocks
std::vector<BasicBlock *> Blocks;
// `Map` maps values in the clonee into values in the cloned version
ValueToValueMapTy Map;
// An instance of `LoopStructure` for the cloned loop
LoopStructure Structure;
};
// Result of rewriting the range of a loop. See changeIterationSpaceEnd for
// more details on what these fields mean.
struct RewrittenRangeInfo {
BasicBlock *PseudoExit;
BasicBlock *ExitSelector;
std::vector<PHINode *> PHIValuesAtPseudoExit;
RewrittenRangeInfo() : PseudoExit(nullptr), ExitSelector(nullptr) { }
};
// Calculated subranges we restrict the iteration space of the main loop to.
// See the implementation of `calculateSubRanges' for more details on how
// these fields are computed. `ExitPreLoopAt' is `None' if we don't need a
// pre loop. `ExitMainLoopAt' is `None' if we don't need a post loop.
struct SubRanges {
Optional<Value *> ExitPreLoopAt;
Optional<Value *> ExitMainLoopAt;
};
// A utility function that does a `replaceUsesOfWith' on the incoming block
// set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
// incoming block list with `ReplaceBy'.
static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
BasicBlock *ReplaceBy);
// Try to "parse" `OriginalLoop' and populate the various out parameters.
// Returns true on success, false on failure.
//
bool recognizeLoop(LoopStructure &LoopStructureOut,
const SCEV *&LatchCountOut, BasicBlock *&PreHeaderOut,
const char *&FailureReasonOut) const;
// Compute a safe set of limits for the main loop to run in -- effectively the
// intersection of `Range' and the iteration space of the original loop.
// Return the header count (1 + the latch taken count) in `HeaderCount'.
//
SubRanges calculateSubRanges(Value *&HeaderCount) const;
// Clone `OriginalLoop' and return the result in CLResult. The IR after
// running `cloneLoop' is well formed except for the PHI nodes in CLResult --
// the PHI nodes say that there is an incoming edge from `OriginalPreheader`
// but there is no such edge.
//
void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
// Rewrite the iteration space of the loop denoted by (LS, Preheader). The
// iteration space of the rewritten loop ends at ExitLoopAt. The start of the
// iteration space is not changed. `ExitLoopAt' is assumed to be slt
// `OriginalHeaderCount'.
//
// If there are iterations left to execute, control is made to jump to
// `ContinuationBlock', otherwise they take the normal loop exit. The
// returned `RewrittenRangeInfo' object is populated as follows:
//
// .PseudoExit is a basic block that unconditionally branches to
// `ContinuationBlock'.
//
// .ExitSelector is a basic block that decides, on exit from the loop,
// whether to branch to the "true" exit or to `PseudoExit'.
//
// .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
// for each PHINode in the loop header on taking the pseudo exit.
//
// After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
// preheader because it is made to branch to the loop header only
// conditionally.
//
RewrittenRangeInfo
changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
Value *ExitLoopAt,
BasicBlock *ContinuationBlock) const;
// The loop denoted by `LS' has `OldPreheader' as its preheader. This
// function creates a new preheader for `LS' and returns it.
//
BasicBlock *createPreheader(const LoopConstrainer::LoopStructure &LS,
BasicBlock *OldPreheader, const char *Tag) const;
// `ContinuationBlockAndPreheader' was the continuation block for some call to
// `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
// This function rewrites the PHI nodes in `LS.Header' to start with the
// correct value.
void rewriteIncomingValuesForPHIs(
LoopConstrainer::LoopStructure &LS,
BasicBlock *ContinuationBlockAndPreheader,
const LoopConstrainer::RewrittenRangeInfo &RRI) const;
// Even though we do not preserve any passes at this time, we at least need to
// keep the parent loop structure consistent. The `LPPassManager' seems to
// verify this after running a loop pass. This function adds the list of
// blocks denoted by the iterator range [BlocksBegin, BlocksEnd) to this loops
// parent loop if required.
template<typename IteratorTy>
void addToParentLoopIfNeeded(IteratorTy BlocksBegin, IteratorTy BlocksEnd);
// Some global state.
Function &F;
LLVMContext &Ctx;
ScalarEvolution &SE;
// Information about the original loop we started out with.
Loop &OriginalLoop;
LoopInfo &OriginalLoopInfo;
const SCEV *LatchTakenCount;
BasicBlock *OriginalPreheader;
Value *OriginalHeaderCount;
// The preheader of the main loop. This may or may not be different from
// `OriginalPreheader'.
BasicBlock *MainLoopPreheader;
// The range we need to run the main loop in.
InductiveRangeCheck::Range Range;
// The structure of the main loop (see comment at the beginning of this class
// for a definition)
LoopStructure MainLoopStructure;
public:
LoopConstrainer(Loop &L, LoopInfo &LI, ScalarEvolution &SE,
InductiveRangeCheck::Range R)
: F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE),
OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
OriginalPreheader(nullptr), OriginalHeaderCount(nullptr),
MainLoopPreheader(nullptr), Range(R) { }
// Entry point for the algorithm. Returns true on success.
bool run();
};
}
void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
BasicBlock *ReplaceBy) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingBlock(i) == Block)
PN->setIncomingBlock(i, ReplaceBy);
}
bool LoopConstrainer::recognizeLoop(LoopStructure &LoopStructureOut,
const SCEV *&LatchCountOut,
BasicBlock *&PreheaderOut,
const char *&FailureReason) const {
using namespace llvm::PatternMatch;
assert(OriginalLoop.isLoopSimplifyForm() &&
"should follow from addRequired<>");
BasicBlock *Latch = OriginalLoop.getLoopLatch();
if (!OriginalLoop.isLoopExiting(Latch)) {
FailureReason = "no loop latch";
return false;
}
PHINode *CIV = OriginalLoop.getCanonicalInductionVariable();
if (!CIV) {
FailureReason = "no CIV";
return false;
}
BasicBlock *Header = OriginalLoop.getHeader();
BasicBlock *Preheader = OriginalLoop.getLoopPreheader();
if (!Preheader) {
FailureReason = "no preheader";
return false;
}
Value *CIVNext = CIV->getIncomingValueForBlock(Latch);
Value *CIVStart = CIV->getIncomingValueForBlock(Preheader);
const SCEV *LatchCount = SE.getExitCount(&OriginalLoop, Latch);
if (isa<SCEVCouldNotCompute>(LatchCount)) {
FailureReason = "could not compute latch count";
return false;
}
// While SCEV does most of the analysis for us, we still have to
// modify the latch; and currently we can only deal with certain
// kinds of latches. This can be made more sophisticated as needed.
BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
if (!LatchBr || LatchBr->isUnconditional()) {
FailureReason = "latch terminator not conditional branch";
return false;
}
// Currently we only support a latch condition of the form:
//
// %condition = icmp slt %civNext, %limit
// br i1 %condition, label %header, label %exit
if (LatchBr->getSuccessor(0) != Header) {
FailureReason = "unknown latch form (header not first successor)";
return false;
}
Value *CIVComparedTo = nullptr;
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
if (!(match(LatchBr->getCondition(),
m_ICmp(Pred, m_Specific(CIVNext), m_Value(CIVComparedTo))) &&
Pred == ICmpInst::ICMP_SLT)) {
FailureReason = "unknown latch form (not slt)";
return false;
}
const SCEV *CIVComparedToSCEV = SE.getSCEV(CIVComparedTo);
if (isa<SCEVCouldNotCompute>(CIVComparedToSCEV)) {
FailureReason = "could not relate CIV to latch expression";
return false;
}
const SCEV *ShouldBeOne = SE.getMinusSCEV(CIVComparedToSCEV, LatchCount);
const SCEVConstant *SCEVOne = dyn_cast<SCEVConstant>(ShouldBeOne);
if (!SCEVOne || SCEVOne->getValue()->getValue() != 1) {
FailureReason = "unexpected header count in latch";
return false;
}
unsigned LatchBrExitIdx = 1;
BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
assert(SE.getLoopDisposition(LatchCount, &OriginalLoop) ==
ScalarEvolution::LoopInvariant &&
"loop variant exit count doesn't make sense!");
assert(!OriginalLoop.contains(LatchExit) && "expected an exit block!");
LoopStructureOut.Tag = "main";
LoopStructureOut.Header = Header;
LoopStructureOut.Latch = Latch;
LoopStructureOut.LatchBr = LatchBr;
LoopStructureOut.LatchExit = LatchExit;
LoopStructureOut.LatchBrExitIdx = LatchBrExitIdx;
LoopStructureOut.CIV = CIV;
LoopStructureOut.CIVNext = CIVNext;
LoopStructureOut.CIVStart = CIVStart;
LatchCountOut = LatchCount;
PreheaderOut = Preheader;
FailureReason = nullptr;
return true;
}
LoopConstrainer::SubRanges
LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
SCEVExpander Expander(SE, "irce");
Instruction *InsertPt = OriginalPreheader->getTerminator();
Value *LatchCountV =
MaybeSimplify(Expander.expandCodeFor(LatchTakenCount, Ty, InsertPt));
IRBuilder<> B(InsertPt);
LoopConstrainer::SubRanges Result;
// I think we can be more aggressive here and make this nuw / nsw if the
// addition that feeds into the icmp for the latch's terminating branch is nuw
// / nsw. In any case, a wrapping 2's complement addition is safe.
ConstantInt *One = ConstantInt::get(Ty, 1);
HeaderCountOut = MaybeSimplify(B.CreateAdd(LatchCountV, One, "header.count"));
const SCEV *RangeBegin = SE.getSCEV(Range.first);
const SCEV *RangeEnd = SE.getSCEV(Range.second);
const SCEV *HeaderCountSCEV = SE.getSCEV(HeaderCountOut);
const SCEV *Zero = SE.getConstant(Ty, 0);
// In some cases we can prove that we don't need a pre or post loop
bool ProvablyNoPreloop =
SE.isKnownPredicate(ICmpInst::ICMP_SLE, RangeBegin, Zero);
if (!ProvablyNoPreloop)
Result.ExitPreLoopAt = ConstructSMinOf(HeaderCountOut, Range.first, B);
bool ProvablyNoPostLoop =
SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, RangeEnd);
if (!ProvablyNoPostLoop)
Result.ExitMainLoopAt = ConstructSMinOf(HeaderCountOut, Range.second, B);
return Result;
}
void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
const char *Tag) const {
for (BasicBlock *BB : OriginalLoop.getBlocks()) {
BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
Result.Blocks.push_back(Clone);
Result.Map[BB] = Clone;
}
auto GetClonedValue = [&Result](Value *V) {
assert(V && "null values not in domain!");
auto It = Result.Map.find(V);
if (It == Result.Map.end())
return V;
return static_cast<Value *>(It->second);
};
Result.Structure = MainLoopStructure.map(GetClonedValue);
Result.Structure.Tag = Tag;
for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
BasicBlock *ClonedBB = Result.Blocks[i];
BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
for (Instruction &I : *ClonedBB)
RemapInstruction(&I, Result.Map,
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
// Exit blocks will now have one more predecessor and their PHI nodes need
// to be edited to reflect that. No phi nodes need to be introduced because
// the loop is in LCSSA.
for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
SBBI != SBBE; ++SBBI) {
if (OriginalLoop.contains(*SBBI))
continue; // not an exit block
for (Instruction &I : **SBBI) {
if (!isa<PHINode>(&I))
break;
PHINode *PN = cast<PHINode>(&I);
Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
}
}
}
}
LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt,
BasicBlock *ContinuationBlock) const {
// We start with a loop with a single latch:
//
// +--------------------+
// | |
// | preheader |
// | |
// +--------+-----------+
// | ----------------\
// | / |
// +--------v----v------+ |
// | | |
// | header | |
// | | |
// +--------------------+ |
// |
// ..... |
// |
// +--------------------+ |
// | | |
// | latch >----------/
// | |
// +-------v------------+
// |
// |
// | +--------------------+
// | | |
// +---> original exit |
// | |
// +--------------------+
//
// We change the control flow to look like
//
//
// +--------------------+
// | |
// | preheader >-------------------------+
// | | |
// +--------v-----------+ |
// | /-------------+ |
// | / | |
// +--------v--v--------+ | |
// | | | |
// | header | | +--------+ |
// | | | | | |
// +--------------------+ | | +-----v-----v-----------+
// | | | |
// | | | .pseudo.exit |
// | | | |
// | | +-----------v-----------+
// | | |
// ..... | | |
// | | +--------v-------------+
// +--------------------+ | | | |
// | | | | | ContinuationBlock |
// | latch >------+ | | |
// | | | +----------------------+
// +---------v----------+ |
// | |
// | |
// | +---------------^-----+
// | | |
// +-----> .exit.selector |
// | |
// +----------v----------+
// |
// +--------------------+ |
// | | |
// | original exit <----+
// | |
// +--------------------+
//
RewrittenRangeInfo RRI;
auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
&F, BBInsertLocation);
RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
BBInsertLocation);
BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
IRBuilder<> B(PreheaderJump);
// EnterLoopCond - is it okay to start executing this `LS'?
Value *EnterLoopCond = B.CreateICmpSLT(LS.CIVStart, ExitLoopAt);
B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
PreheaderJump->eraseFromParent();
assert(LS.LatchBrExitIdx == 1 && "generalize this as needed!");
B.SetInsertPoint(LS.LatchBr);
// ContinueCond - is it okay to execute the next iteration in `LS'?
Value *ContinueCond = B.CreateICmpSLT(LS.CIVNext, ExitLoopAt);
LS.LatchBr->setCondition(ContinueCond);
assert(LS.LatchBr->getSuccessor(LS.LatchBrExitIdx) == LS.LatchExit &&
"invariant!");
LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
B.SetInsertPoint(RRI.ExitSelector);
// IterationsLeft - are there any more iterations left, given the original
// upper bound on the induction variable? If not, we branch to the "real"
// exit.
Value *IterationsLeft = B.CreateICmpSLT(LS.CIVNext, OriginalHeaderCount);
B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
BranchInst *BranchToContinuation =
BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
// We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
// each of the PHI nodes in the loop header. This feeds into the initial
// value of the same PHI nodes if/when we continue execution.
for (Instruction &I : *LS.Header) {
if (!isa<PHINode>(&I))
break;
PHINode *PN = cast<PHINode>(&I);
PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
BranchToContinuation);
NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
RRI.ExitSelector);
RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
}
// The latch exit now has a branch from `RRI.ExitSelector' instead of
// `LS.Latch'. The PHI nodes need to be updated to reflect that.
for (Instruction &I : *LS.LatchExit) {
if (PHINode *PN = dyn_cast<PHINode>(&I))
replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
else
break;
}
return RRI;
}
void LoopConstrainer::rewriteIncomingValuesForPHIs(
LoopConstrainer::LoopStructure &LS, BasicBlock *ContinuationBlock,
const LoopConstrainer::RewrittenRangeInfo &RRI) const {
unsigned PHIIndex = 0;
for (Instruction &I : *LS.Header) {
if (!isa<PHINode>(&I))
break;
PHINode *PN = cast<PHINode>(&I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
if (PN->getIncomingBlock(i) == ContinuationBlock)
PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
}
LS.CIVStart = LS.CIV->getIncomingValueForBlock(ContinuationBlock);
}
BasicBlock *
LoopConstrainer::createPreheader(const LoopConstrainer::LoopStructure &LS,
BasicBlock *OldPreheader,
const char *Tag) const {
BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
BranchInst::Create(LS.Header, Preheader);
for (Instruction &I : *LS.Header) {
if (!isa<PHINode>(&I))
break;
PHINode *PN = cast<PHINode>(&I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
replacePHIBlock(PN, OldPreheader, Preheader);
}
return Preheader;
}
template<typename IteratorTy>
void LoopConstrainer::addToParentLoopIfNeeded(IteratorTy Begin,
IteratorTy End) {
Loop *ParentLoop = OriginalLoop.getParentLoop();
if (!ParentLoop)
return;
auto &LoopInfoBase = OriginalLoopInfo.getBase();
for (; Begin != End; Begin++)
ParentLoop->addBasicBlockToLoop(*Begin, LoopInfoBase);
}
bool LoopConstrainer::run() {
BasicBlock *Preheader = nullptr;
const char *CouldNotProceedBecause = nullptr;
if (!recognizeLoop(MainLoopStructure, LatchTakenCount, Preheader,
CouldNotProceedBecause)) {
DEBUG(dbgs() << "irce: could not recognize loop, " << CouldNotProceedBecause
<< "\n";);
return false;
}
OriginalPreheader = Preheader;
MainLoopPreheader = Preheader;
SubRanges SR = calculateSubRanges(OriginalHeaderCount);
// It would have been better to make `PreLoop' and `PostLoop'
// `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
// constructor.
ClonedLoop PreLoop, PostLoop;
bool NeedsPreLoop = SR.ExitPreLoopAt.hasValue();
bool NeedsPostLoop = SR.ExitMainLoopAt.hasValue();
// We clone these ahead of time so that we don't have to deal with changing
// and temporarily invalid IR as we transform the loops.
if (NeedsPreLoop)
cloneLoop(PreLoop, "preloop");
if (NeedsPostLoop)
cloneLoop(PostLoop, "postloop");
RewrittenRangeInfo PreLoopRRI;
if (NeedsPreLoop) {
Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
PreLoop.Structure.Header);
MainLoopPreheader =
createPreheader(MainLoopStructure, Preheader, "mainloop");
PreLoopRRI =
changeIterationSpaceEnd(PreLoop.Structure, Preheader,
SR.ExitPreLoopAt.getValue(), MainLoopPreheader);
rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
PreLoopRRI);
}
BasicBlock *PostLoopPreheader = nullptr;
RewrittenRangeInfo PostLoopRRI;
if (NeedsPostLoop) {
PostLoopPreheader =
createPreheader(PostLoop.Structure, Preheader, "postloop");
PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
SR.ExitMainLoopAt.getValue(),
PostLoopPreheader);
rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
PostLoopRRI);
}
SmallVector<BasicBlock *, 6> NewBlocks;
NewBlocks.push_back(PostLoopPreheader);
NewBlocks.push_back(PreLoopRRI.PseudoExit);
NewBlocks.push_back(PreLoopRRI.ExitSelector);
NewBlocks.push_back(PostLoopRRI.PseudoExit);
NewBlocks.push_back(PostLoopRRI.ExitSelector);
if (MainLoopPreheader != Preheader)
NewBlocks.push_back(MainLoopPreheader);
// Some of the above may be nullptr, filter them out before passing to
// addToParentLoopIfNeeded.
auto NewBlocksEnd = std::remove(NewBlocks.begin(), NewBlocks.end(), nullptr);
typedef SmallVector<BasicBlock *, 6>::iterator SmallVectItTy;
typedef std::vector<BasicBlock *>::iterator StdVectItTy;
addToParentLoopIfNeeded<SmallVectItTy>(NewBlocks.begin(), NewBlocksEnd);
addToParentLoopIfNeeded<StdVectItTy>(PreLoop.Blocks.begin(),
PreLoop.Blocks.end());
addToParentLoopIfNeeded<StdVectItTy>(PostLoop.Blocks.begin(),
PostLoop.Blocks.end());
return true;
}
/// Computes and returns a range of values for the induction variable in which
/// the range check can be safely elided. If it cannot compute such a range,
/// returns None.
Optional<InductiveRangeCheck::Range>
InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
IRBuilder<> &B) const {
// Currently we support inequalities of the form:
//
// 0 <= Offset + 1 * CIV < L given L >= 0
//
// The inequality is satisfied by -Offset <= CIV < (L - Offset) [^1]. All
// additions and subtractions are twos-complement wrapping and comparisons are
// signed.
//
// Proof:
//
// If there exists CIV such that -Offset <= CIV < (L - Offset) then it
// follows that -Offset <= (-Offset + L) [== Eq. 1]. Since L >= 0, if
// (-Offset + L) sign-overflows then (-Offset + L) < (-Offset). Hence by
// [Eq. 1], (-Offset + L) could not have overflown.
//
// This means CIV = t + (-Offset) for t in [0, L). Hence (CIV + Offset) =
// t. Hence 0 <= (CIV + Offset) < L
// [^1]: Note that the solution does _not_ apply if L < 0; consider values
// Offset = 127, CIV = 126 and L = -2 in an i8 world.
const SCEVConstant *ScaleC = dyn_cast<SCEVConstant>(getScale());
if (!(ScaleC && ScaleC->getValue()->getValue() == 1)) {
DEBUG(dbgs() << "irce: could not compute safe iteration space for:\n";
print(dbgs()));
return None;
}
Value *OffsetV = SCEVExpander(SE, "safe.itr.space").expandCodeFor(
getOffset(), getOffset()->getType(), B.GetInsertPoint());
OffsetV = MaybeSimplify(OffsetV);
Value *Begin = MaybeSimplify(B.CreateNeg(OffsetV));
Value *End = MaybeSimplify(B.CreateSub(getLength(), OffsetV));
return std::make_pair(Begin, End);
}
static InductiveRangeCheck::Range
IntersectRange(const Optional<InductiveRangeCheck::Range> &R1,
const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
if (!R1.hasValue())
return R2;
auto &R1Value = R1.getValue();
Value *NewMin = ConstructSMaxOf(R1Value.first, R2.first, B);
Value *NewMax = ConstructSMinOf(R1Value.second, R2.second, B);
return std::make_pair(NewMin, NewMax);
}
bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
if (L->getBlocks().size() >= LoopSizeCutoff) {
DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
return false;
}
LLVMContext &Context = Preheader->getContext();
InductiveRangeCheck::AllocatorTy IRCAlloc;
SmallVector<InductiveRangeCheck *, 16> RangeChecks;
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
for (auto BBI : L->getBlocks())
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
if (InductiveRangeCheck *IRC =
InductiveRangeCheck::create(IRCAlloc, TBI, L, SE))
RangeChecks.push_back(IRC);
if (RangeChecks.empty())
return false;
DEBUG(dbgs() << "irce: looking at loop "; L->print(dbgs());
dbgs() << "irce: loop has " << RangeChecks.size()
<< " inductive range checks: \n";
for (InductiveRangeCheck *IRC : RangeChecks)
IRC->print(dbgs());
);
Optional<InductiveRangeCheck::Range> SafeIterRange;
Instruction *ExprInsertPt = Preheader->getTerminator();
SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
IRBuilder<> B(ExprInsertPt);
for (InductiveRangeCheck *IRC : RangeChecks) {
auto Result = IRC->computeSafeIterationSpace(SE, B);
if (Result.hasValue()) {
SafeIterRange = IntersectRange(SafeIterRange, Result.getValue(), B);
RangeChecksToEliminate.push_back(IRC);
}
}
if (!SafeIterRange.hasValue())
return false;
LoopConstrainer LC(*L, getAnalysis<LoopInfo>(), SE, SafeIterRange.getValue());
bool Changed = LC.run();
if (Changed) {
auto PrintConstrainedLoopInfo = [L]() {
dbgs() << "irce: in function ";
dbgs() << L->getHeader()->getParent()->getName() << ": ";
dbgs() << "constrained ";
L->print(dbgs());
};
DEBUG(PrintConstrainedLoopInfo());
if (PrintChangedLoops)
PrintConstrainedLoopInfo();
// Optimize away the now-redundant range checks.
for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
? ConstantInt::getTrue(Context)
: ConstantInt::getFalse(Context);
IRC->getBranch()->setCondition(FoldedRangeCheck);
}
}
return Changed;
}
Pass *llvm::createInductiveRangeCheckEliminationPass() {
return new InductiveRangeCheckElimination;
}