llvm-project/llvm/lib/Support/Path.cpp

1105 lines
30 KiB
C++

//===-- Path.cpp - Implement OS Path Concept ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the operating system Path API.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Errc.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Process.h"
#include <cctype>
#include <cstdio>
#include <cstring>
#include <fcntl.h>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace llvm;
namespace {
using llvm::StringRef;
using llvm::sys::path::is_separator;
#ifdef LLVM_ON_WIN32
const char *separators = "\\/";
const char preferred_separator = '\\';
#else
const char separators = '/';
const char preferred_separator = '/';
#endif
StringRef find_first_component(StringRef path) {
// Look for this first component in the following order.
// * empty (in this case we return an empty string)
// * either C: or {//,\\}net.
// * {/,\}
// * {.,..}
// * {file,directory}name
if (path.empty())
return path;
#ifdef LLVM_ON_WIN32
// C:
if (path.size() >= 2 && std::isalpha(static_cast<unsigned char>(path[0])) &&
path[1] == ':')
return path.substr(0, 2);
#endif
// //net
if ((path.size() > 2) &&
is_separator(path[0]) &&
path[0] == path[1] &&
!is_separator(path[2])) {
// Find the next directory separator.
size_t end = path.find_first_of(separators, 2);
return path.substr(0, end);
}
// {/,\}
if (is_separator(path[0]))
return path.substr(0, 1);
if (path.startswith(".."))
return path.substr(0, 2);
if (path[0] == '.')
return path.substr(0, 1);
// * {file,directory}name
size_t end = path.find_first_of(separators);
return path.substr(0, end);
}
size_t filename_pos(StringRef str) {
if (str.size() == 2 &&
is_separator(str[0]) &&
str[0] == str[1])
return 0;
if (str.size() > 0 && is_separator(str[str.size() - 1]))
return str.size() - 1;
size_t pos = str.find_last_of(separators, str.size() - 1);
#ifdef LLVM_ON_WIN32
if (pos == StringRef::npos)
pos = str.find_last_of(':', str.size() - 2);
#endif
if (pos == StringRef::npos ||
(pos == 1 && is_separator(str[0])))
return 0;
return pos + 1;
}
size_t root_dir_start(StringRef str) {
// case "c:/"
#ifdef LLVM_ON_WIN32
if (str.size() > 2 &&
str[1] == ':' &&
is_separator(str[2]))
return 2;
#endif
// case "//"
if (str.size() == 2 &&
is_separator(str[0]) &&
str[0] == str[1])
return StringRef::npos;
// case "//net"
if (str.size() > 3 &&
is_separator(str[0]) &&
str[0] == str[1] &&
!is_separator(str[2])) {
return str.find_first_of(separators, 2);
}
// case "/"
if (str.size() > 0 && is_separator(str[0]))
return 0;
return StringRef::npos;
}
size_t parent_path_end(StringRef path) {
size_t end_pos = filename_pos(path);
bool filename_was_sep = path.size() > 0 && is_separator(path[end_pos]);
// Skip separators except for root dir.
size_t root_dir_pos = root_dir_start(path.substr(0, end_pos));
while(end_pos > 0 &&
(end_pos - 1) != root_dir_pos &&
is_separator(path[end_pos - 1]))
--end_pos;
if (end_pos == 1 && root_dir_pos == 0 && filename_was_sep)
return StringRef::npos;
return end_pos;
}
} // end unnamed namespace
enum FSEntity {
FS_Dir,
FS_File,
FS_Name
};
// Implemented in Unix/Path.inc and Windows/Path.inc.
static std::error_code TempDir(SmallVectorImpl<char> &result);
static std::error_code createUniqueEntity(const Twine &Model, int &ResultFD,
SmallVectorImpl<char> &ResultPath,
bool MakeAbsolute, unsigned Mode,
FSEntity Type) {
SmallString<128> ModelStorage;
Model.toVector(ModelStorage);
if (MakeAbsolute) {
// Make model absolute by prepending a temp directory if it's not already.
if (!sys::path::is_absolute(Twine(ModelStorage))) {
SmallString<128> TDir;
if (std::error_code EC = TempDir(TDir))
return EC;
sys::path::append(TDir, Twine(ModelStorage));
ModelStorage.swap(TDir);
}
}
// From here on, DO NOT modify model. It may be needed if the randomly chosen
// path already exists.
ResultPath = ModelStorage;
// Null terminate.
ResultPath.push_back(0);
ResultPath.pop_back();
retry_random_path:
// Replace '%' with random chars.
for (unsigned i = 0, e = ModelStorage.size(); i != e; ++i) {
if (ModelStorage[i] == '%')
ResultPath[i] = "0123456789abcdef"[sys::Process::GetRandomNumber() & 15];
}
// Try to open + create the file.
switch (Type) {
case FS_File: {
if (std::error_code EC =
sys::fs::openFileForWrite(Twine(ResultPath.begin()), ResultFD,
sys::fs::F_RW | sys::fs::F_Excl, Mode)) {
if (EC == errc::file_exists)
goto retry_random_path;
return EC;
}
return std::error_code();
}
case FS_Name: {
bool Exists;
std::error_code EC = sys::fs::exists(ResultPath.begin(), Exists);
if (EC)
return EC;
if (Exists)
goto retry_random_path;
return std::error_code();
}
case FS_Dir: {
if (std::error_code EC =
sys::fs::create_directory(ResultPath.begin(), false)) {
if (EC == errc::file_exists)
goto retry_random_path;
return EC;
}
return std::error_code();
}
}
llvm_unreachable("Invalid Type");
}
namespace llvm {
namespace sys {
namespace path {
const_iterator begin(StringRef path) {
const_iterator i;
i.Path = path;
i.Component = find_first_component(path);
i.Position = 0;
return i;
}
const_iterator end(StringRef path) {
const_iterator i;
i.Path = path;
i.Position = path.size();
return i;
}
const_iterator &const_iterator::operator++() {
assert(Position < Path.size() && "Tried to increment past end!");
// Increment Position to past the current component
Position += Component.size();
// Check for end.
if (Position == Path.size()) {
Component = StringRef();
return *this;
}
// Both POSIX and Windows treat paths that begin with exactly two separators
// specially.
bool was_net = Component.size() > 2 &&
is_separator(Component[0]) &&
Component[1] == Component[0] &&
!is_separator(Component[2]);
// Handle separators.
if (is_separator(Path[Position])) {
// Root dir.
if (was_net
#ifdef LLVM_ON_WIN32
// c:/
|| Component.endswith(":")
#endif
) {
Component = Path.substr(Position, 1);
return *this;
}
// Skip extra separators.
while (Position != Path.size() &&
is_separator(Path[Position])) {
++Position;
}
// Treat trailing '/' as a '.'.
if (Position == Path.size()) {
--Position;
Component = ".";
return *this;
}
}
// Find next component.
size_t end_pos = Path.find_first_of(separators, Position);
Component = Path.slice(Position, end_pos);
return *this;
}
bool const_iterator::operator==(const const_iterator &RHS) const {
return Path.begin() == RHS.Path.begin() && Position == RHS.Position;
}
ptrdiff_t const_iterator::operator-(const const_iterator &RHS) const {
return Position - RHS.Position;
}
reverse_iterator rbegin(StringRef Path) {
reverse_iterator I;
I.Path = Path;
I.Position = Path.size();
return ++I;
}
reverse_iterator rend(StringRef Path) {
reverse_iterator I;
I.Path = Path;
I.Component = Path.substr(0, 0);
I.Position = 0;
return I;
}
reverse_iterator &reverse_iterator::operator++() {
// If we're at the end and the previous char was a '/', return '.' unless
// we are the root path.
size_t root_dir_pos = root_dir_start(Path);
if (Position == Path.size() &&
Path.size() > root_dir_pos + 1 &&
is_separator(Path[Position - 1])) {
--Position;
Component = ".";
return *this;
}
// Skip separators unless it's the root directory.
size_t end_pos = Position;
while(end_pos > 0 &&
(end_pos - 1) != root_dir_pos &&
is_separator(Path[end_pos - 1]))
--end_pos;
// Find next separator.
size_t start_pos = filename_pos(Path.substr(0, end_pos));
Component = Path.slice(start_pos, end_pos);
Position = start_pos;
return *this;
}
bool reverse_iterator::operator==(const reverse_iterator &RHS) const {
return Path.begin() == RHS.Path.begin() && Component == RHS.Component &&
Position == RHS.Position;
}
const StringRef root_path(StringRef path) {
const_iterator b = begin(path),
pos = b,
e = end(path);
if (b != e) {
bool has_net = b->size() > 2 && is_separator((*b)[0]) && (*b)[1] == (*b)[0];
bool has_drive =
#ifdef LLVM_ON_WIN32
b->endswith(":");
#else
false;
#endif
if (has_net || has_drive) {
if ((++pos != e) && is_separator((*pos)[0])) {
// {C:/,//net/}, so get the first two components.
return path.substr(0, b->size() + pos->size());
} else {
// just {C:,//net}, return the first component.
return *b;
}
}
// POSIX style root directory.
if (is_separator((*b)[0])) {
return *b;
}
}
return StringRef();
}
const StringRef root_name(StringRef path) {
const_iterator b = begin(path),
e = end(path);
if (b != e) {
bool has_net = b->size() > 2 && is_separator((*b)[0]) && (*b)[1] == (*b)[0];
bool has_drive =
#ifdef LLVM_ON_WIN32
b->endswith(":");
#else
false;
#endif
if (has_net || has_drive) {
// just {C:,//net}, return the first component.
return *b;
}
}
// No path or no name.
return StringRef();
}
const StringRef root_directory(StringRef path) {
const_iterator b = begin(path),
pos = b,
e = end(path);
if (b != e) {
bool has_net = b->size() > 2 && is_separator((*b)[0]) && (*b)[1] == (*b)[0];
bool has_drive =
#ifdef LLVM_ON_WIN32
b->endswith(":");
#else
false;
#endif
if ((has_net || has_drive) &&
// {C:,//net}, skip to the next component.
(++pos != e) && is_separator((*pos)[0])) {
return *pos;
}
// POSIX style root directory.
if (!has_net && is_separator((*b)[0])) {
return *b;
}
}
// No path or no root.
return StringRef();
}
const StringRef relative_path(StringRef path) {
StringRef root = root_path(path);
return path.substr(root.size());
}
void append(SmallVectorImpl<char> &path, const Twine &a,
const Twine &b,
const Twine &c,
const Twine &d) {
SmallString<32> a_storage;
SmallString<32> b_storage;
SmallString<32> c_storage;
SmallString<32> d_storage;
SmallVector<StringRef, 4> components;
if (!a.isTriviallyEmpty()) components.push_back(a.toStringRef(a_storage));
if (!b.isTriviallyEmpty()) components.push_back(b.toStringRef(b_storage));
if (!c.isTriviallyEmpty()) components.push_back(c.toStringRef(c_storage));
if (!d.isTriviallyEmpty()) components.push_back(d.toStringRef(d_storage));
for (SmallVectorImpl<StringRef>::const_iterator i = components.begin(),
e = components.end();
i != e; ++i) {
bool path_has_sep = !path.empty() && is_separator(path[path.size() - 1]);
bool component_has_sep = !i->empty() && is_separator((*i)[0]);
bool is_root_name = has_root_name(*i);
if (path_has_sep) {
// Strip separators from beginning of component.
size_t loc = i->find_first_not_of(separators);
StringRef c = i->substr(loc);
// Append it.
path.append(c.begin(), c.end());
continue;
}
if (!component_has_sep && !(path.empty() || is_root_name)) {
// Add a separator.
path.push_back(preferred_separator);
}
path.append(i->begin(), i->end());
}
}
void append(SmallVectorImpl<char> &path,
const_iterator begin, const_iterator end) {
for (; begin != end; ++begin)
path::append(path, *begin);
}
const StringRef parent_path(StringRef path) {
size_t end_pos = parent_path_end(path);
if (end_pos == StringRef::npos)
return StringRef();
else
return path.substr(0, end_pos);
}
void remove_filename(SmallVectorImpl<char> &path) {
size_t end_pos = parent_path_end(StringRef(path.begin(), path.size()));
if (end_pos != StringRef::npos)
path.set_size(end_pos);
}
void replace_extension(SmallVectorImpl<char> &path, const Twine &extension) {
StringRef p(path.begin(), path.size());
SmallString<32> ext_storage;
StringRef ext = extension.toStringRef(ext_storage);
// Erase existing extension.
size_t pos = p.find_last_of('.');
if (pos != StringRef::npos && pos >= filename_pos(p))
path.set_size(pos);
// Append '.' if needed.
if (ext.size() > 0 && ext[0] != '.')
path.push_back('.');
// Append extension.
path.append(ext.begin(), ext.end());
}
void native(const Twine &path, SmallVectorImpl<char> &result) {
assert((!path.isSingleStringRef() ||
path.getSingleStringRef().data() != result.data()) &&
"path and result are not allowed to overlap!");
// Clear result.
result.clear();
path.toVector(result);
native(result);
}
void native(SmallVectorImpl<char> &path) {
#ifdef LLVM_ON_WIN32
std::replace(path.begin(), path.end(), '/', '\\');
#endif
}
const StringRef filename(StringRef path) {
return *rbegin(path);
}
const StringRef stem(StringRef path) {
StringRef fname = filename(path);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
return fname;
else
if ((fname.size() == 1 && fname == ".") ||
(fname.size() == 2 && fname == ".."))
return fname;
else
return fname.substr(0, pos);
}
const StringRef extension(StringRef path) {
StringRef fname = filename(path);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
return StringRef();
else
if ((fname.size() == 1 && fname == ".") ||
(fname.size() == 2 && fname == ".."))
return StringRef();
else
return fname.substr(pos);
}
bool is_separator(char value) {
switch(value) {
#ifdef LLVM_ON_WIN32
case '\\': // fall through
#endif
case '/': return true;
default: return false;
}
}
static const char preferred_separator_string[] = { preferred_separator, '\0' };
const StringRef get_separator() {
return preferred_separator_string;
}
void system_temp_directory(bool erasedOnReboot, SmallVectorImpl<char> &result) {
result.clear();
#if defined(_CS_DARWIN_USER_TEMP_DIR) && defined(_CS_DARWIN_USER_CACHE_DIR)
// On Darwin, use DARWIN_USER_TEMP_DIR or DARWIN_USER_CACHE_DIR.
// macros defined in <unistd.h> on darwin >= 9
int ConfName = erasedOnReboot? _CS_DARWIN_USER_TEMP_DIR
: _CS_DARWIN_USER_CACHE_DIR;
size_t ConfLen = confstr(ConfName, nullptr, 0);
if (ConfLen > 0) {
do {
result.resize(ConfLen);
ConfLen = confstr(ConfName, result.data(), result.size());
} while (ConfLen > 0 && ConfLen != result.size());
if (ConfLen > 0) {
assert(result.back() == 0);
result.pop_back();
return;
}
result.clear();
}
#endif
// Check whether the temporary directory is specified by an environment
// variable.
const char *EnvironmentVariable;
#ifdef LLVM_ON_WIN32
EnvironmentVariable = "TEMP";
#else
EnvironmentVariable = "TMPDIR";
#endif
if (char *RequestedDir = getenv(EnvironmentVariable)) {
result.append(RequestedDir, RequestedDir + strlen(RequestedDir));
return;
}
// Fall back to a system default.
const char *DefaultResult;
#ifdef LLVM_ON_WIN32
(void)erasedOnReboot;
DefaultResult = "C:\\TEMP";
#else
if (erasedOnReboot)
DefaultResult = "/tmp";
else
DefaultResult = "/var/tmp";
#endif
result.append(DefaultResult, DefaultResult + strlen(DefaultResult));
}
bool has_root_name(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_name(p).empty();
}
bool has_root_directory(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_directory(p).empty();
}
bool has_root_path(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_path(p).empty();
}
bool has_relative_path(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !relative_path(p).empty();
}
bool has_filename(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !filename(p).empty();
}
bool has_parent_path(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !parent_path(p).empty();
}
bool has_stem(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !stem(p).empty();
}
bool has_extension(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !extension(p).empty();
}
bool is_absolute(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
bool rootDir = has_root_directory(p),
#ifdef LLVM_ON_WIN32
rootName = has_root_name(p);
#else
rootName = true;
#endif
return rootDir && rootName;
}
bool is_relative(const Twine &path) {
return !is_absolute(path);
}
} // end namespace path
namespace fs {
std::error_code getUniqueID(const Twine Path, UniqueID &Result) {
file_status Status;
std::error_code EC = status(Path, Status);
if (EC)
return EC;
Result = Status.getUniqueID();
return std::error_code();
}
std::error_code createUniqueFile(const Twine &Model, int &ResultFd,
SmallVectorImpl<char> &ResultPath,
unsigned Mode) {
return createUniqueEntity(Model, ResultFd, ResultPath, false, Mode, FS_File);
}
std::error_code createUniqueFile(const Twine &Model,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createUniqueEntity(Model, Dummy, ResultPath, false, 0, FS_Name);
}
static std::error_code
createTemporaryFile(const Twine &Model, int &ResultFD,
llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) {
SmallString<128> Storage;
StringRef P = Model.toNullTerminatedStringRef(Storage);
assert(P.find_first_of(separators) == StringRef::npos &&
"Model must be a simple filename.");
// Use P.begin() so that createUniqueEntity doesn't need to recreate Storage.
return createUniqueEntity(P.begin(), ResultFD, ResultPath,
true, owner_read | owner_write, Type);
}
static std::error_code
createTemporaryFile(const Twine &Prefix, StringRef Suffix, int &ResultFD,
llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) {
const char *Middle = Suffix.empty() ? "-%%%%%%" : "-%%%%%%.";
return createTemporaryFile(Prefix + Middle + Suffix, ResultFD, ResultPath,
Type);
}
std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix,
int &ResultFD,
SmallVectorImpl<char> &ResultPath) {
return createTemporaryFile(Prefix, Suffix, ResultFD, ResultPath, FS_File);
}
std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createTemporaryFile(Prefix, Suffix, Dummy, ResultPath, FS_Name);
}
// This is a mkdtemp with a different pattern. We use createUniqueEntity mostly
// for consistency. We should try using mkdtemp.
std::error_code createUniqueDirectory(const Twine &Prefix,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createUniqueEntity(Prefix + "-%%%%%%", Dummy, ResultPath,
true, 0, FS_Dir);
}
std::error_code make_absolute(SmallVectorImpl<char> &path) {
StringRef p(path.data(), path.size());
bool rootDirectory = path::has_root_directory(p),
#ifdef LLVM_ON_WIN32
rootName = path::has_root_name(p);
#else
rootName = true;
#endif
// Already absolute.
if (rootName && rootDirectory)
return std::error_code();
// All of the following conditions will need the current directory.
SmallString<128> current_dir;
if (std::error_code ec = current_path(current_dir))
return ec;
// Relative path. Prepend the current directory.
if (!rootName && !rootDirectory) {
// Append path to the current directory.
path::append(current_dir, p);
// Set path to the result.
path.swap(current_dir);
return std::error_code();
}
if (!rootName && rootDirectory) {
StringRef cdrn = path::root_name(current_dir);
SmallString<128> curDirRootName(cdrn.begin(), cdrn.end());
path::append(curDirRootName, p);
// Set path to the result.
path.swap(curDirRootName);
return std::error_code();
}
if (rootName && !rootDirectory) {
StringRef pRootName = path::root_name(p);
StringRef bRootDirectory = path::root_directory(current_dir);
StringRef bRelativePath = path::relative_path(current_dir);
StringRef pRelativePath = path::relative_path(p);
SmallString<128> res;
path::append(res, pRootName, bRootDirectory, bRelativePath, pRelativePath);
path.swap(res);
return std::error_code();
}
llvm_unreachable("All rootName and rootDirectory combinations should have "
"occurred above!");
}
std::error_code create_directories(const Twine &Path, bool IgnoreExisting) {
SmallString<128> PathStorage;
StringRef P = Path.toStringRef(PathStorage);
// Be optimistic and try to create the directory
std::error_code EC = create_directory(P, IgnoreExisting);
// If we succeeded, or had any error other than the parent not existing, just
// return it.
if (EC != errc::no_such_file_or_directory)
return EC;
// We failed because of a no_such_file_or_directory, try to create the
// parent.
StringRef Parent = path::parent_path(P);
if (Parent.empty())
return EC;
if ((EC = create_directories(Parent)))
return EC;
return create_directory(P, IgnoreExisting);
}
std::error_code copy_file(const Twine &From, const Twine &To) {
int ReadFD, WriteFD;
if (std::error_code EC = openFileForRead(From, ReadFD))
return EC;
if (std::error_code EC = openFileForWrite(To, WriteFD, F_None)) {
close(ReadFD);
return EC;
}
const size_t BufSize = 4096;
char *Buf = new char[BufSize];
int BytesRead = 0, BytesWritten = 0;
for (;;) {
BytesRead = read(ReadFD, Buf, BufSize);
if (BytesRead <= 0)
break;
while (BytesRead) {
BytesWritten = write(WriteFD, Buf, BytesRead);
if (BytesWritten < 0)
break;
BytesRead -= BytesWritten;
}
if (BytesWritten < 0)
break;
}
close(ReadFD);
close(WriteFD);
delete[] Buf;
if (BytesRead < 0 || BytesWritten < 0)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
bool exists(file_status status) {
return status_known(status) && status.type() != file_type::file_not_found;
}
bool status_known(file_status s) {
return s.type() != file_type::status_error;
}
bool is_directory(file_status status) {
return status.type() == file_type::directory_file;
}
std::error_code is_directory(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st))
return ec;
result = is_directory(st);
return std::error_code();
}
bool is_regular_file(file_status status) {
return status.type() == file_type::regular_file;
}
std::error_code is_regular_file(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st))
return ec;
result = is_regular_file(st);
return std::error_code();
}
bool is_other(file_status status) {
return exists(status) &&
!is_regular_file(status) &&
!is_directory(status);
}
void directory_entry::replace_filename(const Twine &filename, file_status st) {
SmallString<128> path(Path.begin(), Path.end());
path::remove_filename(path);
path::append(path, filename);
Path = path.str();
Status = st;
}
/// @brief Identify the magic in magic.
file_magic identify_magic(StringRef Magic) {
if (Magic.size() < 4)
return file_magic::unknown;
switch ((unsigned char)Magic[0]) {
case 0x00: {
// COFF short import library file
if (Magic[1] == (char)0x00 && Magic[2] == (char)0xff &&
Magic[3] == (char)0xff)
return file_magic::coff_import_library;
// Windows resource file
const char Expected[] = { 0, 0, 0, 0, '\x20', 0, 0, 0, '\xff' };
if (Magic.size() >= sizeof(Expected) &&
memcmp(Magic.data(), Expected, sizeof(Expected)) == 0)
return file_magic::windows_resource;
// 0x0000 = COFF unknown machine type
if (Magic[1] == 0)
return file_magic::coff_object;
break;
}
case 0xDE: // 0x0B17C0DE = BC wraper
if (Magic[1] == (char)0xC0 && Magic[2] == (char)0x17 &&
Magic[3] == (char)0x0B)
return file_magic::bitcode;
break;
case 'B':
if (Magic[1] == 'C' && Magic[2] == (char)0xC0 && Magic[3] == (char)0xDE)
return file_magic::bitcode;
break;
case '!':
if (Magic.size() >= 8)
if (memcmp(Magic.data(),"!<arch>\n",8) == 0)
return file_magic::archive;
break;
case '\177':
if (Magic.size() >= 18 && Magic[1] == 'E' && Magic[2] == 'L' &&
Magic[3] == 'F') {
bool Data2MSB = Magic[5] == 2;
unsigned high = Data2MSB ? 16 : 17;
unsigned low = Data2MSB ? 17 : 16;
if (Magic[high] == 0)
switch (Magic[low]) {
default: break;
case 1: return file_magic::elf_relocatable;
case 2: return file_magic::elf_executable;
case 3: return file_magic::elf_shared_object;
case 4: return file_magic::elf_core;
}
}
break;
case 0xCA:
if (Magic[1] == char(0xFE) && Magic[2] == char(0xBA) &&
Magic[3] == char(0xBE)) {
// This is complicated by an overlap with Java class files.
// See the Mach-O section in /usr/share/file/magic for details.
if (Magic.size() >= 8 && Magic[7] < 43)
return file_magic::macho_universal_binary;
}
break;
// The two magic numbers for mach-o are:
// 0xfeedface - 32-bit mach-o
// 0xfeedfacf - 64-bit mach-o
case 0xFE:
case 0xCE:
case 0xCF: {
uint16_t type = 0;
if (Magic[0] == char(0xFE) && Magic[1] == char(0xED) &&
Magic[2] == char(0xFA) &&
(Magic[3] == char(0xCE) || Magic[3] == char(0xCF))) {
/* Native endian */
if (Magic.size() >= 16) type = Magic[14] << 8 | Magic[15];
} else if ((Magic[0] == char(0xCE) || Magic[0] == char(0xCF)) &&
Magic[1] == char(0xFA) && Magic[2] == char(0xED) &&
Magic[3] == char(0xFE)) {
/* Reverse endian */
if (Magic.size() >= 14) type = Magic[13] << 8 | Magic[12];
}
switch (type) {
default: break;
case 1: return file_magic::macho_object;
case 2: return file_magic::macho_executable;
case 3: return file_magic::macho_fixed_virtual_memory_shared_lib;
case 4: return file_magic::macho_core;
case 5: return file_magic::macho_preload_executable;
case 6: return file_magic::macho_dynamically_linked_shared_lib;
case 7: return file_magic::macho_dynamic_linker;
case 8: return file_magic::macho_bundle;
case 9: return file_magic::macho_dynamic_linker;
case 10: return file_magic::macho_dsym_companion;
}
break;
}
case 0xF0: // PowerPC Windows
case 0x83: // Alpha 32-bit
case 0x84: // Alpha 64-bit
case 0x66: // MPS R4000 Windows
case 0x50: // mc68K
case 0x4c: // 80386 Windows
case 0xc4: // ARMNT Windows
if (Magic[1] == 0x01)
return file_magic::coff_object;
case 0x90: // PA-RISC Windows
case 0x68: // mc68K Windows
if (Magic[1] == 0x02)
return file_magic::coff_object;
break;
case 0x4d: // Possible MS-DOS stub on Windows PE file
if (Magic[1] == 0x5a) {
uint32_t off =
*reinterpret_cast<const support::ulittle32_t*>(Magic.data() + 0x3c);
// PE/COFF file, either EXE or DLL.
if (off < Magic.size() && memcmp(Magic.data() + off, "PE\0\0",4) == 0)
return file_magic::pecoff_executable;
}
break;
case 0x64: // x86-64 Windows.
if (Magic[1] == char(0x86))
return file_magic::coff_object;
break;
default:
break;
}
return file_magic::unknown;
}
std::error_code identify_magic(const Twine &Path, file_magic &Result) {
int FD;
if (std::error_code EC = openFileForRead(Path, FD))
return EC;
char Buffer[32];
int Length = read(FD, Buffer, sizeof(Buffer));
if (close(FD) != 0 || Length < 0)
return std::error_code(errno, std::generic_category());
Result = identify_magic(StringRef(Buffer, Length));
return std::error_code();
}
std::error_code directory_entry::status(file_status &result) const {
return fs::status(Path, result);
}
} // end namespace fs
} // end namespace sys
} // end namespace llvm
// Include the truly platform-specific parts.
#if defined(LLVM_ON_UNIX)
#include "Unix/Path.inc"
#endif
#if defined(LLVM_ON_WIN32)
#include "Windows/Path.inc"
#endif