forked from OSchip/llvm-project
861 lines
30 KiB
C++
861 lines
30 KiB
C++
//===-- PGOInstrumentation.cpp - MST-based PGO Instrumentation ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements PGO instrumentation using a minimum spanning tree based
|
|
// on the following paper:
|
|
// [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
|
|
// for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
|
|
// Issue 3, pp 313-322
|
|
// The idea of the algorithm based on the fact that for each node (except for
|
|
// the entry and exit), the sum of incoming edge counts equals the sum of
|
|
// outgoing edge counts. The count of edge on spanning tree can be derived from
|
|
// those edges not on the spanning tree. Knuth proves this method instruments
|
|
// the minimum number of edges.
|
|
//
|
|
// The minimal spanning tree here is actually a maximum weight tree -- on-tree
|
|
// edges have higher frequencies (more likely to execute). The idea is to
|
|
// instrument those less frequently executed edges to reduce the runtime
|
|
// overhead of instrumented binaries.
|
|
//
|
|
// This file contains two passes:
|
|
// (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
|
|
// count profile, and generates the instrumentation for indirect call
|
|
// profiling.
|
|
// (2) Pass PGOInstrumentationUse which reads the edge count profile and
|
|
// annotates the branch weights. It also reads the indirect call value
|
|
// profiling records and annotate the indirect call instructions.
|
|
//
|
|
// To get the precise counter information, These two passes need to invoke at
|
|
// the same compilation point (so they see the same IR). For pass
|
|
// PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
|
|
// pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
|
|
// the profile is opened in module level and passed to each PGOUseFunc instance.
|
|
// The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
|
|
// in class FuncPGOInstrumentation.
|
|
//
|
|
// Class PGOEdge represents a CFG edge and some auxiliary information. Class
|
|
// BBInfo contains auxiliary information for each BB. These two classes are used
|
|
// in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
|
|
// class of PGOEdge and BBInfo, respectively. They contains extra data structure
|
|
// used in populating profile counters.
|
|
// The MST implementation is in Class CFGMST (CFGMST.h).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CFGMST.h"
|
|
#include "IndirectCallSiteVisitor.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/JamCRC.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "pgo-instrumentation"
|
|
|
|
STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
|
|
STATISTIC(NumOfPGOEdge, "Number of edges.");
|
|
STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
|
|
STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
|
|
STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
|
|
STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
|
|
STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
|
|
STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
|
|
|
|
// Command line option to specify the file to read profile from. This is
|
|
// mainly used for testing.
|
|
static cl::opt<std::string>
|
|
PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
|
|
cl::value_desc("filename"),
|
|
cl::desc("Specify the path of profile data file. This is"
|
|
"mainly for test purpose."));
|
|
|
|
// Command line option to disable value profiling. The default is false:
|
|
// i.e. value profiling is enabled by default. This is for debug purpose.
|
|
static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
|
|
cl::Hidden,
|
|
cl::desc("Disable Value Profiling"));
|
|
|
|
// Command line option to set the maximum number of VP annotations to write to
|
|
// the metadata for a single indirect call callsite.
|
|
static cl::opt<unsigned> MaxNumAnnotations(
|
|
"icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Max number of annotations for a single indirect "
|
|
"call callsite"));
|
|
|
|
namespace {
|
|
class PGOInstrumentationGen : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
|
|
PGOInstrumentationGen() : ModulePass(ID) {
|
|
initializePGOInstrumentationGenPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
const char *getPassName() const override {
|
|
return "PGOInstrumentationGenPass";
|
|
}
|
|
|
|
private:
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
class PGOInstrumentationUse : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
|
|
// Provide the profile filename as the parameter.
|
|
PGOInstrumentationUse(std::string Filename = "")
|
|
: ModulePass(ID), ProfileFileName(Filename) {
|
|
if (!PGOTestProfileFile.empty())
|
|
ProfileFileName = PGOTestProfileFile;
|
|
initializePGOInstrumentationUsePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
const char *getPassName() const override {
|
|
return "PGOInstrumentationUsePass";
|
|
}
|
|
|
|
private:
|
|
std::string ProfileFileName;
|
|
std::unique_ptr<IndexedInstrProfReader> PGOReader;
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char PGOInstrumentationGen::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(PGOInstrumentationGen, "pgo-instr-gen",
|
|
"PGO instrumentation.", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
|
|
INITIALIZE_PASS_END(PGOInstrumentationGen, "pgo-instr-gen",
|
|
"PGO instrumentation.", false, false)
|
|
|
|
ModulePass *llvm::createPGOInstrumentationGenPass() {
|
|
return new PGOInstrumentationGen();
|
|
}
|
|
|
|
char PGOInstrumentationUse::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(PGOInstrumentationUse, "pgo-instr-use",
|
|
"Read PGO instrumentation profile.", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
|
|
INITIALIZE_PASS_END(PGOInstrumentationUse, "pgo-instr-use",
|
|
"Read PGO instrumentation profile.", false, false)
|
|
|
|
ModulePass *llvm::createPGOInstrumentationUsePass(StringRef Filename) {
|
|
return new PGOInstrumentationUse(Filename.str());
|
|
}
|
|
|
|
namespace {
|
|
/// \brief An MST based instrumentation for PGO
|
|
///
|
|
/// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
|
|
/// in the function level.
|
|
struct PGOEdge {
|
|
// This class implements the CFG edges. Note the CFG can be a multi-graph.
|
|
// So there might be multiple edges with same SrcBB and DestBB.
|
|
const BasicBlock *SrcBB;
|
|
const BasicBlock *DestBB;
|
|
uint64_t Weight;
|
|
bool InMST;
|
|
bool Removed;
|
|
bool IsCritical;
|
|
PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1)
|
|
: SrcBB(Src), DestBB(Dest), Weight(W), InMST(false), Removed(false),
|
|
IsCritical(false) {}
|
|
// Return the information string of an edge.
|
|
const std::string infoString() const {
|
|
return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
|
|
(IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str();
|
|
}
|
|
};
|
|
|
|
// This class stores the auxiliary information for each BB.
|
|
struct BBInfo {
|
|
BBInfo *Group;
|
|
uint32_t Index;
|
|
uint32_t Rank;
|
|
|
|
BBInfo(unsigned IX) : Group(this), Index(IX), Rank(0) {}
|
|
|
|
// Return the information string of this object.
|
|
const std::string infoString() const {
|
|
return (Twine("Index=") + Twine(Index)).str();
|
|
}
|
|
};
|
|
|
|
// This class implements the CFG edges. Note the CFG can be a multi-graph.
|
|
template <class Edge, class BBInfo> class FuncPGOInstrumentation {
|
|
private:
|
|
Function &F;
|
|
void computeCFGHash();
|
|
|
|
public:
|
|
std::string FuncName;
|
|
GlobalVariable *FuncNameVar;
|
|
// CFG hash value for this function.
|
|
uint64_t FunctionHash;
|
|
|
|
// The Minimum Spanning Tree of function CFG.
|
|
CFGMST<Edge, BBInfo> MST;
|
|
|
|
// Give an edge, find the BB that will be instrumented.
|
|
// Return nullptr if there is no BB to be instrumented.
|
|
BasicBlock *getInstrBB(Edge *E);
|
|
|
|
// Return the auxiliary BB information.
|
|
BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
|
|
|
|
// Dump edges and BB information.
|
|
void dumpInfo(std::string Str = "") const {
|
|
MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
|
|
Twine(FunctionHash) + "\t" + Str);
|
|
}
|
|
|
|
FuncPGOInstrumentation(Function &Func, bool CreateGlobalVar = false,
|
|
BranchProbabilityInfo *BPI = nullptr,
|
|
BlockFrequencyInfo *BFI = nullptr)
|
|
: F(Func), FunctionHash(0), MST(F, BPI, BFI) {
|
|
FuncName = getPGOFuncName(F);
|
|
computeCFGHash();
|
|
DEBUG(dumpInfo("after CFGMST"));
|
|
|
|
NumOfPGOBB += MST.BBInfos.size();
|
|
for (auto &E : MST.AllEdges) {
|
|
if (E->Removed)
|
|
continue;
|
|
NumOfPGOEdge++;
|
|
if (!E->InMST)
|
|
NumOfPGOInstrument++;
|
|
}
|
|
|
|
if (CreateGlobalVar)
|
|
FuncNameVar = createPGOFuncNameVar(F, FuncName);
|
|
}
|
|
};
|
|
|
|
// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
|
|
// value of each BB in the CFG. The higher 32 bits record the number of edges.
|
|
template <class Edge, class BBInfo>
|
|
void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
|
|
std::vector<char> Indexes;
|
|
JamCRC JC;
|
|
for (auto &BB : F) {
|
|
const TerminatorInst *TI = BB.getTerminator();
|
|
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
|
|
BasicBlock *Succ = TI->getSuccessor(I);
|
|
uint32_t Index = getBBInfo(Succ).Index;
|
|
for (int J = 0; J < 4; J++)
|
|
Indexes.push_back((char)(Index >> (J * 8)));
|
|
}
|
|
}
|
|
JC.update(Indexes);
|
|
FunctionHash = (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
|
|
}
|
|
|
|
// Given a CFG E to be instrumented, find which BB to place the instrumented
|
|
// code. The function will split the critical edge if necessary.
|
|
template <class Edge, class BBInfo>
|
|
BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
|
|
if (E->InMST || E->Removed)
|
|
return nullptr;
|
|
|
|
BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
|
|
BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
|
|
// For a fake edge, instrument the real BB.
|
|
if (SrcBB == nullptr)
|
|
return DestBB;
|
|
if (DestBB == nullptr)
|
|
return SrcBB;
|
|
|
|
// Instrument the SrcBB if it has a single successor,
|
|
// otherwise, the DestBB if this is not a critical edge.
|
|
TerminatorInst *TI = SrcBB->getTerminator();
|
|
if (TI->getNumSuccessors() <= 1)
|
|
return SrcBB;
|
|
if (!E->IsCritical)
|
|
return DestBB;
|
|
|
|
// For a critical edge, we have to split. Instrument the newly
|
|
// created BB.
|
|
NumOfPGOSplit++;
|
|
DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index << " --> "
|
|
<< getBBInfo(DestBB).Index << "\n");
|
|
unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
|
|
BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum);
|
|
assert(InstrBB && "Critical edge is not split");
|
|
|
|
E->Removed = true;
|
|
return InstrBB;
|
|
}
|
|
|
|
// Visit all edge and instrument the edges not in MST, and do value profiling.
|
|
// Critical edges will be split.
|
|
static void instrumentOneFunc(Function &F, Module *M,
|
|
BranchProbabilityInfo *BPI,
|
|
BlockFrequencyInfo *BFI) {
|
|
unsigned NumCounters = 0;
|
|
FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(F, true, BPI, BFI);
|
|
for (auto &E : FuncInfo.MST.AllEdges) {
|
|
if (!E->InMST && !E->Removed)
|
|
NumCounters++;
|
|
}
|
|
|
|
uint32_t I = 0;
|
|
Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
|
|
for (auto &E : FuncInfo.MST.AllEdges) {
|
|
BasicBlock *InstrBB = FuncInfo.getInstrBB(E.get());
|
|
if (!InstrBB)
|
|
continue;
|
|
|
|
IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
|
|
assert(Builder.GetInsertPoint() != InstrBB->end() &&
|
|
"Cannot get the Instrumentation point");
|
|
Builder.CreateCall(
|
|
Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
|
|
{llvm::ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
|
|
Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters),
|
|
Builder.getInt32(I++)});
|
|
}
|
|
|
|
if (DisableValueProfiling)
|
|
return;
|
|
|
|
unsigned NumIndirectCallSites = 0;
|
|
for (auto &I : findIndirectCallSites(F)) {
|
|
CallSite CS(I);
|
|
Value *Callee = CS.getCalledValue();
|
|
DEBUG(dbgs() << "Instrument one indirect call: CallSite Index = "
|
|
<< NumIndirectCallSites << "\n");
|
|
IRBuilder<> Builder(I);
|
|
assert(Builder.GetInsertPoint() != I->getParent()->end() &&
|
|
"Cannot get the Instrumentation point");
|
|
Builder.CreateCall(
|
|
Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
|
|
{llvm::ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
|
|
Builder.getInt64(FuncInfo.FunctionHash),
|
|
Builder.CreatePtrToInt(Callee, Builder.getInt64Ty()),
|
|
Builder.getInt32(llvm::InstrProfValueKind::IPVK_IndirectCallTarget),
|
|
Builder.getInt32(NumIndirectCallSites++)});
|
|
}
|
|
NumOfPGOICall += NumIndirectCallSites;
|
|
}
|
|
|
|
// This class represents a CFG edge in profile use compilation.
|
|
struct PGOUseEdge : public PGOEdge {
|
|
bool CountValid;
|
|
uint64_t CountValue;
|
|
PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, unsigned W = 1)
|
|
: PGOEdge(Src, Dest, W), CountValid(false), CountValue(0) {}
|
|
|
|
// Set edge count value
|
|
void setEdgeCount(uint64_t Value) {
|
|
CountValue = Value;
|
|
CountValid = true;
|
|
}
|
|
|
|
// Return the information string for this object.
|
|
const std::string infoString() const {
|
|
if (!CountValid)
|
|
return PGOEdge::infoString();
|
|
return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue))
|
|
.str();
|
|
}
|
|
};
|
|
|
|
typedef SmallVector<PGOUseEdge *, 2> DirectEdges;
|
|
|
|
// This class stores the auxiliary information for each BB.
|
|
struct UseBBInfo : public BBInfo {
|
|
uint64_t CountValue;
|
|
bool CountValid;
|
|
int32_t UnknownCountInEdge;
|
|
int32_t UnknownCountOutEdge;
|
|
DirectEdges InEdges;
|
|
DirectEdges OutEdges;
|
|
UseBBInfo(unsigned IX)
|
|
: BBInfo(IX), CountValue(0), CountValid(false), UnknownCountInEdge(0),
|
|
UnknownCountOutEdge(0) {}
|
|
UseBBInfo(unsigned IX, uint64_t C)
|
|
: BBInfo(IX), CountValue(C), CountValid(true), UnknownCountInEdge(0),
|
|
UnknownCountOutEdge(0) {}
|
|
|
|
// Set the profile count value for this BB.
|
|
void setBBInfoCount(uint64_t Value) {
|
|
CountValue = Value;
|
|
CountValid = true;
|
|
}
|
|
|
|
// Return the information string of this object.
|
|
const std::string infoString() const {
|
|
if (!CountValid)
|
|
return BBInfo::infoString();
|
|
return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str();
|
|
}
|
|
};
|
|
|
|
// Sum up the count values for all the edges.
|
|
static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
|
|
uint64_t Total = 0;
|
|
for (auto &E : Edges) {
|
|
if (E->Removed)
|
|
continue;
|
|
Total += E->CountValue;
|
|
}
|
|
return Total;
|
|
}
|
|
|
|
class PGOUseFunc {
|
|
public:
|
|
PGOUseFunc(Function &Func, Module *Modu, BranchProbabilityInfo *BPI = nullptr,
|
|
BlockFrequencyInfo *BFI = nullptr)
|
|
: F(Func), M(Modu), FuncInfo(Func, false, BPI, BFI),
|
|
FreqAttr(FFA_Normal) {}
|
|
|
|
// Read counts for the instrumented BB from profile.
|
|
bool readCounters(IndexedInstrProfReader *PGOReader);
|
|
|
|
// Populate the counts for all BBs.
|
|
void populateCounters();
|
|
|
|
// Set the branch weights based on the count values.
|
|
void setBranchWeights();
|
|
|
|
// Annotate the indirect call sites.
|
|
void annotateIndirectCallSites();
|
|
|
|
// The hotness of the function from the profile count.
|
|
enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
|
|
|
|
// Return the function hotness from the profile.
|
|
FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
|
|
|
|
private:
|
|
Function &F;
|
|
Module *M;
|
|
// This member stores the shared information with class PGOGenFunc.
|
|
FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
|
|
|
|
// Return the auxiliary BB information.
|
|
UseBBInfo &getBBInfo(const BasicBlock *BB) const {
|
|
return FuncInfo.getBBInfo(BB);
|
|
}
|
|
|
|
// The maximum count value in the profile. This is only used in PGO use
|
|
// compilation.
|
|
uint64_t ProgramMaxCount;
|
|
|
|
// ProfileRecord for this function.
|
|
InstrProfRecord ProfileRecord;
|
|
|
|
// Function hotness info derived from profile.
|
|
FuncFreqAttr FreqAttr;
|
|
|
|
// Find the Instrumented BB and set the value.
|
|
void setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
|
|
|
|
// Set the edge counter value for the unknown edge -- there should be only
|
|
// one unknown edge.
|
|
void setEdgeCount(DirectEdges &Edges, uint64_t Value);
|
|
|
|
// Return FuncName string;
|
|
const std::string getFuncName() const { return FuncInfo.FuncName; }
|
|
|
|
// Set the hot/cold inline hints based on the count values.
|
|
// FIXME: This function should be removed once the functionality in
|
|
// the inliner is implemented.
|
|
void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
|
|
if (ProgramMaxCount == 0)
|
|
return;
|
|
// Threshold of the hot functions.
|
|
const BranchProbability HotFunctionThreshold(1, 100);
|
|
// Threshold of the cold functions.
|
|
const BranchProbability ColdFunctionThreshold(2, 10000);
|
|
if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount))
|
|
FreqAttr = FFA_Hot;
|
|
else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount))
|
|
FreqAttr = FFA_Cold;
|
|
}
|
|
};
|
|
|
|
// Visit all the edges and assign the count value for the instrumented
|
|
// edges and the BB.
|
|
void PGOUseFunc::setInstrumentedCounts(
|
|
const std::vector<uint64_t> &CountFromProfile) {
|
|
|
|
// Use a worklist as we will update the vector during the iteration.
|
|
std::vector<PGOUseEdge *> WorkList;
|
|
for (auto &E : FuncInfo.MST.AllEdges)
|
|
WorkList.push_back(E.get());
|
|
|
|
uint32_t I = 0;
|
|
for (auto &E : WorkList) {
|
|
BasicBlock *InstrBB = FuncInfo.getInstrBB(E);
|
|
if (!InstrBB)
|
|
continue;
|
|
uint64_t CountValue = CountFromProfile[I++];
|
|
if (!E->Removed) {
|
|
getBBInfo(InstrBB).setBBInfoCount(CountValue);
|
|
E->setEdgeCount(CountValue);
|
|
continue;
|
|
}
|
|
|
|
// Need to add two new edges.
|
|
BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
|
|
BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
|
|
// Add new edge of SrcBB->InstrBB.
|
|
PGOUseEdge &NewEdge = FuncInfo.MST.addEdge(SrcBB, InstrBB, 0);
|
|
NewEdge.setEdgeCount(CountValue);
|
|
// Add new edge of InstrBB->DestBB.
|
|
PGOUseEdge &NewEdge1 = FuncInfo.MST.addEdge(InstrBB, DestBB, 0);
|
|
NewEdge1.setEdgeCount(CountValue);
|
|
NewEdge1.InMST = true;
|
|
getBBInfo(InstrBB).setBBInfoCount(CountValue);
|
|
}
|
|
}
|
|
|
|
// Set the count value for the unknown edge. There should be one and only one
|
|
// unknown edge in Edges vector.
|
|
void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
|
|
for (auto &E : Edges) {
|
|
if (E->CountValid)
|
|
continue;
|
|
E->setEdgeCount(Value);
|
|
|
|
getBBInfo(E->SrcBB).UnknownCountOutEdge--;
|
|
getBBInfo(E->DestBB).UnknownCountInEdge--;
|
|
return;
|
|
}
|
|
llvm_unreachable("Cannot find the unknown count edge");
|
|
}
|
|
|
|
// Read the profile from ProfileFileName and assign the value to the
|
|
// instrumented BB and the edges. This function also updates ProgramMaxCount.
|
|
// Return true if the profile are successfully read, and false on errors.
|
|
bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader) {
|
|
auto &Ctx = M->getContext();
|
|
ErrorOr<InstrProfRecord> Result =
|
|
PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash);
|
|
if (std::error_code EC = Result.getError()) {
|
|
if (EC == instrprof_error::unknown_function)
|
|
NumOfPGOMissing++;
|
|
else if (EC == instrprof_error::hash_mismatch ||
|
|
EC == llvm::instrprof_error::malformed)
|
|
NumOfPGOMismatch++;
|
|
|
|
std::string Msg = EC.message() + std::string(" ") + F.getName().str();
|
|
Ctx.diagnose(
|
|
DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
|
|
return false;
|
|
}
|
|
ProfileRecord = std::move(Result.get());
|
|
std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
|
|
|
|
NumOfPGOFunc++;
|
|
DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
|
|
uint64_t ValueSum = 0;
|
|
for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
|
|
DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
|
|
ValueSum += CountFromProfile[I];
|
|
}
|
|
|
|
DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
|
|
|
|
getBBInfo(nullptr).UnknownCountOutEdge = 2;
|
|
getBBInfo(nullptr).UnknownCountInEdge = 2;
|
|
|
|
setInstrumentedCounts(CountFromProfile);
|
|
ProgramMaxCount = PGOReader->getMaximumFunctionCount();
|
|
return true;
|
|
}
|
|
|
|
// Populate the counters from instrumented BBs to all BBs.
|
|
// In the end of this operation, all BBs should have a valid count value.
|
|
void PGOUseFunc::populateCounters() {
|
|
// First set up Count variable for all BBs.
|
|
for (auto &E : FuncInfo.MST.AllEdges) {
|
|
if (E->Removed)
|
|
continue;
|
|
|
|
const BasicBlock *SrcBB = E->SrcBB;
|
|
const BasicBlock *DestBB = E->DestBB;
|
|
UseBBInfo &SrcInfo = getBBInfo(SrcBB);
|
|
UseBBInfo &DestInfo = getBBInfo(DestBB);
|
|
SrcInfo.OutEdges.push_back(E.get());
|
|
DestInfo.InEdges.push_back(E.get());
|
|
SrcInfo.UnknownCountOutEdge++;
|
|
DestInfo.UnknownCountInEdge++;
|
|
|
|
if (!E->CountValid)
|
|
continue;
|
|
DestInfo.UnknownCountInEdge--;
|
|
SrcInfo.UnknownCountOutEdge--;
|
|
}
|
|
|
|
bool Changes = true;
|
|
unsigned NumPasses = 0;
|
|
while (Changes) {
|
|
NumPasses++;
|
|
Changes = false;
|
|
|
|
// For efficient traversal, it's better to start from the end as most
|
|
// of the instrumented edges are at the end.
|
|
for (auto &BB : reverse(F)) {
|
|
UseBBInfo &Count = getBBInfo(&BB);
|
|
if (!Count.CountValid) {
|
|
if (Count.UnknownCountOutEdge == 0) {
|
|
Count.CountValue = sumEdgeCount(Count.OutEdges);
|
|
Count.CountValid = true;
|
|
Changes = true;
|
|
} else if (Count.UnknownCountInEdge == 0) {
|
|
Count.CountValue = sumEdgeCount(Count.InEdges);
|
|
Count.CountValid = true;
|
|
Changes = true;
|
|
}
|
|
}
|
|
if (Count.CountValid) {
|
|
if (Count.UnknownCountOutEdge == 1) {
|
|
uint64_t Total = Count.CountValue - sumEdgeCount(Count.OutEdges);
|
|
setEdgeCount(Count.OutEdges, Total);
|
|
Changes = true;
|
|
}
|
|
if (Count.UnknownCountInEdge == 1) {
|
|
uint64_t Total = Count.CountValue - sumEdgeCount(Count.InEdges);
|
|
setEdgeCount(Count.InEdges, Total);
|
|
Changes = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
|
|
// Assert every BB has a valid counter.
|
|
uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
|
|
uint64_t FuncMaxCount = FuncEntryCount;
|
|
for (auto &BB : F) {
|
|
assert(getBBInfo(&BB).CountValid && "BB count is not valid");
|
|
uint64_t Count = getBBInfo(&BB).CountValue;
|
|
if (Count > FuncMaxCount)
|
|
FuncMaxCount = Count;
|
|
}
|
|
markFunctionAttributes(FuncEntryCount, FuncMaxCount);
|
|
|
|
DEBUG(FuncInfo.dumpInfo("after reading profile."));
|
|
}
|
|
|
|
// Assign the scaled count values to the BB with multiple out edges.
|
|
void PGOUseFunc::setBranchWeights() {
|
|
// Generate MD_prof metadata for every branch instruction.
|
|
DEBUG(dbgs() << "\nSetting branch weights.\n");
|
|
MDBuilder MDB(M->getContext());
|
|
for (auto &BB : F) {
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
if (TI->getNumSuccessors() < 2)
|
|
continue;
|
|
if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
|
|
continue;
|
|
if (getBBInfo(&BB).CountValue == 0)
|
|
continue;
|
|
|
|
// We have a non-zero Branch BB.
|
|
const UseBBInfo &BBCountInfo = getBBInfo(&BB);
|
|
unsigned Size = BBCountInfo.OutEdges.size();
|
|
SmallVector<unsigned, 2> EdgeCounts(Size, 0);
|
|
uint64_t MaxCount = 0;
|
|
for (unsigned s = 0; s < Size; s++) {
|
|
const PGOUseEdge *E = BBCountInfo.OutEdges[s];
|
|
const BasicBlock *SrcBB = E->SrcBB;
|
|
const BasicBlock *DestBB = E->DestBB;
|
|
if (DestBB == nullptr)
|
|
continue;
|
|
unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
|
|
uint64_t EdgeCount = E->CountValue;
|
|
if (EdgeCount > MaxCount)
|
|
MaxCount = EdgeCount;
|
|
EdgeCounts[SuccNum] = EdgeCount;
|
|
}
|
|
assert(MaxCount > 0 && "Bad max count");
|
|
uint64_t Scale = calculateCountScale(MaxCount);
|
|
SmallVector<unsigned, 4> Weights;
|
|
for (const auto &ECI : EdgeCounts)
|
|
Weights.push_back(scaleBranchCount(ECI, Scale));
|
|
|
|
TI->setMetadata(llvm::LLVMContext::MD_prof,
|
|
MDB.createBranchWeights(Weights));
|
|
DEBUG(dbgs() << "Weight is: ";
|
|
for (const auto &W : Weights) { dbgs() << W << " "; }
|
|
dbgs() << "\n";);
|
|
}
|
|
}
|
|
|
|
// Traverse all the indirect callsites and annotate the instructions.
|
|
void PGOUseFunc::annotateIndirectCallSites() {
|
|
if (DisableValueProfiling)
|
|
return;
|
|
|
|
// Create the PGOFuncName meta data.
|
|
createPGOFuncNameMetadata(F, FuncInfo.FuncName);
|
|
|
|
unsigned IndirectCallSiteIndex = 0;
|
|
auto IndirectCallSites = findIndirectCallSites(F);
|
|
unsigned NumValueSites =
|
|
ProfileRecord.getNumValueSites(IPVK_IndirectCallTarget);
|
|
if (NumValueSites != IndirectCallSites.size()) {
|
|
std::string Msg =
|
|
std::string("Inconsistent number of indirect call sites: ") +
|
|
F.getName().str();
|
|
auto &Ctx = M->getContext();
|
|
Ctx.diagnose(
|
|
DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
|
|
return;
|
|
}
|
|
|
|
for (auto &I : IndirectCallSites) {
|
|
DEBUG(dbgs() << "Read one indirect call instrumentation: Index="
|
|
<< IndirectCallSiteIndex << " out of " << NumValueSites
|
|
<< "\n");
|
|
annotateValueSite(*M, *I, ProfileRecord, IPVK_IndirectCallTarget,
|
|
IndirectCallSiteIndex, MaxNumAnnotations);
|
|
IndirectCallSiteIndex++;
|
|
}
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
// Create a COMDAT variable IR_LEVEL_PROF_VARNAME to make the runtime
|
|
// aware this is an ir_level profile so it can set the version flag.
|
|
static void createIRLevelProfileFlagVariable(Module &M) {
|
|
Type *IntTy64 = Type::getInt64Ty(M.getContext());
|
|
uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
|
|
auto IRLevelVersionVariable = new GlobalVariable(
|
|
M, IntTy64, true, GlobalVariable::ExternalLinkage,
|
|
Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)),
|
|
INSTR_PROF_QUOTE(IR_LEVEL_PROF_VERSION_VAR));
|
|
IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
|
|
Triple TT(M.getTargetTriple());
|
|
if (TT.isOSBinFormatMachO())
|
|
IRLevelVersionVariable->setLinkage(GlobalValue::LinkOnceODRLinkage);
|
|
else
|
|
IRLevelVersionVariable->setComdat(M.getOrInsertComdat(
|
|
StringRef(INSTR_PROF_QUOTE(IR_LEVEL_PROF_VERSION_VAR))));
|
|
}
|
|
|
|
bool PGOInstrumentationGen::runOnModule(Module &M) {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
createIRLevelProfileFlagVariable(M);
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
BranchProbabilityInfo *BPI =
|
|
&(getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI());
|
|
BlockFrequencyInfo *BFI =
|
|
&(getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI());
|
|
instrumentOneFunc(F, &M, BPI, BFI);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void setPGOCountOnFunc(PGOUseFunc &Func,
|
|
IndexedInstrProfReader *PGOReader) {
|
|
if (Func.readCounters(PGOReader)) {
|
|
Func.populateCounters();
|
|
Func.setBranchWeights();
|
|
Func.annotateIndirectCallSites();
|
|
}
|
|
}
|
|
|
|
bool PGOInstrumentationUse::runOnModule(Module &M) {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Read in profile counters: ");
|
|
auto &Ctx = M.getContext();
|
|
// Read the counter array from file.
|
|
auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName);
|
|
if (std::error_code EC = ReaderOrErr.getError()) {
|
|
Ctx.diagnose(
|
|
DiagnosticInfoPGOProfile(ProfileFileName.data(), EC.message()));
|
|
return false;
|
|
}
|
|
|
|
PGOReader = std::move(ReaderOrErr.get());
|
|
if (!PGOReader) {
|
|
Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
|
|
"Cannot get PGOReader"));
|
|
return false;
|
|
}
|
|
// TODO: might need to change the warning once the clang option is finalized.
|
|
if (!PGOReader->isIRLevelProfile()) {
|
|
Ctx.diagnose(DiagnosticInfoPGOProfile(
|
|
ProfileFileName.data(), "Not an IR level instrumentation profile"));
|
|
return false;
|
|
}
|
|
|
|
std::vector<Function *> HotFunctions;
|
|
std::vector<Function *> ColdFunctions;
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
BranchProbabilityInfo *BPI =
|
|
&(getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI());
|
|
BlockFrequencyInfo *BFI =
|
|
&(getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI());
|
|
PGOUseFunc Func(F, &M, BPI, BFI);
|
|
setPGOCountOnFunc(Func, PGOReader.get());
|
|
PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
|
|
if (FreqAttr == PGOUseFunc::FFA_Cold)
|
|
ColdFunctions.push_back(&F);
|
|
else if (FreqAttr == PGOUseFunc::FFA_Hot)
|
|
HotFunctions.push_back(&F);
|
|
}
|
|
|
|
// Set function hotness attribute from the profile.
|
|
for (auto &F : HotFunctions) {
|
|
F->addFnAttr(llvm::Attribute::InlineHint);
|
|
DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
|
|
<< "\n");
|
|
}
|
|
for (auto &F : ColdFunctions) {
|
|
F->addFnAttr(llvm::Attribute::Cold);
|
|
DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() << "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|