llvm-project/llvm/lib/Transforms/Instrumentation/EfficiencySanitizer.cpp

353 lines
14 KiB
C++

//===-- EfficiencySanitizer.cpp - performance tuner -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of EfficiencySanitizer, a family of performance tuners
// that detects multiple performance issues via separate sub-tools.
//
// The instrumentation phase is straightforward:
// - Take action on every memory access: either inlined instrumentation,
// or Inserted calls to our run-time library.
// - Optimizations may apply to avoid instrumenting some of the accesses.
// - Turn mem{set,cpy,move} instrinsics into library calls.
// The rest is handled by the run-time library.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
#define DEBUG_TYPE "esan"
// The tool type must be just one of these ClTool* options, as the tools
// cannot be combined due to shadow memory constraints.
static cl::opt<bool>
ClToolCacheFrag("esan-cache-frag", cl::init(false),
cl::desc("Detect data cache fragmentation"), cl::Hidden);
// Each new tool will get its own opt flag here.
// These are converted to EfficiencySanitizerOptions for use
// in the code.
static cl::opt<bool> ClInstrumentLoadsAndStores(
"esan-instrument-loads-and-stores", cl::init(true),
cl::desc("Instrument loads and stores"), cl::Hidden);
static cl::opt<bool> ClInstrumentMemIntrinsics(
"esan-instrument-memintrinsics", cl::init(true),
cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
STATISTIC(NumInstrumentedLoads, "Number of instrumented loads");
STATISTIC(NumInstrumentedStores, "Number of instrumented stores");
STATISTIC(NumFastpaths, "Number of instrumented fastpaths");
STATISTIC(NumAccessesWithIrregularSize,
"Number of accesses with a size outside our targeted callout sizes");
static const char *const EsanModuleCtorName = "esan.module_ctor";
static const char *const EsanInitName = "__esan_init";
namespace {
static EfficiencySanitizerOptions
OverrideOptionsFromCL(EfficiencySanitizerOptions Options) {
if (ClToolCacheFrag)
Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
// Direct opt invocation with no params will have the default ESAN_None.
// We run the default tool in that case.
if (Options.ToolType == EfficiencySanitizerOptions::ESAN_None)
Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
return Options;
}
/// EfficiencySanitizer: instrument each module to find performance issues.
class EfficiencySanitizer : public FunctionPass {
public:
EfficiencySanitizer(
const EfficiencySanitizerOptions &Opts = EfficiencySanitizerOptions())
: FunctionPass(ID), Options(OverrideOptionsFromCL(Opts)) {}
const char *getPassName() const override;
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
static char ID;
private:
void initializeCallbacks(Module &M);
bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
bool instrumentMemIntrinsic(MemIntrinsic *MI);
bool shouldIgnoreMemoryAccess(Instruction *I);
int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
bool instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore,
Value *Addr, unsigned Alignment);
// Each tool has its own fastpath routine:
bool instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL,
Value *Addr, unsigned Alignment);
EfficiencySanitizerOptions Options;
LLVMContext *Ctx;
Type *IntptrTy;
// Our slowpath involves callouts to the runtime library.
// Access sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t NumberOfAccessSizes = 5;
Function *EsanAlignedLoad[NumberOfAccessSizes];
Function *EsanAlignedStore[NumberOfAccessSizes];
Function *EsanUnalignedLoad[NumberOfAccessSizes];
Function *EsanUnalignedStore[NumberOfAccessSizes];
// For irregular sizes of any alignment:
Function *EsanUnalignedLoadN, *EsanUnalignedStoreN;
Function *MemmoveFn, *MemcpyFn, *MemsetFn;
Function *EsanCtorFunction;
};
} // namespace
char EfficiencySanitizer::ID = 0;
INITIALIZE_PASS(EfficiencySanitizer, "esan",
"EfficiencySanitizer: finds performance issues.", false, false)
const char *EfficiencySanitizer::getPassName() const {
return "EfficiencySanitizer";
}
FunctionPass *
llvm::createEfficiencySanitizerPass(const EfficiencySanitizerOptions &Options) {
return new EfficiencySanitizer(Options);
}
void EfficiencySanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(M.getContext());
// Initialize the callbacks.
for (size_t Idx = 0; Idx < NumberOfAccessSizes; ++Idx) {
const unsigned ByteSize = 1U << Idx;
std::string ByteSizeStr = utostr(ByteSize);
// We'll inline the most common (i.e., aligned and frequent sizes)
// load + store instrumentation: these callouts are for the slowpath.
SmallString<32> AlignedLoadName("__esan_aligned_load" + ByteSizeStr);
EsanAlignedLoad[Idx] =
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
AlignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
SmallString<32> AlignedStoreName("__esan_aligned_store" + ByteSizeStr);
EsanAlignedStore[Idx] =
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
AlignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
SmallString<32> UnalignedLoadName("__esan_unaligned_load" + ByteSizeStr);
EsanUnalignedLoad[Idx] =
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
UnalignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
SmallString<32> UnalignedStoreName("__esan_unaligned_store" + ByteSizeStr);
EsanUnalignedStore[Idx] =
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
UnalignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
}
EsanUnalignedLoadN = checkSanitizerInterfaceFunction(
M.getOrInsertFunction("__esan_unaligned_loadN", IRB.getVoidTy(),
IRB.getInt8PtrTy(), IntptrTy, nullptr));
EsanUnalignedStoreN = checkSanitizerInterfaceFunction(
M.getOrInsertFunction("__esan_unaligned_storeN", IRB.getVoidTy(),
IRB.getInt8PtrTy(), IntptrTy, nullptr));
MemmoveFn = checkSanitizerInterfaceFunction(
M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy, nullptr));
MemcpyFn = checkSanitizerInterfaceFunction(
M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy, nullptr));
MemsetFn = checkSanitizerInterfaceFunction(
M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt32Ty(), IntptrTy, nullptr));
}
bool EfficiencySanitizer::doInitialization(Module &M) {
Ctx = &M.getContext();
const DataLayout &DL = M.getDataLayout();
IRBuilder<> IRB(M.getContext());
IntegerType *OrdTy = IRB.getInt32Ty();
IntptrTy = DL.getIntPtrType(M.getContext());
std::tie(EsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
M, EsanModuleCtorName, EsanInitName, /*InitArgTypes=*/{OrdTy},
/*InitArgs=*/{
ConstantInt::get(OrdTy, static_cast<int>(Options.ToolType))});
appendToGlobalCtors(M, EsanCtorFunction, 0);
return true;
}
bool EfficiencySanitizer::shouldIgnoreMemoryAccess(Instruction *I) {
if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
// We'd like to know about cache fragmentation in vtable accesses and
// constant data references, so we do not currently ignore anything.
return false;
}
// TODO(bruening): future tools will be returning true for some cases.
return false;
}
bool EfficiencySanitizer::runOnFunction(Function &F) {
// This is required to prevent instrumenting the call to __esan_init from
// within the module constructor.
if (&F == EsanCtorFunction)
return false;
// As a function pass, we must re-initialize every time.
initializeCallbacks(*F.getParent());
SmallVector<Instruction *, 8> LoadsAndStores;
SmallVector<Instruction *, 8> MemIntrinCalls;
bool Res = false;
const DataLayout &DL = F.getParent()->getDataLayout();
for (auto &BB : F) {
for (auto &Inst : BB) {
if ((isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
isa<AtomicRMWInst>(Inst) || isa<AtomicCmpXchgInst>(Inst)) &&
!shouldIgnoreMemoryAccess(&Inst))
LoadsAndStores.push_back(&Inst);
else if (isa<MemIntrinsic>(Inst))
MemIntrinCalls.push_back(&Inst);
}
}
if (ClInstrumentLoadsAndStores) {
for (auto Inst : LoadsAndStores) {
Res |= instrumentLoadOrStore(Inst, DL);
}
}
if (ClInstrumentMemIntrinsics) {
for (auto Inst : MemIntrinCalls) {
Res |= instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
}
return Res;
}
bool EfficiencySanitizer::instrumentLoadOrStore(Instruction *I,
const DataLayout &DL) {
IRBuilder<> IRB(I);
bool IsStore;
Value *Addr;
unsigned Alignment;
if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
IsStore = false;
Alignment = Load->getAlignment();
Addr = Load->getPointerOperand();
} else if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
IsStore = true;
Alignment = Store->getAlignment();
Addr = Store->getPointerOperand();
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
IsStore = true;
Alignment = 0;
Addr = RMW->getPointerOperand();
} else if (AtomicCmpXchgInst *Xchg = dyn_cast<AtomicCmpXchgInst>(I)) {
IsStore = true;
Alignment = 0;
Addr = Xchg->getPointerOperand();
} else
llvm_unreachable("Unsupported mem access type");
Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
const uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8;
Value *OnAccessFunc = nullptr;
if (IsStore)
NumInstrumentedStores++;
else
NumInstrumentedLoads++;
int Idx = getMemoryAccessFuncIndex(Addr, DL);
if (Idx < 0) {
OnAccessFunc = IsStore ? EsanUnalignedStoreN : EsanUnalignedLoadN;
IRB.CreateCall(OnAccessFunc,
{IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
ConstantInt::get(IntptrTy, TypeSizeBytes)});
} else {
if (instrumentFastpath(I, DL, IsStore, Addr, Alignment)) {
NumFastpaths++;
return true;
}
if (Alignment == 0 || Alignment >= 8 || (Alignment % TypeSizeBytes) == 0)
OnAccessFunc = IsStore ? EsanAlignedStore[Idx] : EsanAlignedLoad[Idx];
else
OnAccessFunc = IsStore ? EsanUnalignedStore[Idx] : EsanUnalignedLoad[Idx];
IRB.CreateCall(OnAccessFunc,
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
}
return true;
}
// It's simplest to replace the memset/memmove/memcpy intrinsics with
// calls that the runtime library intercepts.
// Our pass is late enough that calls should not turn back into intrinsics.
bool EfficiencySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
IRBuilder<> IRB(MI);
bool Res = false;
if (isa<MemSetInst>(MI)) {
IRB.CreateCall(
MemsetFn,
{IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getArgOperand(1), IRB.getInt32Ty(), false),
IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)});
MI->eraseFromParent();
Res = true;
} else if (isa<MemTransferInst>(MI)) {
IRB.CreateCall(
isa<MemCpyInst>(MI) ? MemcpyFn : MemmoveFn,
{IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(MI->getArgOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)});
MI->eraseFromParent();
Res = true;
} else
llvm_unreachable("Unsupported mem intrinsic type");
return Res;
}
int EfficiencySanitizer::getMemoryAccessFuncIndex(Value *Addr,
const DataLayout &DL) {
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
// The size is always a multiple of 8.
uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8;
if (TypeSizeBytes != 1 && TypeSizeBytes != 2 && TypeSizeBytes != 4 &&
TypeSizeBytes != 8 && TypeSizeBytes != 16) {
// Irregular sizes do not have per-size call targets.
NumAccessesWithIrregularSize++;
return -1;
}
size_t Idx = countTrailingZeros(TypeSizeBytes);
assert(Idx < NumberOfAccessSizes);
return Idx;
}
bool EfficiencySanitizer::instrumentFastpath(Instruction *I,
const DataLayout &DL, bool IsStore,
Value *Addr, unsigned Alignment) {
if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
return instrumentFastpathCacheFrag(I, DL, Addr, Alignment);
}
return false;
}
bool EfficiencySanitizer::instrumentFastpathCacheFrag(Instruction *I,
const DataLayout &DL,
Value *Addr,
unsigned Alignment) {
// TODO(bruening): implement a fastpath for aligned accesses
return false;
}