forked from OSchip/llvm-project
353 lines
14 KiB
C++
353 lines
14 KiB
C++
//===-- EfficiencySanitizer.cpp - performance tuner -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of EfficiencySanitizer, a family of performance tuners
|
|
// that detects multiple performance issues via separate sub-tools.
|
|
//
|
|
// The instrumentation phase is straightforward:
|
|
// - Take action on every memory access: either inlined instrumentation,
|
|
// or Inserted calls to our run-time library.
|
|
// - Optimizations may apply to avoid instrumenting some of the accesses.
|
|
// - Turn mem{set,cpy,move} instrinsics into library calls.
|
|
// The rest is handled by the run-time library.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "esan"
|
|
|
|
// The tool type must be just one of these ClTool* options, as the tools
|
|
// cannot be combined due to shadow memory constraints.
|
|
static cl::opt<bool>
|
|
ClToolCacheFrag("esan-cache-frag", cl::init(false),
|
|
cl::desc("Detect data cache fragmentation"), cl::Hidden);
|
|
// Each new tool will get its own opt flag here.
|
|
// These are converted to EfficiencySanitizerOptions for use
|
|
// in the code.
|
|
|
|
static cl::opt<bool> ClInstrumentLoadsAndStores(
|
|
"esan-instrument-loads-and-stores", cl::init(true),
|
|
cl::desc("Instrument loads and stores"), cl::Hidden);
|
|
static cl::opt<bool> ClInstrumentMemIntrinsics(
|
|
"esan-instrument-memintrinsics", cl::init(true),
|
|
cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
|
|
|
|
STATISTIC(NumInstrumentedLoads, "Number of instrumented loads");
|
|
STATISTIC(NumInstrumentedStores, "Number of instrumented stores");
|
|
STATISTIC(NumFastpaths, "Number of instrumented fastpaths");
|
|
STATISTIC(NumAccessesWithIrregularSize,
|
|
"Number of accesses with a size outside our targeted callout sizes");
|
|
|
|
static const char *const EsanModuleCtorName = "esan.module_ctor";
|
|
static const char *const EsanInitName = "__esan_init";
|
|
|
|
namespace {
|
|
|
|
static EfficiencySanitizerOptions
|
|
OverrideOptionsFromCL(EfficiencySanitizerOptions Options) {
|
|
if (ClToolCacheFrag)
|
|
Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
|
|
|
|
// Direct opt invocation with no params will have the default ESAN_None.
|
|
// We run the default tool in that case.
|
|
if (Options.ToolType == EfficiencySanitizerOptions::ESAN_None)
|
|
Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
|
|
|
|
return Options;
|
|
}
|
|
|
|
/// EfficiencySanitizer: instrument each module to find performance issues.
|
|
class EfficiencySanitizer : public FunctionPass {
|
|
public:
|
|
EfficiencySanitizer(
|
|
const EfficiencySanitizerOptions &Opts = EfficiencySanitizerOptions())
|
|
: FunctionPass(ID), Options(OverrideOptionsFromCL(Opts)) {}
|
|
const char *getPassName() const override;
|
|
bool runOnFunction(Function &F) override;
|
|
bool doInitialization(Module &M) override;
|
|
static char ID;
|
|
|
|
private:
|
|
void initializeCallbacks(Module &M);
|
|
bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
|
|
bool instrumentMemIntrinsic(MemIntrinsic *MI);
|
|
bool shouldIgnoreMemoryAccess(Instruction *I);
|
|
int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
|
|
bool instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore,
|
|
Value *Addr, unsigned Alignment);
|
|
// Each tool has its own fastpath routine:
|
|
bool instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL,
|
|
Value *Addr, unsigned Alignment);
|
|
|
|
EfficiencySanitizerOptions Options;
|
|
LLVMContext *Ctx;
|
|
Type *IntptrTy;
|
|
// Our slowpath involves callouts to the runtime library.
|
|
// Access sizes are powers of two: 1, 2, 4, 8, 16.
|
|
static const size_t NumberOfAccessSizes = 5;
|
|
Function *EsanAlignedLoad[NumberOfAccessSizes];
|
|
Function *EsanAlignedStore[NumberOfAccessSizes];
|
|
Function *EsanUnalignedLoad[NumberOfAccessSizes];
|
|
Function *EsanUnalignedStore[NumberOfAccessSizes];
|
|
// For irregular sizes of any alignment:
|
|
Function *EsanUnalignedLoadN, *EsanUnalignedStoreN;
|
|
Function *MemmoveFn, *MemcpyFn, *MemsetFn;
|
|
Function *EsanCtorFunction;
|
|
};
|
|
} // namespace
|
|
|
|
char EfficiencySanitizer::ID = 0;
|
|
INITIALIZE_PASS(EfficiencySanitizer, "esan",
|
|
"EfficiencySanitizer: finds performance issues.", false, false)
|
|
|
|
const char *EfficiencySanitizer::getPassName() const {
|
|
return "EfficiencySanitizer";
|
|
}
|
|
|
|
FunctionPass *
|
|
llvm::createEfficiencySanitizerPass(const EfficiencySanitizerOptions &Options) {
|
|
return new EfficiencySanitizer(Options);
|
|
}
|
|
|
|
void EfficiencySanitizer::initializeCallbacks(Module &M) {
|
|
IRBuilder<> IRB(M.getContext());
|
|
// Initialize the callbacks.
|
|
for (size_t Idx = 0; Idx < NumberOfAccessSizes; ++Idx) {
|
|
const unsigned ByteSize = 1U << Idx;
|
|
std::string ByteSizeStr = utostr(ByteSize);
|
|
// We'll inline the most common (i.e., aligned and frequent sizes)
|
|
// load + store instrumentation: these callouts are for the slowpath.
|
|
SmallString<32> AlignedLoadName("__esan_aligned_load" + ByteSizeStr);
|
|
EsanAlignedLoad[Idx] =
|
|
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
|
|
AlignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
|
|
SmallString<32> AlignedStoreName("__esan_aligned_store" + ByteSizeStr);
|
|
EsanAlignedStore[Idx] =
|
|
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
|
|
AlignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
|
|
SmallString<32> UnalignedLoadName("__esan_unaligned_load" + ByteSizeStr);
|
|
EsanUnalignedLoad[Idx] =
|
|
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
|
|
UnalignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
|
|
SmallString<32> UnalignedStoreName("__esan_unaligned_store" + ByteSizeStr);
|
|
EsanUnalignedStore[Idx] =
|
|
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
|
|
UnalignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
|
|
}
|
|
EsanUnalignedLoadN = checkSanitizerInterfaceFunction(
|
|
M.getOrInsertFunction("__esan_unaligned_loadN", IRB.getVoidTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy, nullptr));
|
|
EsanUnalignedStoreN = checkSanitizerInterfaceFunction(
|
|
M.getOrInsertFunction("__esan_unaligned_storeN", IRB.getVoidTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy, nullptr));
|
|
MemmoveFn = checkSanitizerInterfaceFunction(
|
|
M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy, nullptr));
|
|
MemcpyFn = checkSanitizerInterfaceFunction(
|
|
M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy, nullptr));
|
|
MemsetFn = checkSanitizerInterfaceFunction(
|
|
M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt32Ty(), IntptrTy, nullptr));
|
|
}
|
|
|
|
bool EfficiencySanitizer::doInitialization(Module &M) {
|
|
Ctx = &M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
IRBuilder<> IRB(M.getContext());
|
|
IntegerType *OrdTy = IRB.getInt32Ty();
|
|
IntptrTy = DL.getIntPtrType(M.getContext());
|
|
std::tie(EsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
|
|
M, EsanModuleCtorName, EsanInitName, /*InitArgTypes=*/{OrdTy},
|
|
/*InitArgs=*/{
|
|
ConstantInt::get(OrdTy, static_cast<int>(Options.ToolType))});
|
|
|
|
appendToGlobalCtors(M, EsanCtorFunction, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool EfficiencySanitizer::shouldIgnoreMemoryAccess(Instruction *I) {
|
|
if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
|
|
// We'd like to know about cache fragmentation in vtable accesses and
|
|
// constant data references, so we do not currently ignore anything.
|
|
return false;
|
|
}
|
|
// TODO(bruening): future tools will be returning true for some cases.
|
|
return false;
|
|
}
|
|
|
|
bool EfficiencySanitizer::runOnFunction(Function &F) {
|
|
// This is required to prevent instrumenting the call to __esan_init from
|
|
// within the module constructor.
|
|
if (&F == EsanCtorFunction)
|
|
return false;
|
|
// As a function pass, we must re-initialize every time.
|
|
initializeCallbacks(*F.getParent());
|
|
SmallVector<Instruction *, 8> LoadsAndStores;
|
|
SmallVector<Instruction *, 8> MemIntrinCalls;
|
|
bool Res = false;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
for (auto &BB : F) {
|
|
for (auto &Inst : BB) {
|
|
if ((isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
|
|
isa<AtomicRMWInst>(Inst) || isa<AtomicCmpXchgInst>(Inst)) &&
|
|
!shouldIgnoreMemoryAccess(&Inst))
|
|
LoadsAndStores.push_back(&Inst);
|
|
else if (isa<MemIntrinsic>(Inst))
|
|
MemIntrinCalls.push_back(&Inst);
|
|
}
|
|
}
|
|
|
|
if (ClInstrumentLoadsAndStores) {
|
|
for (auto Inst : LoadsAndStores) {
|
|
Res |= instrumentLoadOrStore(Inst, DL);
|
|
}
|
|
}
|
|
|
|
if (ClInstrumentMemIntrinsics) {
|
|
for (auto Inst : MemIntrinCalls) {
|
|
Res |= instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
bool EfficiencySanitizer::instrumentLoadOrStore(Instruction *I,
|
|
const DataLayout &DL) {
|
|
IRBuilder<> IRB(I);
|
|
bool IsStore;
|
|
Value *Addr;
|
|
unsigned Alignment;
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
|
|
IsStore = false;
|
|
Alignment = Load->getAlignment();
|
|
Addr = Load->getPointerOperand();
|
|
} else if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
|
|
IsStore = true;
|
|
Alignment = Store->getAlignment();
|
|
Addr = Store->getPointerOperand();
|
|
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
|
|
IsStore = true;
|
|
Alignment = 0;
|
|
Addr = RMW->getPointerOperand();
|
|
} else if (AtomicCmpXchgInst *Xchg = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
IsStore = true;
|
|
Alignment = 0;
|
|
Addr = Xchg->getPointerOperand();
|
|
} else
|
|
llvm_unreachable("Unsupported mem access type");
|
|
|
|
Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
|
|
const uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8;
|
|
Value *OnAccessFunc = nullptr;
|
|
if (IsStore)
|
|
NumInstrumentedStores++;
|
|
else
|
|
NumInstrumentedLoads++;
|
|
int Idx = getMemoryAccessFuncIndex(Addr, DL);
|
|
if (Idx < 0) {
|
|
OnAccessFunc = IsStore ? EsanUnalignedStoreN : EsanUnalignedLoadN;
|
|
IRB.CreateCall(OnAccessFunc,
|
|
{IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
|
|
ConstantInt::get(IntptrTy, TypeSizeBytes)});
|
|
} else {
|
|
if (instrumentFastpath(I, DL, IsStore, Addr, Alignment)) {
|
|
NumFastpaths++;
|
|
return true;
|
|
}
|
|
if (Alignment == 0 || Alignment >= 8 || (Alignment % TypeSizeBytes) == 0)
|
|
OnAccessFunc = IsStore ? EsanAlignedStore[Idx] : EsanAlignedLoad[Idx];
|
|
else
|
|
OnAccessFunc = IsStore ? EsanUnalignedStore[Idx] : EsanUnalignedLoad[Idx];
|
|
IRB.CreateCall(OnAccessFunc,
|
|
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// It's simplest to replace the memset/memmove/memcpy intrinsics with
|
|
// calls that the runtime library intercepts.
|
|
// Our pass is late enough that calls should not turn back into intrinsics.
|
|
bool EfficiencySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
|
|
IRBuilder<> IRB(MI);
|
|
bool Res = false;
|
|
if (isa<MemSetInst>(MI)) {
|
|
IRB.CreateCall(
|
|
MemsetFn,
|
|
{IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(MI->getArgOperand(1), IRB.getInt32Ty(), false),
|
|
IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)});
|
|
MI->eraseFromParent();
|
|
Res = true;
|
|
} else if (isa<MemTransferInst>(MI)) {
|
|
IRB.CreateCall(
|
|
isa<MemCpyInst>(MI) ? MemcpyFn : MemmoveFn,
|
|
{IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(MI->getArgOperand(1), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)});
|
|
MI->eraseFromParent();
|
|
Res = true;
|
|
} else
|
|
llvm_unreachable("Unsupported mem intrinsic type");
|
|
return Res;
|
|
}
|
|
|
|
int EfficiencySanitizer::getMemoryAccessFuncIndex(Value *Addr,
|
|
const DataLayout &DL) {
|
|
Type *OrigPtrTy = Addr->getType();
|
|
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
|
|
assert(OrigTy->isSized());
|
|
// The size is always a multiple of 8.
|
|
uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8;
|
|
if (TypeSizeBytes != 1 && TypeSizeBytes != 2 && TypeSizeBytes != 4 &&
|
|
TypeSizeBytes != 8 && TypeSizeBytes != 16) {
|
|
// Irregular sizes do not have per-size call targets.
|
|
NumAccessesWithIrregularSize++;
|
|
return -1;
|
|
}
|
|
size_t Idx = countTrailingZeros(TypeSizeBytes);
|
|
assert(Idx < NumberOfAccessSizes);
|
|
return Idx;
|
|
}
|
|
|
|
bool EfficiencySanitizer::instrumentFastpath(Instruction *I,
|
|
const DataLayout &DL, bool IsStore,
|
|
Value *Addr, unsigned Alignment) {
|
|
if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
|
|
return instrumentFastpathCacheFrag(I, DL, Addr, Alignment);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool EfficiencySanitizer::instrumentFastpathCacheFrag(Instruction *I,
|
|
const DataLayout &DL,
|
|
Value *Addr,
|
|
unsigned Alignment) {
|
|
// TODO(bruening): implement a fastpath for aligned accesses
|
|
return false;
|
|
}
|