llvm-project/llvm/lib/Target/X86/X86ShuffleDecodeConstantPoo...

280 lines
8.9 KiB
C++

//===-- X86ShuffleDecodeConstantPool.cpp - X86 shuffle decode -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Define several functions to decode x86 specific shuffle semantics using
// constants from the constant pool.
//
//===----------------------------------------------------------------------===//
#include "X86ShuffleDecodeConstantPool.h"
#include "Utils/X86ShuffleDecode.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/IR/Constants.h"
//===----------------------------------------------------------------------===//
// Vector Mask Decoding
//===----------------------------------------------------------------------===//
namespace llvm {
void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
// It is not an error for the PSHUFB mask to not be a vector of i8 because the
// constant pool uniques constants by their bit representation.
// e.g. the following take up the same space in the constant pool:
// i128 -170141183420855150465331762880109871104
//
// <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
//
// <4 x i32> <i32 -2147483648, i32 -2147483648,
// i32 -2147483648, i32 -2147483648>
#ifndef NDEBUG
unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
assert(MaskTySize == 128 || MaskTySize == 256 || MaskTySize == 512);
#endif
if (!MaskTy->isVectorTy())
return;
int NumElts = MaskTy->getVectorNumElements();
Type *EltTy = MaskTy->getVectorElementType();
if (!EltTy->isIntegerTy())
return;
// The shuffle mask requires a byte vector - decode cases with
// wider elements as well.
unsigned BitWidth = cast<IntegerType>(EltTy)->getBitWidth();
if ((BitWidth % 8) != 0)
return;
int Scale = BitWidth / 8;
int NumBytes = NumElts * Scale;
ShuffleMask.reserve(NumBytes);
for (int i = 0; i != NumElts; ++i) {
Constant *COp = C->getAggregateElement(i);
if (!COp) {
ShuffleMask.clear();
return;
} else if (isa<UndefValue>(COp)) {
ShuffleMask.append(Scale, SM_SentinelUndef);
continue;
}
APInt APElt = cast<ConstantInt>(COp)->getValue();
for (int j = 0; j != Scale; ++j) {
// For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
// lane of the vector we're inside.
int Base = ((i * Scale) + j) & ~0xf;
uint64_t Element = APElt.getLoBits(8).getZExtValue();
APElt = APElt.lshr(8);
// If the high bit (7) of the byte is set, the element is zeroed.
if (Element & (1 << 7))
ShuffleMask.push_back(SM_SentinelZero);
else {
// Only the least significant 4 bits of the byte are used.
int Index = Base + (Element & 0xf);
ShuffleMask.push_back(Index);
}
}
}
assert(NumBytes == (int)ShuffleMask.size() && "Unexpected shuffle mask size");
}
void DecodeVPERMILPMask(const Constant *C, unsigned ElSize,
SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
// It is not an error for the PSHUFB mask to not be a vector of i8 because the
// constant pool uniques constants by their bit representation.
// e.g. the following take up the same space in the constant pool:
// i128 -170141183420855150465331762880109871104
//
// <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
//
// <4 x i32> <i32 -2147483648, i32 -2147483648,
// i32 -2147483648, i32 -2147483648>
unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
return;
// Only support vector types.
if (!MaskTy->isVectorTy())
return;
// Make sure its an integer type.
Type *VecEltTy = MaskTy->getVectorElementType();
if (!VecEltTy->isIntegerTy())
return;
// Support any element type from byte up to element size.
// This is necessary primarily because 64-bit elements get split to 32-bit
// in the constant pool on 32-bit target.
unsigned EltTySize = VecEltTy->getIntegerBitWidth();
if (EltTySize < 8 || EltTySize > ElSize)
return;
unsigned NumElements = MaskTySize / ElSize;
assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
"Unexpected number of vector elements.");
ShuffleMask.reserve(NumElements);
unsigned NumElementsPerLane = 128 / ElSize;
unsigned Factor = ElSize / EltTySize;
for (unsigned i = 0; i < NumElements; ++i) {
Constant *COp = C->getAggregateElement(i * Factor);
if (!COp) {
ShuffleMask.clear();
return;
} else if (isa<UndefValue>(COp)) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
int Index = i & ~(NumElementsPerLane - 1);
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
if (ElSize == 64)
Index += (Element >> 1) & 0x1;
else
Index += Element & 0x3;
ShuffleMask.push_back(Index);
}
// TODO: Handle funny-looking vectors too.
}
void DecodeVPPERMMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
assert(MaskTy->getPrimitiveSizeInBits() == 128);
// Only support vector types.
if (!MaskTy->isVectorTy())
return;
// Make sure its an integer type.
Type *VecEltTy = MaskTy->getVectorElementType();
if (!VecEltTy->isIntegerTy())
return;
// The shuffle mask requires a byte vector - decode cases with
// wider elements as well.
unsigned BitWidth = cast<IntegerType>(VecEltTy)->getBitWidth();
if ((BitWidth % 8) != 0)
return;
int NumElts = MaskTy->getVectorNumElements();
int Scale = BitWidth / 8;
int NumBytes = NumElts * Scale;
ShuffleMask.reserve(NumBytes);
for (int i = 0; i != NumElts; ++i) {
Constant *COp = C->getAggregateElement(i);
if (!COp) {
ShuffleMask.clear();
return;
} else if (isa<UndefValue>(COp)) {
ShuffleMask.append(Scale, SM_SentinelUndef);
continue;
}
// VPPERM Operation
// Bits[4:0] - Byte Index (0 - 31)
// Bits[7:5] - Permute Operation
//
// Permute Operation:
// 0 - Source byte (no logical operation).
// 1 - Invert source byte.
// 2 - Bit reverse of source byte.
// 3 - Bit reverse of inverted source byte.
// 4 - 00h (zero - fill).
// 5 - FFh (ones - fill).
// 6 - Most significant bit of source byte replicated in all bit positions.
// 7 - Invert most significant bit of source byte and replicate in all bit positions.
APInt MaskElt = cast<ConstantInt>(COp)->getValue();
for (int j = 0; j != Scale; ++j) {
APInt Index = MaskElt.getLoBits(5);
APInt PermuteOp = MaskElt.lshr(5).getLoBits(3);
MaskElt = MaskElt.lshr(8);
if (PermuteOp == 4) {
ShuffleMask.push_back(SM_SentinelZero);
continue;
}
if (PermuteOp != 0) {
ShuffleMask.clear();
return;
}
ShuffleMask.push_back((int)Index.getZExtValue());
}
}
assert(NumBytes == (int)ShuffleMask.size() && "Unexpected shuffle mask size");
}
void DecodeVPERMVMask(const Constant *C, MVT VT,
SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
if (MaskTy->isVectorTy()) {
unsigned NumElements = MaskTy->getVectorNumElements();
if (NumElements == VT.getVectorNumElements()) {
for (unsigned i = 0; i < NumElements; ++i) {
Constant *COp = C->getAggregateElement(i);
if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) {
ShuffleMask.clear();
return;
}
if (isa<UndefValue>(COp))
ShuffleMask.push_back(SM_SentinelUndef);
else {
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
Element &= (1 << NumElements) - 1;
ShuffleMask.push_back(Element);
}
}
}
return;
}
// Scalar value; just broadcast it
if (!isa<ConstantInt>(C))
return;
uint64_t Element = cast<ConstantInt>(C)->getZExtValue();
int NumElements = VT.getVectorNumElements();
Element &= (1 << NumElements) - 1;
for (int i = 0; i < NumElements; ++i)
ShuffleMask.push_back(Element);
}
void DecodeVPERMV3Mask(const Constant *C, MVT VT,
SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
unsigned NumElements = MaskTy->getVectorNumElements();
if (NumElements == VT.getVectorNumElements()) {
unsigned EltMaskSize = Log2_64(NumElements * 2);
for (unsigned i = 0; i < NumElements; ++i) {
Constant *COp = C->getAggregateElement(i);
if (!COp) {
ShuffleMask.clear();
return;
}
if (isa<UndefValue>(COp))
ShuffleMask.push_back(SM_SentinelUndef);
else {
APInt Element = cast<ConstantInt>(COp)->getValue();
Element = Element.getLoBits(EltMaskSize);
ShuffleMask.push_back(Element.getZExtValue());
}
}
}
}
} // llvm namespace