llvm-project/cross-project-tests/debuginfo-tests/dexter/dex/heuristic/Heuristic.py

528 lines
20 KiB
Python

# DExTer : Debugging Experience Tester
# ~~~~~~ ~ ~~ ~ ~~
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""Calculate a 'score' based on some dextIR.
Assign penalties based on different commands to decrease the score.
1.000 would be a perfect score.
0.000 is the worst theoretical score possible.
"""
from collections import defaultdict, namedtuple, Counter
import difflib
import os
from itertools import groupby
from dex.command.StepValueInfo import StepValueInfo
from dex.command.commands.DexExpectWatchBase import format_address
PenaltyCommand = namedtuple('PenaltyCommand', ['pen_dict', 'max_penalty'])
# 'meta' field used in different ways by different things
PenaltyInstance = namedtuple('PenaltyInstance', ['meta', 'the_penalty'])
def add_heuristic_tool_arguments(parser):
parser.add_argument(
'--penalty-variable-optimized',
type=int,
default=3,
help='set the penalty multiplier for each'
' occurrence of a variable that was optimized'
' away',
metavar='<int>')
parser.add_argument(
'--penalty-misordered-values',
type=int,
default=3,
help='set the penalty multiplier for each'
' occurrence of a misordered value.',
metavar='<int>')
parser.add_argument(
'--penalty-irretrievable',
type=int,
default=4,
help='set the penalty multiplier for each'
" occurrence of a variable that couldn't"
' be retrieved',
metavar='<int>')
parser.add_argument(
'--penalty-not-evaluatable',
type=int,
default=5,
help='set the penalty multiplier for each'
" occurrence of a variable that couldn't"
' be evaluated',
metavar='<int>')
parser.add_argument(
'--penalty-missing-values',
type=int,
default=6,
help='set the penalty multiplier for each missing'
' value',
metavar='<int>')
parser.add_argument(
'--penalty-incorrect-values',
type=int,
default=7,
help='set the penalty multiplier for each'
' occurrence of an unexpected value.',
metavar='<int>')
parser.add_argument(
'--penalty-unreachable',
type=int,
default=4, # XXX XXX XXX selected by random
help='set the penalty for each line stepped onto that should'
' have been unreachable.',
metavar='<int>')
parser.add_argument(
'--penalty-misordered-steps',
type=int,
default=2, # XXX XXX XXX selected by random
help='set the penalty for differences in the order of steps'
' the program was expected to observe.',
metavar='<int>')
parser.add_argument(
'--penalty-missing-step',
type=int,
default=4, # XXX XXX XXX selected by random
help='set the penalty for the program skipping over a step.',
metavar='<int>')
parser.add_argument(
'--penalty-incorrect-program-state',
type=int,
default=4, # XXX XXX XXX selected by random
help='set the penalty for the program never entering an expected state'
' or entering an unexpected state.',
metavar='<int>')
class Heuristic(object):
def __init__(self, context, steps):
self.context = context
self.penalties = {}
self.address_resolutions = {}
worst_penalty = max([
self.penalty_variable_optimized, self.penalty_irretrievable,
self.penalty_not_evaluatable, self.penalty_incorrect_values,
self.penalty_missing_values, self.penalty_unreachable,
self.penalty_missing_step, self.penalty_misordered_steps
])
# Before evaluating scoring commands, evaluate address values.
try:
for command in steps.commands['DexDeclareAddress']:
command.address_resolutions = self.address_resolutions
command.eval(steps)
except KeyError:
pass
# Get DexExpectWatchType results.
try:
for command in steps.commands['DexExpectWatchType']:
command.eval(steps)
maximum_possible_penalty = min(3, len(
command.values)) * worst_penalty
name, p = self._calculate_expect_watch_penalties(
command, maximum_possible_penalty)
name = name + ' ExpectType'
self.penalties[name] = PenaltyCommand(p,
maximum_possible_penalty)
except KeyError:
pass
# Get DexExpectWatchValue results.
try:
for command in steps.commands['DexExpectWatchValue']:
command.address_resolutions = self.address_resolutions
command.eval(steps)
maximum_possible_penalty = min(3, len(
command.values)) * worst_penalty
name, p = self._calculate_expect_watch_penalties(
command, maximum_possible_penalty)
name = name + ' ExpectValue'
self.penalties[name] = PenaltyCommand(p,
maximum_possible_penalty)
except KeyError:
pass
try:
penalties = defaultdict(list)
maximum_possible_penalty_all = 0
for expect_state in steps.commands['DexExpectProgramState']:
success = expect_state.eval(steps)
p = 0 if success else self.penalty_incorrect_program_state
meta = 'expected {}: {}'.format(
'{} times'.format(expect_state.times)
if expect_state.times >= 0 else 'at least once',
expect_state.program_state_text)
if success:
meta = '<g>{}</>'.format(meta)
maximum_possible_penalty = self.penalty_incorrect_program_state
maximum_possible_penalty_all += maximum_possible_penalty
name = expect_state.program_state_text
penalties[meta] = [PenaltyInstance('{} times'.format(
len(expect_state.encounters)), p)]
self.penalties['expected program states'] = PenaltyCommand(
penalties, maximum_possible_penalty_all)
except KeyError:
pass
# Get the total number of each step kind.
step_kind_counts = defaultdict(int)
for step in getattr(steps, 'steps'):
step_kind_counts[step.step_kind] += 1
# Get DexExpectStepKind results.
penalties = defaultdict(list)
maximum_possible_penalty_all = 0
try:
for command in steps.commands['DexExpectStepKind']:
command.eval()
# Cap the penalty at 2 * expected count or else 1
maximum_possible_penalty = max(command.count * 2, 1)
p = abs(command.count - step_kind_counts[command.name])
actual_penalty = min(p, maximum_possible_penalty)
key = ('{}'.format(command.name)
if actual_penalty else '<g>{}</>'.format(command.name))
penalties[key] = [PenaltyInstance(p, actual_penalty)]
maximum_possible_penalty_all += maximum_possible_penalty
self.penalties['step kind differences'] = PenaltyCommand(
penalties, maximum_possible_penalty_all)
except KeyError:
pass
if 'DexUnreachable' in steps.commands:
cmds = steps.commands['DexUnreachable']
unreach_count = 0
# Find steps with unreachable in them
ureachs = [
s for s in steps.steps if 'DexUnreachable' in s.watches.keys()
]
# There's no need to match up cmds with the actual watches
upen = self.penalty_unreachable
count = upen * len(ureachs)
if count != 0:
d = dict()
for x in ureachs:
msg = 'line {} reached'.format(x.current_location.lineno)
d[msg] = [PenaltyInstance(upen, upen)]
else:
d = {
'<g>No unreachable lines seen</>': [PenaltyInstance(0, 0)]
}
total = PenaltyCommand(d, len(cmds) * upen)
self.penalties['unreachable lines'] = total
if 'DexExpectStepOrder' in steps.commands:
cmds = steps.commands['DexExpectStepOrder']
# Form a list of which line/cmd we _should_ have seen
cmd_num_lst = [(x, c.lineno) for c in cmds
for x in c.sequence]
# Order them by the sequence number
cmd_num_lst.sort(key=lambda t: t[0])
# Strip out sequence key
cmd_num_lst = [y for x, y in cmd_num_lst]
# Now do the same, but for the actually observed lines/cmds
ss = steps.steps
deso = [s for s in ss if 'DexExpectStepOrder' in s.watches.keys()]
deso = [s.watches['DexExpectStepOrder'] for s in deso]
# We rely on the steps remaining in order here
order_list = [int(x.expression) for x in deso]
# First off, check to see whether or not there are missing items
expected = Counter(cmd_num_lst)
seen = Counter(order_list)
unseen_line_dict = dict()
skipped_line_dict = dict()
mispen = self.penalty_missing_step
num_missing = 0
num_repeats = 0
for k, v in expected.items():
if k not in seen:
msg = 'Line {} not seen'.format(k)
unseen_line_dict[msg] = [PenaltyInstance(mispen, mispen)]
num_missing += v
elif v > seen[k]:
msg = 'Line {} skipped at least once'.format(k)
skipped_line_dict[msg] = [PenaltyInstance(mispen, mispen)]
num_missing += v - seen[k]
elif v < seen[k]:
# Don't penalise unexpected extra sightings of a line
# for now
num_repeats = seen[k] - v
pass
if len(unseen_line_dict) == 0:
pi = PenaltyInstance(0, 0)
unseen_line_dict['<g>All lines were seen</>'] = [pi]
if len(skipped_line_dict) == 0:
pi = PenaltyInstance(0, 0)
skipped_line_dict['<g>No lines were skipped</>'] = [pi]
total = PenaltyCommand(unseen_line_dict, len(expected) * mispen)
self.penalties['Unseen lines'] = total
total = PenaltyCommand(skipped_line_dict, len(expected) * mispen)
self.penalties['Skipped lines'] = total
ordpen = self.penalty_misordered_steps
cmd_num_lst = [str(x) for x in cmd_num_lst]
order_list = [str(x) for x in order_list]
lst = list(difflib.Differ().compare(cmd_num_lst, order_list))
diff_detail = Counter(l[0] for l in lst)
assert '?' not in diff_detail
# Diffs are hard to interpret; there are many algorithms for
# condensing them. Ignore all that, and just print out the changed
# sequences, it's up to the user to interpret what's going on.
def filt_lines(s, seg, e, key):
lst = [s]
for x in seg:
if x[0] == key:
lst.append(int(x[2:]))
lst.append(e)
return lst
diff_msgs = dict()
def reportdiff(start_idx, segment, end_idx):
msg = 'Order mismatch, expected linenos {}, saw {}'
expected_linenos = filt_lines(start_idx, segment, end_idx, '-')
seen_linenos = filt_lines(start_idx, segment, end_idx, '+')
msg = msg.format(expected_linenos, seen_linenos)
diff_msgs[msg] = [PenaltyInstance(ordpen, ordpen)]
# Group by changed segments.
start_expt_step = 0
end_expt_step = 0
to_print_lst = []
for k, subit in groupby(lst, lambda x: x[0] == ' '):
if k: # Whitespace group
nochanged = [x for x in subit]
end_expt_step = int(nochanged[0][2:])
if len(to_print_lst) > 0:
reportdiff(start_expt_step, to_print_lst,
end_expt_step)
start_expt_step = int(nochanged[-1][2:])
to_print_lst = []
else: # Diff group, save for printing
to_print_lst = [x for x in subit]
# If there was a dangling different step, print that too.
if len(to_print_lst) > 0:
reportdiff(start_expt_step, to_print_lst, '[End]')
if len(diff_msgs) == 0:
diff_msgs['<g>No lines misordered</>'] = [
PenaltyInstance(0, 0)
]
total = PenaltyCommand(diff_msgs, len(cmd_num_lst) * ordpen)
self.penalties['Misordered lines'] = total
return
def _calculate_expect_watch_penalties(self, c, maximum_possible_penalty):
penalties = defaultdict(list)
if c.line_range[0] == c.line_range[-1]:
line_range = str(c.line_range[0])
else:
line_range = '{}-{}'.format(c.line_range[0], c.line_range[-1])
name = '{}:{} [{}]'.format(
os.path.basename(c.path), line_range, c.expression)
num_actual_watches = len(c.expected_watches) + len(
c.unexpected_watches)
penalty_available = maximum_possible_penalty
# Only penalize for missing values if we have actually seen a watch
# that's returned us an actual value at some point, or if we've not
# encountered the value at all.
if num_actual_watches or c.times_encountered == 0:
for v in c.missing_values:
current_penalty = min(penalty_available,
self.penalty_missing_values)
penalty_available -= current_penalty
penalties['missing values'].append(
PenaltyInstance(v, current_penalty))
for v in c.encountered_values:
penalties['<g>expected encountered watches</>'].append(
PenaltyInstance(v, 0))
penalty_descriptions = [
(self.penalty_not_evaluatable, c.invalid_watches,
'could not evaluate'),
(self.penalty_variable_optimized, c.optimized_out_watches,
'result optimized away'),
(self.penalty_misordered_values, c.misordered_watches,
'misordered result'),
(self.penalty_irretrievable, c.irretrievable_watches,
'result could not be retrieved'),
(self.penalty_incorrect_values, c.unexpected_watches,
'unexpected result'),
]
for penalty_score, watches, description in penalty_descriptions:
# We only penalize the encountered issue for each missing value per
# command but we still want to record each one, so set the penalty
# to 0 after the threshold is passed.
times_to_penalize = len(c.missing_values)
for w in watches:
times_to_penalize -= 1
penalty_score = min(penalty_available, penalty_score)
penalty_available -= penalty_score
penalties[description].append(
PenaltyInstance(w, penalty_score))
if not times_to_penalize:
penalty_score = 0
return name, penalties
@property
def penalty(self):
result = 0
maximum_allowed_penalty = 0
for name, pen_cmd in self.penalties.items():
maximum_allowed_penalty += pen_cmd.max_penalty
value = pen_cmd.pen_dict
for category, inst_list in value.items():
result += sum(x.the_penalty for x in inst_list)
return min(result, maximum_allowed_penalty)
@property
def max_penalty(self):
return sum(p_cat.max_penalty for p_cat in self.penalties.values())
@property
def score(self):
try:
return 1.0 - (self.penalty / float(self.max_penalty))
except ZeroDivisionError:
return float('nan')
@property
def summary_string(self):
score = self.score
isnan = score != score # pylint: disable=comparison-with-itself
color = 'g'
if score < 0.25 or isnan:
color = 'r'
elif score < 0.75:
color = 'y'
return '<{}>({:.4f})</>'.format(color, score)
@property
def verbose_output(self): # noqa
string = ''
# Add address resolutions if present.
if self.address_resolutions:
if self.resolved_addresses:
string += '\nResolved Addresses:\n'
for addr, res in self.resolved_addresses.items():
string += f" '{addr}': {res}\n"
if self.unresolved_addresses:
string += '\n'
string += f'Unresolved Addresses:\n {self.unresolved_addresses}\n'
string += ('\n')
for command in sorted(self.penalties):
pen_cmd = self.penalties[command]
maximum_possible_penalty = pen_cmd.max_penalty
total_penalty = 0
lines = []
for category in sorted(pen_cmd.pen_dict):
lines.append(' <r>{}</>:\n'.format(category))
for result, penalty in pen_cmd.pen_dict[category]:
if isinstance(result, StepValueInfo):
text = 'step {}'.format(result.step_index)
if result.expected_value:
text += ' ({})'.format(result.expected_value)
else:
text = str(result)
if penalty:
assert penalty > 0, penalty
total_penalty += penalty
text += ' <r>[-{}]</>'.format(penalty)
lines.append(' {}\n'.format(text))
lines.append('\n')
string += (' <b>{}</> <y>[{}/{}]</>\n'.format(
command, total_penalty, maximum_possible_penalty))
for line in lines:
string += (line)
string += ('\n')
return string
@property
def resolved_addresses(self):
return {addr: format_address(res) for addr, res in self.address_resolutions.items() if res is not None}
@property
def unresolved_addresses(self):
return [addr for addr, res in self.address_resolutions.items() if res is None]
@property
def penalty_variable_optimized(self):
return self.context.options.penalty_variable_optimized
@property
def penalty_irretrievable(self):
return self.context.options.penalty_irretrievable
@property
def penalty_not_evaluatable(self):
return self.context.options.penalty_not_evaluatable
@property
def penalty_incorrect_values(self):
return self.context.options.penalty_incorrect_values
@property
def penalty_missing_values(self):
return self.context.options.penalty_missing_values
@property
def penalty_misordered_values(self):
return self.context.options.penalty_misordered_values
@property
def penalty_unreachable(self):
return self.context.options.penalty_unreachable
@property
def penalty_missing_step(self):
return self.context.options.penalty_missing_step
@property
def penalty_misordered_steps(self):
return self.context.options.penalty_misordered_steps
@property
def penalty_incorrect_program_state(self):
return self.context.options.penalty_incorrect_program_state