llvm-project/clang-tools-extra/clangd/unittests/TUSchedulerTests.cpp

958 lines
34 KiB
C++

//===-- TUSchedulerTests.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Annotations.h"
#include "Cancellation.h"
#include "ClangdServer.h"
#include "Context.h"
#include "Diagnostics.h"
#include "Matchers.h"
#include "ParsedAST.h"
#include "Path.h"
#include "Preamble.h"
#include "TUScheduler.h"
#include "TestFS.h"
#include "Threading.h"
#include "clang/Basic/DiagnosticDriver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <algorithm>
#include <atomic>
#include <chrono>
#include <cstdint>
#include <utility>
namespace clang {
namespace clangd {
namespace {
using ::testing::AnyOf;
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::Field;
using ::testing::IsEmpty;
using ::testing::Pointee;
using ::testing::UnorderedElementsAre;
MATCHER_P2(TUState, PreambleActivity, ASTActivity, "") {
if (arg.PreambleActivity != PreambleActivity) {
*result_listener << "preamblestate is "
<< static_cast<uint8_t>(arg.PreambleActivity);
return false;
}
if (arg.ASTActivity.K != ASTActivity) {
*result_listener << "aststate is " << arg.ASTActivity.K;
return false;
}
return true;
}
TUScheduler::Options optsForTest() {
return TUScheduler::Options(ClangdServer::optsForTest());
}
class TUSchedulerTests : public ::testing::Test {
protected:
ParseInputs getInputs(PathRef File, std::string Contents) {
ParseInputs Inputs;
Inputs.CompileCommand = *CDB.getCompileCommand(File);
Inputs.FS = buildTestFS(Files, Timestamps);
Inputs.Contents = std::move(Contents);
Inputs.Opts = ParseOptions();
return Inputs;
}
void updateWithCallback(TUScheduler &S, PathRef File,
llvm::StringRef Contents, WantDiagnostics WD,
llvm::unique_function<void()> CB) {
updateWithCallback(S, File, getInputs(File, std::string(Contents)), WD,
std::move(CB));
}
void updateWithCallback(TUScheduler &S, PathRef File, ParseInputs Inputs,
WantDiagnostics WD,
llvm::unique_function<void()> CB) {
WithContextValue Ctx(llvm::make_scope_exit(std::move(CB)));
S.update(File, Inputs, WD);
}
static Key<llvm::unique_function<void(PathRef File, std::vector<Diag>)>>
DiagsCallbackKey;
/// A diagnostics callback that should be passed to TUScheduler when it's used
/// in updateWithDiags.
static std::unique_ptr<ParsingCallbacks> captureDiags() {
class CaptureDiags : public ParsingCallbacks {
public:
void onMainAST(PathRef File, ParsedAST &AST, PublishFn Publish) override {
reportDiagnostics(File, AST.getDiagnostics(), Publish);
}
void onFailedAST(PathRef File, llvm::StringRef Version,
std::vector<Diag> Diags, PublishFn Publish) override {
reportDiagnostics(File, Diags, Publish);
}
private:
void reportDiagnostics(PathRef File, llvm::ArrayRef<Diag> Diags,
PublishFn Publish) {
auto D = Context::current().get(DiagsCallbackKey);
if (!D)
return;
Publish([&]() {
const_cast<
llvm::unique_function<void(PathRef, std::vector<Diag>)> &> (*D)(
File, std::move(Diags));
});
}
};
return std::make_unique<CaptureDiags>();
}
/// Schedule an update and call \p CB with the diagnostics it produces, if
/// any. The TUScheduler should be created with captureDiags as a
/// DiagsCallback for this to work.
void updateWithDiags(TUScheduler &S, PathRef File, ParseInputs Inputs,
WantDiagnostics WD,
llvm::unique_function<void(std::vector<Diag>)> CB) {
Path OrigFile = File.str();
WithContextValue Ctx(DiagsCallbackKey,
[OrigFile, CB = std::move(CB)](
PathRef File, std::vector<Diag> Diags) mutable {
assert(File == OrigFile);
CB(std::move(Diags));
});
S.update(File, std::move(Inputs), WD);
}
void updateWithDiags(TUScheduler &S, PathRef File, llvm::StringRef Contents,
WantDiagnostics WD,
llvm::unique_function<void(std::vector<Diag>)> CB) {
return updateWithDiags(S, File, getInputs(File, std::string(Contents)), WD,
std::move(CB));
}
llvm::StringMap<std::string> Files;
llvm::StringMap<time_t> Timestamps;
MockCompilationDatabase CDB;
};
Key<llvm::unique_function<void(PathRef File, std::vector<Diag>)>>
TUSchedulerTests::DiagsCallbackKey;
TEST_F(TUSchedulerTests, MissingFiles) {
TUScheduler S(CDB, optsForTest());
auto Added = testPath("added.cpp");
Files[Added] = "x";
auto Missing = testPath("missing.cpp");
Files[Missing] = "";
S.update(Added, getInputs(Added, "x"), WantDiagnostics::No);
// Assert each operation for missing file is an error (even if it's
// available in VFS).
S.runWithAST("", Missing,
[&](Expected<InputsAndAST> AST) { EXPECT_ERROR(AST); });
S.runWithPreamble(
"", Missing, TUScheduler::Stale,
[&](Expected<InputsAndPreamble> Preamble) { EXPECT_ERROR(Preamble); });
// remove() shouldn't crash on missing files.
S.remove(Missing);
// Assert there aren't any errors for added file.
S.runWithAST("", Added,
[&](Expected<InputsAndAST> AST) { EXPECT_TRUE(bool(AST)); });
S.runWithPreamble("", Added, TUScheduler::Stale,
[&](Expected<InputsAndPreamble> Preamble) {
EXPECT_TRUE(bool(Preamble));
});
S.remove(Added);
// Assert that all operations fail after removing the file.
S.runWithAST("", Added,
[&](Expected<InputsAndAST> AST) { EXPECT_ERROR(AST); });
S.runWithPreamble("", Added, TUScheduler::Stale,
[&](Expected<InputsAndPreamble> Preamble) {
ASSERT_FALSE(bool(Preamble));
llvm::consumeError(Preamble.takeError());
});
// remove() shouldn't crash on missing files.
S.remove(Added);
}
TEST_F(TUSchedulerTests, WantDiagnostics) {
std::atomic<int> CallbackCount(0);
{
// To avoid a racy test, don't allow tasks to actually run on the worker
// thread until we've scheduled them all.
Notification Ready;
TUScheduler S(CDB, optsForTest(), captureDiags());
auto Path = testPath("foo.cpp");
updateWithDiags(S, Path, "", WantDiagnostics::Yes,
[&](std::vector<Diag>) { Ready.wait(); });
updateWithDiags(S, Path, "request diags", WantDiagnostics::Yes,
[&](std::vector<Diag>) { ++CallbackCount; });
updateWithDiags(S, Path, "auto (clobbered)", WantDiagnostics::Auto,
[&](std::vector<Diag>) {
ADD_FAILURE()
<< "auto should have been cancelled by auto";
});
updateWithDiags(S, Path, "request no diags", WantDiagnostics::No,
[&](std::vector<Diag>) {
ADD_FAILURE() << "no diags should not be called back";
});
updateWithDiags(S, Path, "auto (produces)", WantDiagnostics::Auto,
[&](std::vector<Diag>) { ++CallbackCount; });
Ready.notify();
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
}
EXPECT_EQ(2, CallbackCount);
}
TEST_F(TUSchedulerTests, Debounce) {
std::atomic<int> CallbackCount(0);
{
auto Opts = optsForTest();
Opts.UpdateDebounce = DebouncePolicy::fixed(std::chrono::seconds(1));
TUScheduler S(CDB, Opts, captureDiags());
// FIXME: we could probably use timeouts lower than 1 second here.
auto Path = testPath("foo.cpp");
updateWithDiags(S, Path, "auto (debounced)", WantDiagnostics::Auto,
[&](std::vector<Diag>) {
ADD_FAILURE()
<< "auto should have been debounced and canceled";
});
std::this_thread::sleep_for(std::chrono::milliseconds(200));
updateWithDiags(S, Path, "auto (timed out)", WantDiagnostics::Auto,
[&](std::vector<Diag>) { ++CallbackCount; });
std::this_thread::sleep_for(std::chrono::seconds(2));
updateWithDiags(S, Path, "auto (shut down)", WantDiagnostics::Auto,
[&](std::vector<Diag>) { ++CallbackCount; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
}
EXPECT_EQ(2, CallbackCount);
}
TEST_F(TUSchedulerTests, Cancellation) {
// We have the following update/read sequence
// U0
// U1(WantDiags=Yes) <-- cancelled
// R1 <-- cancelled
// U2(WantDiags=Yes) <-- cancelled
// R2A <-- cancelled
// R2B
// U3(WantDiags=Yes)
// R3 <-- cancelled
std::vector<std::string> DiagsSeen, ReadsSeen, ReadsCanceled;
{
Notification Proceed; // Ensure we schedule everything.
TUScheduler S(CDB, optsForTest(), captureDiags());
auto Path = testPath("foo.cpp");
// Helper to schedule a named update and return a function to cancel it.
auto Update = [&](std::string ID) -> Canceler {
auto T = cancelableTask();
WithContext C(std::move(T.first));
updateWithDiags(
S, Path, "//" + ID, WantDiagnostics::Yes,
[&, ID](std::vector<Diag> Diags) { DiagsSeen.push_back(ID); });
return std::move(T.second);
};
// Helper to schedule a named read and return a function to cancel it.
auto Read = [&](std::string ID) -> Canceler {
auto T = cancelableTask();
WithContext C(std::move(T.first));
S.runWithAST(ID, Path, [&, ID](llvm::Expected<InputsAndAST> E) {
if (auto Err = E.takeError()) {
if (Err.isA<CancelledError>()) {
ReadsCanceled.push_back(ID);
consumeError(std::move(Err));
} else {
ADD_FAILURE() << "Non-cancelled error for " << ID << ": "
<< llvm::toString(std::move(Err));
}
} else {
ReadsSeen.push_back(ID);
}
});
return std::move(T.second);
};
updateWithCallback(S, Path, "", WantDiagnostics::Yes,
[&]() { Proceed.wait(); });
// The second parens indicate cancellation, where present.
Update("U1")();
Read("R1")();
Update("U2")();
Read("R2A")();
Read("R2B");
Update("U3");
Read("R3")();
Proceed.notify();
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
}
EXPECT_THAT(DiagsSeen, ElementsAre("U2", "U3"))
<< "U1 and all dependent reads were cancelled. "
"U2 has a dependent read R2A. "
"U3 was not cancelled.";
EXPECT_THAT(ReadsSeen, ElementsAre("R2B"))
<< "All reads other than R2B were cancelled";
EXPECT_THAT(ReadsCanceled, ElementsAre("R1", "R2A", "R3"))
<< "All reads other than R2B were cancelled";
}
TEST_F(TUSchedulerTests, InvalidationNoCrash) {
auto Path = testPath("foo.cpp");
TUScheduler S(CDB, optsForTest(), captureDiags());
Notification StartedRunning;
Notification ScheduledChange;
// We expect invalidation logic to not crash by trying to invalidate a running
// request.
S.update(Path, getInputs(Path, ""), WantDiagnostics::Auto);
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
S.runWithAST(
"invalidatable-but-running", Path,
[&](llvm::Expected<InputsAndAST> AST) {
StartedRunning.notify();
ScheduledChange.wait();
ASSERT_TRUE(bool(AST));
},
TUScheduler::InvalidateOnUpdate);
StartedRunning.wait();
S.update(Path, getInputs(Path, ""), WantDiagnostics::Auto);
ScheduledChange.notify();
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
}
TEST_F(TUSchedulerTests, Invalidation) {
auto Path = testPath("foo.cpp");
TUScheduler S(CDB, optsForTest(), captureDiags());
std::atomic<int> Builds(0), Actions(0);
Notification Start;
updateWithDiags(S, Path, "a", WantDiagnostics::Yes, [&](std::vector<Diag>) {
++Builds;
Start.wait();
});
S.runWithAST(
"invalidatable", Path,
[&](llvm::Expected<InputsAndAST> AST) {
++Actions;
EXPECT_FALSE(bool(AST));
llvm::Error E = AST.takeError();
EXPECT_TRUE(E.isA<CancelledError>());
handleAllErrors(std::move(E), [&](const CancelledError &E) {
EXPECT_EQ(E.Reason, static_cast<int>(ErrorCode::ContentModified));
});
},
TUScheduler::InvalidateOnUpdate);
S.runWithAST(
"not-invalidatable", Path,
[&](llvm::Expected<InputsAndAST> AST) {
++Actions;
EXPECT_TRUE(bool(AST));
},
TUScheduler::NoInvalidation);
updateWithDiags(S, Path, "b", WantDiagnostics::Auto, [&](std::vector<Diag>) {
++Builds;
ADD_FAILURE() << "Shouldn't build, all dependents invalidated";
});
S.runWithAST(
"invalidatable", Path,
[&](llvm::Expected<InputsAndAST> AST) {
++Actions;
EXPECT_FALSE(bool(AST));
llvm::Error E = AST.takeError();
EXPECT_TRUE(E.isA<CancelledError>());
consumeError(std::move(E));
},
TUScheduler::InvalidateOnUpdate);
updateWithDiags(S, Path, "c", WantDiagnostics::Auto,
[&](std::vector<Diag>) { ++Builds; });
S.runWithAST(
"invalidatable", Path,
[&](llvm::Expected<InputsAndAST> AST) {
++Actions;
EXPECT_TRUE(bool(AST)) << "Shouldn't be invalidated, no update follows";
},
TUScheduler::InvalidateOnUpdate);
Start.notify();
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
EXPECT_EQ(2, Builds.load()) << "Middle build should be skipped";
EXPECT_EQ(4, Actions.load()) << "All actions should run (some with error)";
}
TEST_F(TUSchedulerTests, ManyUpdates) {
const int FilesCount = 3;
const int UpdatesPerFile = 10;
std::mutex Mut;
int TotalASTReads = 0;
int TotalPreambleReads = 0;
int TotalUpdates = 0;
// Run TUScheduler and collect some stats.
{
auto Opts = optsForTest();
Opts.UpdateDebounce = DebouncePolicy::fixed(std::chrono::milliseconds(50));
TUScheduler S(CDB, Opts, captureDiags());
std::vector<std::string> Files;
for (int I = 0; I < FilesCount; ++I) {
std::string Name = "foo" + std::to_string(I) + ".cpp";
Files.push_back(testPath(Name));
this->Files[Files.back()] = "";
}
StringRef Contents1 = R"cpp(int a;)cpp";
StringRef Contents2 = R"cpp(int main() { return 1; })cpp";
StringRef Contents3 = R"cpp(int a; int b; int sum() { return a + b; })cpp";
StringRef AllContents[] = {Contents1, Contents2, Contents3};
const int AllContentsSize = 3;
// Scheduler may run tasks asynchronously, but should propagate the
// context. We stash a nonce in the context, and verify it in the task.
static Key<int> NonceKey;
int Nonce = 0;
for (int FileI = 0; FileI < FilesCount; ++FileI) {
for (int UpdateI = 0; UpdateI < UpdatesPerFile; ++UpdateI) {
auto Contents = AllContents[(FileI + UpdateI) % AllContentsSize];
auto File = Files[FileI];
auto Inputs = getInputs(File, Contents.str());
{
WithContextValue WithNonce(NonceKey, ++Nonce);
Inputs.Version = std::to_string(Nonce);
updateWithDiags(
S, File, Inputs, WantDiagnostics::Auto,
[File, Nonce, &Mut, &TotalUpdates](std::vector<Diag>) {
EXPECT_THAT(Context::current().get(NonceKey), Pointee(Nonce));
std::lock_guard<std::mutex> Lock(Mut);
++TotalUpdates;
EXPECT_EQ(File, *TUScheduler::getFileBeingProcessedInContext());
});
}
{
WithContextValue WithNonce(NonceKey, ++Nonce);
S.runWithAST(
"CheckAST", File,
[File, Inputs, Nonce, &Mut,
&TotalASTReads](Expected<InputsAndAST> AST) {
EXPECT_THAT(Context::current().get(NonceKey), Pointee(Nonce));
ASSERT_TRUE((bool)AST);
EXPECT_EQ(AST->Inputs.FS, Inputs.FS);
EXPECT_EQ(AST->Inputs.Contents, Inputs.Contents);
EXPECT_EQ(AST->Inputs.Version, Inputs.Version);
EXPECT_EQ(AST->AST.version(), Inputs.Version);
std::lock_guard<std::mutex> Lock(Mut);
++TotalASTReads;
EXPECT_EQ(File, *TUScheduler::getFileBeingProcessedInContext());
});
}
{
WithContextValue WithNonce(NonceKey, ++Nonce);
S.runWithPreamble(
"CheckPreamble", File, TUScheduler::Stale,
[File, Inputs, Nonce, &Mut,
&TotalPreambleReads](Expected<InputsAndPreamble> Preamble) {
EXPECT_THAT(Context::current().get(NonceKey), Pointee(Nonce));
ASSERT_TRUE((bool)Preamble);
EXPECT_EQ(Preamble->Contents, Inputs.Contents);
std::lock_guard<std::mutex> Lock(Mut);
++TotalPreambleReads;
EXPECT_EQ(File, *TUScheduler::getFileBeingProcessedInContext());
});
}
}
}
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
} // TUScheduler destructor waits for all operations to finish.
std::lock_guard<std::mutex> Lock(Mut);
EXPECT_EQ(TotalUpdates, FilesCount * UpdatesPerFile);
EXPECT_EQ(TotalASTReads, FilesCount * UpdatesPerFile);
EXPECT_EQ(TotalPreambleReads, FilesCount * UpdatesPerFile);
}
TEST_F(TUSchedulerTests, EvictedAST) {
std::atomic<int> BuiltASTCounter(0);
auto Opts = optsForTest();
Opts.AsyncThreadsCount = 1;
Opts.RetentionPolicy.MaxRetainedASTs = 2;
TUScheduler S(CDB, Opts);
llvm::StringLiteral SourceContents = R"cpp(
int* a;
double* b = a;
)cpp";
llvm::StringLiteral OtherSourceContents = R"cpp(
int* a;
double* b = a + 0;
)cpp";
auto Foo = testPath("foo.cpp");
auto Bar = testPath("bar.cpp");
auto Baz = testPath("baz.cpp");
// Build one file in advance. We will not access it later, so it will be the
// one that the cache will evict.
updateWithCallback(S, Foo, SourceContents, WantDiagnostics::Yes,
[&BuiltASTCounter]() { ++BuiltASTCounter; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
ASSERT_EQ(BuiltASTCounter.load(), 1);
// Build two more files. Since we can retain only 2 ASTs, these should be
// the ones we see in the cache later.
updateWithCallback(S, Bar, SourceContents, WantDiagnostics::Yes,
[&BuiltASTCounter]() { ++BuiltASTCounter; });
updateWithCallback(S, Baz, SourceContents, WantDiagnostics::Yes,
[&BuiltASTCounter]() { ++BuiltASTCounter; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
ASSERT_EQ(BuiltASTCounter.load(), 3);
// Check only the last two ASTs are retained.
ASSERT_THAT(S.getFilesWithCachedAST(), UnorderedElementsAre(Bar, Baz));
// Access the old file again.
updateWithCallback(S, Foo, OtherSourceContents, WantDiagnostics::Yes,
[&BuiltASTCounter]() { ++BuiltASTCounter; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
ASSERT_EQ(BuiltASTCounter.load(), 4);
// Check the AST for foo.cpp is retained now and one of the others got
// evicted.
EXPECT_THAT(S.getFilesWithCachedAST(),
UnorderedElementsAre(Foo, AnyOf(Bar, Baz)));
}
// We send "empty" changes to TUScheduler when we think some external event
// *might* have invalidated current state (e.g. a header was edited).
// Verify that this doesn't evict our cache entries.
TEST_F(TUSchedulerTests, NoopChangesDontThrashCache) {
auto Opts = optsForTest();
Opts.RetentionPolicy.MaxRetainedASTs = 1;
TUScheduler S(CDB, Opts);
auto Foo = testPath("foo.cpp");
auto FooInputs = getInputs(Foo, "int x=1;");
auto Bar = testPath("bar.cpp");
auto BarInputs = getInputs(Bar, "int x=2;");
// After opening Foo then Bar, AST cache contains Bar.
S.update(Foo, FooInputs, WantDiagnostics::Auto);
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
S.update(Bar, BarInputs, WantDiagnostics::Auto);
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
ASSERT_THAT(S.getFilesWithCachedAST(), ElementsAre(Bar));
// Any number of no-op updates to Foo don't dislodge Bar from the cache.
S.update(Foo, FooInputs, WantDiagnostics::Auto);
S.update(Foo, FooInputs, WantDiagnostics::Auto);
S.update(Foo, FooInputs, WantDiagnostics::Auto);
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
ASSERT_THAT(S.getFilesWithCachedAST(), ElementsAre(Bar));
// In fact each file has been built only once.
ASSERT_EQ(S.fileStats().lookup(Foo).ASTBuilds, 1u);
ASSERT_EQ(S.fileStats().lookup(Bar).ASTBuilds, 1u);
}
TEST_F(TUSchedulerTests, EmptyPreamble) {
TUScheduler S(CDB, optsForTest());
auto Foo = testPath("foo.cpp");
auto Header = testPath("foo.h");
Files[Header] = "void foo()";
Timestamps[Header] = time_t(0);
auto WithPreamble = R"cpp(
#include "foo.h"
int main() {}
)cpp";
auto WithEmptyPreamble = R"cpp(int main() {})cpp";
S.update(Foo, getInputs(Foo, WithPreamble), WantDiagnostics::Auto);
S.runWithPreamble(
"getNonEmptyPreamble", Foo, TUScheduler::Stale,
[&](Expected<InputsAndPreamble> Preamble) {
// We expect to get a non-empty preamble.
EXPECT_GT(
cantFail(std::move(Preamble)).Preamble->Preamble.getBounds().Size,
0u);
});
// Wait for the preamble is being built.
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
// Update the file which results in an empty preamble.
S.update(Foo, getInputs(Foo, WithEmptyPreamble), WantDiagnostics::Auto);
// Wait for the preamble is being built.
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
S.runWithPreamble(
"getEmptyPreamble", Foo, TUScheduler::Stale,
[&](Expected<InputsAndPreamble> Preamble) {
// We expect to get an empty preamble.
EXPECT_EQ(
cantFail(std::move(Preamble)).Preamble->Preamble.getBounds().Size,
0u);
});
}
TEST_F(TUSchedulerTests, RunWaitsForPreamble) {
// Testing strategy: we update the file and schedule a few preamble reads at
// the same time. All reads should get the same non-null preamble.
TUScheduler S(CDB, optsForTest());
auto Foo = testPath("foo.cpp");
auto NonEmptyPreamble = R"cpp(
#define FOO 1
#define BAR 2
int main() {}
)cpp";
constexpr int ReadsToSchedule = 10;
std::mutex PreamblesMut;
std::vector<const void *> Preambles(ReadsToSchedule, nullptr);
S.update(Foo, getInputs(Foo, NonEmptyPreamble), WantDiagnostics::Auto);
for (int I = 0; I < ReadsToSchedule; ++I) {
S.runWithPreamble(
"test", Foo, TUScheduler::Stale,
[I, &PreamblesMut, &Preambles](Expected<InputsAndPreamble> IP) {
std::lock_guard<std::mutex> Lock(PreamblesMut);
Preambles[I] = cantFail(std::move(IP)).Preamble;
});
}
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
// Check all actions got the same non-null preamble.
std::lock_guard<std::mutex> Lock(PreamblesMut);
ASSERT_NE(Preambles[0], nullptr);
ASSERT_THAT(Preambles, Each(Preambles[0]));
}
TEST_F(TUSchedulerTests, NoopOnEmptyChanges) {
TUScheduler S(CDB, optsForTest(), captureDiags());
auto Source = testPath("foo.cpp");
auto Header = testPath("foo.h");
Files[Header] = "int a;";
Timestamps[Header] = time_t(0);
std::string SourceContents = R"cpp(
#include "foo.h"
int b = a;
)cpp";
// Return value indicates if the updated callback was received.
auto DoUpdate = [&](std::string Contents) -> bool {
std::atomic<bool> Updated(false);
Updated = false;
updateWithDiags(S, Source, Contents, WantDiagnostics::Yes,
[&Updated](std::vector<Diag>) { Updated = true; });
bool UpdateFinished = S.blockUntilIdle(timeoutSeconds(10));
if (!UpdateFinished)
ADD_FAILURE() << "Updated has not finished in one second. Threading bug?";
return Updated;
};
// Test that subsequent updates with the same inputs do not cause rebuilds.
ASSERT_TRUE(DoUpdate(SourceContents));
ASSERT_EQ(S.fileStats().lookup(Source).ASTBuilds, 1u);
ASSERT_EQ(S.fileStats().lookup(Source).PreambleBuilds, 1u);
ASSERT_FALSE(DoUpdate(SourceContents));
ASSERT_EQ(S.fileStats().lookup(Source).ASTBuilds, 1u);
ASSERT_EQ(S.fileStats().lookup(Source).PreambleBuilds, 1u);
// Update to a header should cause a rebuild, though.
Timestamps[Header] = time_t(1);
ASSERT_TRUE(DoUpdate(SourceContents));
ASSERT_FALSE(DoUpdate(SourceContents));
ASSERT_EQ(S.fileStats().lookup(Source).ASTBuilds, 2u);
ASSERT_EQ(S.fileStats().lookup(Source).PreambleBuilds, 2u);
// Update to the contents should cause a rebuild.
SourceContents += "\nint c = b;";
ASSERT_TRUE(DoUpdate(SourceContents));
ASSERT_FALSE(DoUpdate(SourceContents));
ASSERT_EQ(S.fileStats().lookup(Source).ASTBuilds, 3u);
ASSERT_EQ(S.fileStats().lookup(Source).PreambleBuilds, 2u);
// Update to the compile commands should also cause a rebuild.
CDB.ExtraClangFlags.push_back("-DSOMETHING");
ASSERT_TRUE(DoUpdate(SourceContents));
ASSERT_FALSE(DoUpdate(SourceContents));
ASSERT_EQ(S.fileStats().lookup(Source).ASTBuilds, 4u);
ASSERT_EQ(S.fileStats().lookup(Source).PreambleBuilds, 3u);
}
TEST_F(TUSchedulerTests, ForceRebuild) {
TUScheduler S(CDB, optsForTest(), captureDiags());
auto Source = testPath("foo.cpp");
auto Header = testPath("foo.h");
auto SourceContents = R"cpp(
#include "foo.h"
int b = a;
)cpp";
ParseInputs Inputs = getInputs(Source, SourceContents);
std::atomic<size_t> DiagCount(0);
// Update the source contents, which should trigger an initial build with
// the header file missing.
updateWithDiags(
S, Source, Inputs, WantDiagnostics::Yes,
[&DiagCount](std::vector<Diag> Diags) {
++DiagCount;
EXPECT_THAT(Diags,
ElementsAre(Field(&Diag::Message, "'foo.h' file not found"),
Field(&Diag::Message,
"use of undeclared identifier 'a'")));
});
// Add the header file. We need to recreate the inputs since we changed a
// file from underneath the test FS.
Files[Header] = "int a;";
Timestamps[Header] = time_t(1);
Inputs = getInputs(Source, SourceContents);
// The addition of the missing header file shouldn't trigger a rebuild since
// we don't track missing files.
updateWithDiags(
S, Source, Inputs, WantDiagnostics::Yes,
[&DiagCount](std::vector<Diag> Diags) {
++DiagCount;
ADD_FAILURE() << "Did not expect diagnostics for missing header update";
});
// Forcing the reload should should cause a rebuild which no longer has any
// errors.
Inputs.ForceRebuild = true;
updateWithDiags(S, Source, Inputs, WantDiagnostics::Yes,
[&DiagCount](std::vector<Diag> Diags) {
++DiagCount;
EXPECT_THAT(Diags, IsEmpty());
});
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
EXPECT_EQ(DiagCount, 2U);
}
TEST_F(TUSchedulerTests, NoChangeDiags) {
TUScheduler S(CDB, optsForTest(), captureDiags());
auto FooCpp = testPath("foo.cpp");
auto Contents = "int a; int b;";
updateWithDiags(
S, FooCpp, Contents, WantDiagnostics::No,
[](std::vector<Diag>) { ADD_FAILURE() << "Should not be called."; });
S.runWithAST("touchAST", FooCpp, [](Expected<InputsAndAST> IA) {
// Make sure the AST was actually built.
cantFail(std::move(IA));
});
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
// Even though the inputs didn't change and AST can be reused, we need to
// report the diagnostics, as they were not reported previously.
std::atomic<bool> SeenDiags(false);
updateWithDiags(S, FooCpp, Contents, WantDiagnostics::Auto,
[&](std::vector<Diag>) { SeenDiags = true; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
ASSERT_TRUE(SeenDiags);
// Subsequent request does not get any diagnostics callback because the same
// diags have previously been reported and the inputs didn't change.
updateWithDiags(
S, FooCpp, Contents, WantDiagnostics::Auto,
[&](std::vector<Diag>) { ADD_FAILURE() << "Should not be called."; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
}
TEST_F(TUSchedulerTests, Run) {
TUScheduler S(CDB, optsForTest());
std::atomic<int> Counter(0);
S.run("add 1", [&] { ++Counter; });
S.run("add 2", [&] { Counter += 2; });
ASSERT_TRUE(S.blockUntilIdle(timeoutSeconds(10)));
EXPECT_EQ(Counter.load(), 3);
Notification TaskRun;
Key<int> TestKey;
WithContextValue CtxWithKey(TestKey, 10);
S.run("props context", [&] {
EXPECT_EQ(Context::current().getExisting(TestKey), 10);
TaskRun.notify();
});
TaskRun.wait();
}
TEST_F(TUSchedulerTests, TUStatus) {
class CaptureTUStatus : public ClangdServer::Callbacks {
public:
void onFileUpdated(PathRef File, const TUStatus &Status) override {
auto ASTAction = Status.ASTActivity.K;
auto PreambleAction = Status.PreambleActivity;
std::lock_guard<std::mutex> Lock(Mutex);
// Only push the action if it has changed. Since TUStatus can be published
// from either Preamble or AST thread and when one changes the other stays
// the same.
// Note that this can result in missing some updates when something other
// than action kind changes, e.g. when AST is built/reused the action kind
// stays as Building.
if (ASTActions.empty() || ASTActions.back() != ASTAction)
ASTActions.push_back(ASTAction);
if (PreambleActions.empty() || PreambleActions.back() != PreambleAction)
PreambleActions.push_back(PreambleAction);
}
std::vector<PreambleAction> preambleStatuses() {
std::lock_guard<std::mutex> Lock(Mutex);
return PreambleActions;
}
std::vector<ASTAction::Kind> astStatuses() {
std::lock_guard<std::mutex> Lock(Mutex);
return ASTActions;
}
private:
std::mutex Mutex;
std::vector<ASTAction::Kind> ASTActions;
std::vector<PreambleAction> PreambleActions;
} CaptureTUStatus;
MockFSProvider FS;
MockCompilationDatabase CDB;
ClangdServer Server(CDB, FS, ClangdServer::optsForTest(), &CaptureTUStatus);
Annotations Code("int m^ain () {}");
// We schedule the following tasks in the queue:
// [Update] [GoToDefinition]
Server.addDocument(testPath("foo.cpp"), Code.code(), "1",
WantDiagnostics::Auto);
ASSERT_TRUE(Server.blockUntilIdleForTest());
Server.locateSymbolAt(testPath("foo.cpp"), Code.point(),
[](Expected<std::vector<LocatedSymbol>> Result) {
ASSERT_TRUE((bool)Result);
});
ASSERT_TRUE(Server.blockUntilIdleForTest());
EXPECT_THAT(CaptureTUStatus.preambleStatuses(),
ElementsAre(
// PreambleThread starts idle, as the update is first handled
// by ASTWorker.
PreambleAction::Idle,
// Then it starts building first preamble and releases that to
// ASTWorker.
PreambleAction::Building,
// Then goes idle and stays that way as we don't receive any
// more update requests.
PreambleAction::Idle));
EXPECT_THAT(CaptureTUStatus.astStatuses(),
ElementsAre(
// Starts handling the update action and blocks until the
// first preamble is built.
ASTAction::RunningAction,
// Afterwqards it builds an AST for that preamble to publish
// diagnostics.
ASTAction::Building,
// Then goes idle.
ASTAction::Idle,
// Afterwards we start executing go-to-def.
ASTAction::RunningAction,
// Then go idle.
ASTAction::Idle));
}
TEST_F(TUSchedulerTests, CommandLineErrors) {
// We should see errors from command-line parsing inside the main file.
CDB.ExtraClangFlags = {"-fsome-unknown-flag"};
// (!) 'Ready' must live longer than TUScheduler.
Notification Ready;
TUScheduler S(CDB, optsForTest(), captureDiags());
std::vector<Diag> Diagnostics;
updateWithDiags(S, testPath("foo.cpp"), "void test() {}",
WantDiagnostics::Yes, [&](std::vector<Diag> D) {
Diagnostics = std::move(D);
Ready.notify();
});
Ready.wait();
EXPECT_THAT(
Diagnostics,
ElementsAre(AllOf(
Field(&Diag::ID, Eq(diag::err_drv_unknown_argument)),
Field(&Diag::Name, Eq("drv_unknown_argument")),
Field(&Diag::Message, "unknown argument: '-fsome-unknown-flag'"))));
}
TEST_F(TUSchedulerTests, CommandLineWarnings) {
// We should not see warnings from command-line parsing.
CDB.ExtraClangFlags = {"-Wsome-unknown-warning"};
// (!) 'Ready' must live longer than TUScheduler.
Notification Ready;
TUScheduler S(CDB, optsForTest(), captureDiags());
std::vector<Diag> Diagnostics;
updateWithDiags(S, testPath("foo.cpp"), "void test() {}",
WantDiagnostics::Yes, [&](std::vector<Diag> D) {
Diagnostics = std::move(D);
Ready.notify();
});
Ready.wait();
EXPECT_THAT(Diagnostics, IsEmpty());
}
TEST(DebouncePolicy, Compute) {
namespace c = std::chrono;
std::vector<DebouncePolicy::clock::duration> History = {
c::seconds(0),
c::seconds(5),
c::seconds(10),
c::seconds(20),
};
DebouncePolicy Policy;
Policy.Min = c::seconds(3);
Policy.Max = c::seconds(25);
// Call Policy.compute(History) and return seconds as a float.
auto Compute = [&](llvm::ArrayRef<DebouncePolicy::clock::duration> History) {
using FloatingSeconds = c::duration<float, c::seconds::period>;
return static_cast<float>(Policy.compute(History) / FloatingSeconds(1));
};
EXPECT_NEAR(10, Compute(History), 0.01) << "(upper) median = 10";
Policy.RebuildRatio = 1.5;
EXPECT_NEAR(15, Compute(History), 0.01) << "median = 10, ratio = 1.5";
Policy.RebuildRatio = 3;
EXPECT_NEAR(25, Compute(History), 0.01) << "constrained by max";
Policy.RebuildRatio = 0;
EXPECT_NEAR(3, Compute(History), 0.01) << "constrained by min";
EXPECT_NEAR(25, Compute({}), 0.01) << "no history -> max";
}
} // namespace
} // namespace clangd
} // namespace clang