llvm-project/llvm/utils/TableGen/AsmMatcherEmitter.cpp

3340 lines
123 KiB
C++

//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures. It also emits a matcher for
// custom operand parsing.
//
// Converting assembly operands into MCInst structures
// ---------------------------------------------------
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
// 'addl' (immediate ...) (register ...)
// 'add' (immediate ...) (memory ...)
// 'call' '*' %epc
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
// - It may be ambiguous; many architectures can legally encode particular
// variants of an instruction in different ways (for example, using a smaller
// encoding for small immediates). Such ambiguities should never be
// arbitrarily resolved by the assembler, the assembler is always responsible
// for choosing the "best" available instruction.
//
// - It may depend on the subtarget or the assembler context. Instructions
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
// an SSE instruction in a file being assembled for i486) should be accepted
// and rejected by the assembler front end. However, if the proper encoding
// for an instruction is dependent on the assembler context then the matcher
// is responsible for selecting the correct machine instruction for the
// current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
// 1. Classification: Each operand is mapped to the unique set which (a)
// contains it, and (b) is the largest such subset for which a single
// instruction could match all members.
//
// For register classes, we can generate these subgroups automatically. For
// arbitrary operands, we expect the user to define the classes and their
// relations to one another (for example, 8-bit signed immediates as a
// subset of 32-bit immediates).
//
// By partitioning the operands in this way, we guarantee that for any
// tuple of classes, any single instruction must match either all or none
// of the sets of operands which could classify to that tuple.
//
// In addition, the subset relation amongst classes induces a partial order
// on such tuples, which we use to resolve ambiguities.
//
// 2. The input can now be treated as a tuple of classes (static tokens are
// simple singleton sets). Each such tuple should generally map to a single
// instruction (we currently ignore cases where this isn't true, whee!!!),
// which we can emit a simple matcher for.
//
// Custom Operand Parsing
// ----------------------
//
// Some targets need a custom way to parse operands, some specific instructions
// can contain arguments that can represent processor flags and other kinds of
// identifiers that need to be mapped to specific values in the final encoded
// instructions. The target specific custom operand parsing works in the
// following way:
//
// 1. A operand match table is built, each entry contains a mnemonic, an
// operand class, a mask for all operand positions for that same
// class/mnemonic and target features to be checked while trying to match.
//
// 2. The operand matcher will try every possible entry with the same
// mnemonic and will check if the target feature for this mnemonic also
// matches. After that, if the operand to be matched has its index
// present in the mask, a successful match occurs. Otherwise, fallback
// to the regular operand parsing.
//
// 3. For a match success, each operand class that has a 'ParserMethod'
// becomes part of a switch from where the custom method is called.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cctype>
#include <forward_list>
#include <map>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "asm-matcher-emitter"
static cl::opt<std::string>
MatchPrefix("match-prefix", cl::init(""),
cl::desc("Only match instructions with the given prefix"));
namespace {
class AsmMatcherInfo;
struct SubtargetFeatureInfo;
// Register sets are used as keys in some second-order sets TableGen creates
// when generating its data structures. This means that the order of two
// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
// can even affect compiler output (at least seen in diagnostics produced when
// all matches fail). So we use a type that sorts them consistently.
typedef std::set<Record*, LessRecordByID> RegisterSet;
class AsmMatcherEmitter {
RecordKeeper &Records;
public:
AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &o);
};
/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
enum ClassInfoKind {
/// Invalid kind, for use as a sentinel value.
Invalid = 0,
/// The class for a particular token.
Token,
/// The (first) register class, subsequent register classes are
/// RegisterClass0+1, and so on.
RegisterClass0,
/// The (first) user defined class, subsequent user defined classes are
/// UserClass0+1, and so on.
UserClass0 = 1<<16
};
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
/// N) for the Nth user defined class.
unsigned Kind;
/// SuperClasses - The super classes of this class. Note that for simplicities
/// sake user operands only record their immediate super class, while register
/// operands include all superclasses.
std::vector<ClassInfo*> SuperClasses;
/// Name - The full class name, suitable for use in an enum.
std::string Name;
/// ClassName - The unadorned generic name for this class (e.g., Token).
std::string ClassName;
/// ValueName - The name of the value this class represents; for a token this
/// is the literal token string, for an operand it is the TableGen class (or
/// empty if this is a derived class).
std::string ValueName;
/// PredicateMethod - The name of the operand method to test whether the
/// operand matches this class; this is not valid for Token or register kinds.
std::string PredicateMethod;
/// RenderMethod - The name of the operand method to add this operand to an
/// MCInst; this is not valid for Token or register kinds.
std::string RenderMethod;
/// ParserMethod - The name of the operand method to do a target specific
/// parsing on the operand.
std::string ParserMethod;
/// For register classes: the records for all the registers in this class.
RegisterSet Registers;
/// For custom match classes: the diagnostic kind for when the predicate fails.
std::string DiagnosticType;
/// Is this operand optional and not always required.
bool IsOptional;
/// DefaultMethod - The name of the method that returns the default operand
/// for optional operand
std::string DefaultMethod;
public:
/// isRegisterClass() - Check if this is a register class.
bool isRegisterClass() const {
return Kind >= RegisterClass0 && Kind < UserClass0;
}
/// isUserClass() - Check if this is a user defined class.
bool isUserClass() const {
return Kind >= UserClass0;
}
/// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
/// are related if they are in the same class hierarchy.
bool isRelatedTo(const ClassInfo &RHS) const {
// Tokens are only related to tokens.
if (Kind == Token || RHS.Kind == Token)
return Kind == Token && RHS.Kind == Token;
// Registers classes are only related to registers classes, and only if
// their intersection is non-empty.
if (isRegisterClass() || RHS.isRegisterClass()) {
if (!isRegisterClass() || !RHS.isRegisterClass())
return false;
RegisterSet Tmp;
std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
std::set_intersection(Registers.begin(), Registers.end(),
RHS.Registers.begin(), RHS.Registers.end(),
II, LessRecordByID());
return !Tmp.empty();
}
// Otherwise we have two users operands; they are related if they are in the
// same class hierarchy.
//
// FIXME: This is an oversimplification, they should only be related if they
// intersect, however we don't have that information.
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
const ClassInfo *Root = this;
while (!Root->SuperClasses.empty())
Root = Root->SuperClasses.front();
const ClassInfo *RHSRoot = &RHS;
while (!RHSRoot->SuperClasses.empty())
RHSRoot = RHSRoot->SuperClasses.front();
return Root == RHSRoot;
}
/// isSubsetOf - Test whether this class is a subset of \p RHS.
bool isSubsetOf(const ClassInfo &RHS) const {
// This is a subset of RHS if it is the same class...
if (this == &RHS)
return true;
// ... or if any of its super classes are a subset of RHS.
for (const ClassInfo *CI : SuperClasses)
if (CI->isSubsetOf(RHS))
return true;
return false;
}
int getTreeDepth() const {
int Depth = 0;
const ClassInfo *Root = this;
while (!Root->SuperClasses.empty()) {
Depth++;
Root = Root->SuperClasses.front();
}
return Depth;
}
const ClassInfo *findRoot() const {
const ClassInfo *Root = this;
while (!Root->SuperClasses.empty())
Root = Root->SuperClasses.front();
return Root;
}
/// Compare two classes. This does not produce a total ordering, but does
/// guarantee that subclasses are sorted before their parents, and that the
/// ordering is transitive.
bool operator<(const ClassInfo &RHS) const {
if (this == &RHS)
return false;
// First, enforce the ordering between the three different types of class.
// Tokens sort before registers, which sort before user classes.
if (Kind == Token) {
if (RHS.Kind != Token)
return true;
assert(RHS.Kind == Token);
} else if (isRegisterClass()) {
if (RHS.Kind == Token)
return false;
else if (RHS.isUserClass())
return true;
assert(RHS.isRegisterClass());
} else if (isUserClass()) {
if (!RHS.isUserClass())
return false;
assert(RHS.isUserClass());
} else {
llvm_unreachable("Unknown ClassInfoKind");
}
if (Kind == Token || isUserClass()) {
// Related tokens and user classes get sorted by depth in the inheritence
// tree (so that subclasses are before their parents).
if (isRelatedTo(RHS)) {
if (getTreeDepth() > RHS.getTreeDepth())
return true;
if (getTreeDepth() < RHS.getTreeDepth())
return false;
} else {
// Unrelated tokens and user classes are ordered by the name of their
// root nodes, so that there is a consistent ordering between
// unconnected trees.
return findRoot()->ValueName < RHS.findRoot()->ValueName;
}
} else if (isRegisterClass()) {
// For register sets, sort by number of registers. This guarantees that
// a set will always sort before all of it's strict supersets.
if (Registers.size() != RHS.Registers.size())
return Registers.size() < RHS.Registers.size();
} else {
llvm_unreachable("Unknown ClassInfoKind");
}
// FIXME: We should be able to just return false here, as we only need a
// partial order (we use stable sorts, so this is deterministic) and the
// name of a class shouldn't be significant. However, some of the backends
// accidentally rely on this behaviour, so it will have to stay like this
// until they are fixed.
return ValueName < RHS.ValueName;
}
};
class AsmVariantInfo {
public:
std::string RegisterPrefix;
std::string TokenizingCharacters;
std::string SeparatorCharacters;
std::string BreakCharacters;
int AsmVariantNo;
};
/// MatchableInfo - Helper class for storing the necessary information for an
/// instruction or alias which is capable of being matched.
struct MatchableInfo {
struct AsmOperand {
/// Token - This is the token that the operand came from.
StringRef Token;
/// The unique class instance this operand should match.
ClassInfo *Class;
/// The operand name this is, if anything.
StringRef SrcOpName;
/// The suboperand index within SrcOpName, or -1 for the entire operand.
int SubOpIdx;
/// Whether the token is "isolated", i.e., it is preceded and followed
/// by separators.
bool IsIsolatedToken;
/// Register record if this token is singleton register.
Record *SingletonReg;
explicit AsmOperand(bool IsIsolatedToken, StringRef T)
: Token(T), Class(nullptr), SubOpIdx(-1),
IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
};
/// ResOperand - This represents a single operand in the result instruction
/// generated by the match. In cases (like addressing modes) where a single
/// assembler operand expands to multiple MCOperands, this represents the
/// single assembler operand, not the MCOperand.
struct ResOperand {
enum {
/// RenderAsmOperand - This represents an operand result that is
/// generated by calling the render method on the assembly operand. The
/// corresponding AsmOperand is specified by AsmOperandNum.
RenderAsmOperand,
/// TiedOperand - This represents a result operand that is a duplicate of
/// a previous result operand.
TiedOperand,
/// ImmOperand - This represents an immediate value that is dumped into
/// the operand.
ImmOperand,
/// RegOperand - This represents a fixed register that is dumped in.
RegOperand
} Kind;
union {
/// This is the operand # in the AsmOperands list that this should be
/// copied from.
unsigned AsmOperandNum;
/// TiedOperandNum - This is the (earlier) result operand that should be
/// copied from.
unsigned TiedOperandNum;
/// ImmVal - This is the immediate value added to the instruction.
int64_t ImmVal;
/// Register - This is the register record.
Record *Register;
};
/// MINumOperands - The number of MCInst operands populated by this
/// operand.
unsigned MINumOperands;
static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
ResOperand X;
X.Kind = RenderAsmOperand;
X.AsmOperandNum = AsmOpNum;
X.MINumOperands = NumOperands;
return X;
}
static ResOperand getTiedOp(unsigned TiedOperandNum) {
ResOperand X;
X.Kind = TiedOperand;
X.TiedOperandNum = TiedOperandNum;
X.MINumOperands = 1;
return X;
}
static ResOperand getImmOp(int64_t Val) {
ResOperand X;
X.Kind = ImmOperand;
X.ImmVal = Val;
X.MINumOperands = 1;
return X;
}
static ResOperand getRegOp(Record *Reg) {
ResOperand X;
X.Kind = RegOperand;
X.Register = Reg;
X.MINumOperands = 1;
return X;
}
};
/// AsmVariantID - Target's assembly syntax variant no.
int AsmVariantID;
/// AsmString - The assembly string for this instruction (with variants
/// removed), e.g. "movsx $src, $dst".
std::string AsmString;
/// TheDef - This is the definition of the instruction or InstAlias that this
/// matchable came from.
Record *const TheDef;
/// DefRec - This is the definition that it came from.
PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
const CodeGenInstruction *getResultInst() const {
if (DefRec.is<const CodeGenInstruction*>())
return DefRec.get<const CodeGenInstruction*>();
return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
}
/// ResOperands - This is the operand list that should be built for the result
/// MCInst.
SmallVector<ResOperand, 8> ResOperands;
/// Mnemonic - This is the first token of the matched instruction, its
/// mnemonic.
StringRef Mnemonic;
/// AsmOperands - The textual operands that this instruction matches,
/// annotated with a class and where in the OperandList they were defined.
/// This directly corresponds to the tokenized AsmString after the mnemonic is
/// removed.
SmallVector<AsmOperand, 8> AsmOperands;
/// Predicates - The required subtarget features to match this instruction.
SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
/// ConversionFnKind - The enum value which is passed to the generated
/// convertToMCInst to convert parsed operands into an MCInst for this
/// function.
std::string ConversionFnKind;
/// If this instruction is deprecated in some form.
bool HasDeprecation;
/// If this is an alias, this is use to determine whether or not to using
/// the conversion function defined by the instruction's AsmMatchConverter
/// or to use the function generated by the alias.
bool UseInstAsmMatchConverter;
MatchableInfo(const CodeGenInstruction &CGI)
: AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
UseInstAsmMatchConverter(true) {
}
MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
: AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
DefRec(Alias.release()),
UseInstAsmMatchConverter(
TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
}
// Could remove this and the dtor if PointerUnion supported unique_ptr
// elements with a dynamic failure/assertion (like the one below) in the case
// where it was copied while being in an owning state.
MatchableInfo(const MatchableInfo &RHS)
: AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
RequiredFeatures(RHS.RequiredFeatures),
ConversionFnKind(RHS.ConversionFnKind),
HasDeprecation(RHS.HasDeprecation),
UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
assert(!DefRec.is<const CodeGenInstAlias *>());
}
~MatchableInfo() {
delete DefRec.dyn_cast<const CodeGenInstAlias*>();
}
// Two-operand aliases clone from the main matchable, but mark the second
// operand as a tied operand of the first for purposes of the assembler.
void formTwoOperandAlias(StringRef Constraint);
void initialize(const AsmMatcherInfo &Info,
SmallPtrSetImpl<Record*> &SingletonRegisters,
AsmVariantInfo const &Variant,
bool HasMnemonicFirst);
/// validate - Return true if this matchable is a valid thing to match against
/// and perform a bunch of validity checking.
bool validate(StringRef CommentDelimiter, bool Hack) const;
/// findAsmOperand - Find the AsmOperand with the specified name and
/// suboperand index.
int findAsmOperand(StringRef N, int SubOpIdx) const {
auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(),
[&](const AsmOperand &Op) {
return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
});
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
}
/// findAsmOperandNamed - Find the first AsmOperand with the specified name.
/// This does not check the suboperand index.
int findAsmOperandNamed(StringRef N) const {
auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(),
[&](const AsmOperand &Op) {
return Op.SrcOpName == N;
});
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
}
void buildInstructionResultOperands();
void buildAliasResultOperands();
/// operator< - Compare two matchables.
bool operator<(const MatchableInfo &RHS) const {
// The primary comparator is the instruction mnemonic.
if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
return Cmp == -1;
if (AsmOperands.size() != RHS.AsmOperands.size())
return AsmOperands.size() < RHS.AsmOperands.size();
// Compare lexicographically by operand. The matcher validates that other
// orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
return true;
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
return false;
}
// Give matches that require more features higher precedence. This is useful
// because we cannot define AssemblerPredicates with the negation of
// processor features. For example, ARM v6 "nop" may be either a HINT or
// MOV. With v6, we want to match HINT. The assembler has no way to
// predicate MOV under "NoV6", but HINT will always match first because it
// requires V6 while MOV does not.
if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
return RequiredFeatures.size() > RHS.RequiredFeatures.size();
return false;
}
/// couldMatchAmbiguouslyWith - Check whether this matchable could
/// ambiguously match the same set of operands as \p RHS (without being a
/// strictly superior match).
bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
// The primary comparator is the instruction mnemonic.
if (Mnemonic != RHS.Mnemonic)
return false;
// The number of operands is unambiguous.
if (AsmOperands.size() != RHS.AsmOperands.size())
return false;
// Otherwise, make sure the ordering of the two instructions is unambiguous
// by checking that either (a) a token or operand kind discriminates them,
// or (b) the ordering among equivalent kinds is consistent.
// Tokens and operand kinds are unambiguous (assuming a correct target
// specific parser).
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
AsmOperands[i].Class->Kind == ClassInfo::Token)
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
return false;
// Otherwise, this operand could commute if all operands are equivalent, or
// there is a pair of operands that compare less than and a pair that
// compare greater than.
bool HasLT = false, HasGT = false;
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
HasLT = true;
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
HasGT = true;
}
return HasLT == HasGT;
}
void dump() const;
private:
void tokenizeAsmString(AsmMatcherInfo const &Info,
AsmVariantInfo const &Variant);
void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
};
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
/// feature which participates in instruction matching.
struct SubtargetFeatureInfo {
/// \brief The predicate record for this feature.
Record *TheDef;
/// \brief An unique index assigned to represent this feature.
uint64_t Index;
SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
/// \brief The name of the enumerated constant identifying this feature.
std::string getEnumName() const {
return "Feature_" + TheDef->getName();
}
void dump() const {
errs() << getEnumName() << " " << Index << "\n";
TheDef->dump();
}
};
struct OperandMatchEntry {
unsigned OperandMask;
const MatchableInfo* MI;
ClassInfo *CI;
static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
unsigned opMask) {
OperandMatchEntry X;
X.OperandMask = opMask;
X.CI = ci;
X.MI = mi;
return X;
}
};
class AsmMatcherInfo {
public:
/// Tracked Records
RecordKeeper &Records;
/// The tablegen AsmParser record.
Record *AsmParser;
/// Target - The target information.
CodeGenTarget &Target;
/// The classes which are needed for matching.
std::forward_list<ClassInfo> Classes;
/// The information on the matchables to match.
std::vector<std::unique_ptr<MatchableInfo>> Matchables;
/// Info for custom matching operands by user defined methods.
std::vector<OperandMatchEntry> OperandMatchInfo;
/// Map of Register records to their class information.
typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
RegisterClassesTy RegisterClasses;
/// Map of Predicate records to their subtarget information.
std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
/// Map of AsmOperandClass records to their class information.
std::map<Record*, ClassInfo*> AsmOperandClasses;
private:
/// Map of token to class information which has already been constructed.
std::map<std::string, ClassInfo*> TokenClasses;
/// Map of RegisterClass records to their class information.
std::map<Record*, ClassInfo*> RegisterClassClasses;
private:
/// getTokenClass - Lookup or create the class for the given token.
ClassInfo *getTokenClass(StringRef Token);
/// getOperandClass - Lookup or create the class for the given operand.
ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
int SubOpIdx);
ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
/// buildRegisterClasses - Build the ClassInfo* instances for register
/// classes.
void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
/// buildOperandClasses - Build the ClassInfo* instances for user defined
/// operand classes.
void buildOperandClasses();
void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
unsigned AsmOpIdx);
void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
MatchableInfo::AsmOperand &Op);
public:
AsmMatcherInfo(Record *AsmParser,
CodeGenTarget &Target,
RecordKeeper &Records);
/// buildInfo - Construct the various tables used during matching.
void buildInfo();
/// buildOperandMatchInfo - Build the necessary information to handle user
/// defined operand parsing methods.
void buildOperandMatchInfo();
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
/// given operand.
const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
const auto &I = SubtargetFeatures.find(Def);
return I == SubtargetFeatures.end() ? nullptr : &I->second;
}
RecordKeeper &getRecords() const {
return Records;
}
bool hasOptionalOperands() const {
return std::find_if(Classes.begin(), Classes.end(),
[](const ClassInfo& Class){ return Class.IsOptional; })
!= Classes.end();
}
};
} // end anonymous namespace
void MatchableInfo::dump() const {
errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
const AsmOperand &Op = AsmOperands[i];
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
errs() << '\"' << Op.Token << "\"\n";
}
}
static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
// Split via the '='.
std::pair<StringRef, StringRef> Ops = S.split('=');
if (Ops.second == "")
PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
// Trim whitespace and the leading '$' on the operand names.
size_t start = Ops.first.find_first_of('$');
if (start == std::string::npos)
PrintFatalError(Loc, "expected '$' prefix on asm operand name");
Ops.first = Ops.first.slice(start + 1, std::string::npos);
size_t end = Ops.first.find_last_of(" \t");
Ops.first = Ops.first.slice(0, end);
// Now the second operand.
start = Ops.second.find_first_of('$');
if (start == std::string::npos)
PrintFatalError(Loc, "expected '$' prefix on asm operand name");
Ops.second = Ops.second.slice(start + 1, std::string::npos);
end = Ops.second.find_last_of(" \t");
Ops.first = Ops.first.slice(0, end);
return Ops;
}
void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
// Figure out which operands are aliased and mark them as tied.
std::pair<StringRef, StringRef> Ops =
parseTwoOperandConstraint(Constraint, TheDef->getLoc());
// Find the AsmOperands that refer to the operands we're aliasing.
int SrcAsmOperand = findAsmOperandNamed(Ops.first);
int DstAsmOperand = findAsmOperandNamed(Ops.second);
if (SrcAsmOperand == -1)
PrintFatalError(TheDef->getLoc(),
"unknown source two-operand alias operand '" + Ops.first +
"'.");
if (DstAsmOperand == -1)
PrintFatalError(TheDef->getLoc(),
"unknown destination two-operand alias operand '" +
Ops.second + "'.");
// Find the ResOperand that refers to the operand we're aliasing away
// and update it to refer to the combined operand instead.
for (ResOperand &Op : ResOperands) {
if (Op.Kind == ResOperand::RenderAsmOperand &&
Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
Op.AsmOperandNum = DstAsmOperand;
break;
}
}
// Remove the AsmOperand for the alias operand.
AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
// Adjust the ResOperand references to any AsmOperands that followed
// the one we just deleted.
for (ResOperand &Op : ResOperands) {
switch(Op.Kind) {
default:
// Nothing to do for operands that don't reference AsmOperands.
break;
case ResOperand::RenderAsmOperand:
if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
--Op.AsmOperandNum;
break;
case ResOperand::TiedOperand:
if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
--Op.TiedOperandNum;
break;
}
}
}
/// extractSingletonRegisterForAsmOperand - Extract singleton register,
/// if present, from specified token.
static void
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
const AsmMatcherInfo &Info,
StringRef RegisterPrefix) {
StringRef Tok = Op.Token;
// If this token is not an isolated token, i.e., it isn't separated from
// other tokens (e.g. with whitespace), don't interpret it as a register name.
if (!Op.IsIsolatedToken)
return;
if (RegisterPrefix.empty()) {
std::string LoweredTok = Tok.lower();
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
Op.SingletonReg = Reg->TheDef;
return;
}
if (!Tok.startswith(RegisterPrefix))
return;
StringRef RegName = Tok.substr(RegisterPrefix.size());
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
Op.SingletonReg = Reg->TheDef;
// If there is no register prefix (i.e. "%" in "%eax"), then this may
// be some random non-register token, just ignore it.
}
void MatchableInfo::initialize(const AsmMatcherInfo &Info,
SmallPtrSetImpl<Record*> &SingletonRegisters,
AsmVariantInfo const &Variant,
bool HasMnemonicFirst) {
AsmVariantID = Variant.AsmVariantNo;
AsmString =
CodeGenInstruction::FlattenAsmStringVariants(AsmString,
Variant.AsmVariantNo);
tokenizeAsmString(Info, Variant);
// The first token of the instruction is the mnemonic, which must be a
// simple string, not a $foo variable or a singleton register.
if (AsmOperands.empty())
PrintFatalError(TheDef->getLoc(),
"Instruction '" + TheDef->getName() + "' has no tokens");
assert(!AsmOperands[0].Token.empty());
if (HasMnemonicFirst) {
Mnemonic = AsmOperands[0].Token;
if (Mnemonic[0] == '$')
PrintFatalError(TheDef->getLoc(),
"Invalid instruction mnemonic '" + Mnemonic + "'!");
// Remove the first operand, it is tracked in the mnemonic field.
AsmOperands.erase(AsmOperands.begin());
} else if (AsmOperands[0].Token[0] != '$')
Mnemonic = AsmOperands[0].Token;
// Compute the require features.
for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
if (const SubtargetFeatureInfo *Feature =
Info.getSubtargetFeature(Predicate))
RequiredFeatures.push_back(Feature);
// Collect singleton registers, if used.
for (MatchableInfo::AsmOperand &Op : AsmOperands) {
extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
if (Record *Reg = Op.SingletonReg)
SingletonRegisters.insert(Reg);
}
const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
if (!DepMask)
DepMask = TheDef->getValue("ComplexDeprecationPredicate");
HasDeprecation =
DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
}
/// Append an AsmOperand for the given substring of AsmString.
void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
}
/// tokenizeAsmString - Tokenize a simplified assembly string.
void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
AsmVariantInfo const &Variant) {
StringRef String = AsmString;
size_t Prev = 0;
bool InTok = false;
bool IsIsolatedToken = true;
for (size_t i = 0, e = String.size(); i != e; ++i) {
char Char = String[i];
if (Variant.BreakCharacters.find(Char) != std::string::npos) {
if (InTok) {
addAsmOperand(String.slice(Prev, i), false);
Prev = i;
IsIsolatedToken = false;
}
InTok = true;
continue;
}
if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
if (InTok) {
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
InTok = false;
IsIsolatedToken = false;
}
addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
Prev = i + 1;
IsIsolatedToken = true;
continue;
}
if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
if (InTok) {
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
InTok = false;
}
Prev = i + 1;
IsIsolatedToken = true;
continue;
}
switch (Char) {
case '\\':
if (InTok) {
addAsmOperand(String.slice(Prev, i), false);
InTok = false;
IsIsolatedToken = false;
}
++i;
assert(i != String.size() && "Invalid quoted character");
addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
Prev = i + 1;
IsIsolatedToken = false;
break;
case '$': {
if (InTok) {
addAsmOperand(String.slice(Prev, i), false);
InTok = false;
IsIsolatedToken = false;
}
// If this isn't "${", start new identifier looking like "$xxx"
if (i + 1 == String.size() || String[i + 1] != '{') {
Prev = i;
break;
}
size_t EndPos = String.find('}', i);
assert(EndPos != StringRef::npos &&
"Missing brace in operand reference!");
addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
Prev = EndPos + 1;
i = EndPos;
IsIsolatedToken = false;
break;
}
default:
InTok = true;
break;
}
}
if (InTok && Prev != String.size())
addAsmOperand(String.substr(Prev), IsIsolatedToken);
}
bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
// Reject matchables with no .s string.
if (AsmString.empty())
PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
// Reject any matchables with a newline in them, they should be marked
// isCodeGenOnly if they are pseudo instructions.
if (AsmString.find('\n') != std::string::npos)
PrintFatalError(TheDef->getLoc(),
"multiline instruction is not valid for the asmparser, "
"mark it isCodeGenOnly");
// Remove comments from the asm string. We know that the asmstring only
// has one line.
if (!CommentDelimiter.empty() &&
StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
PrintFatalError(TheDef->getLoc(),
"asmstring for instruction has comment character in it, "
"mark it isCodeGenOnly");
// Reject matchables with operand modifiers, these aren't something we can
// handle, the target should be refactored to use operands instead of
// modifiers.
//
// Also, check for instructions which reference the operand multiple times;
// this implies a constraint we would not honor.
std::set<std::string> OperandNames;
for (const AsmOperand &Op : AsmOperands) {
StringRef Tok = Op.Token;
if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
PrintFatalError(TheDef->getLoc(),
"matchable with operand modifier '" + Tok +
"' not supported by asm matcher. Mark isCodeGenOnly!");
// Verify that any operand is only mentioned once.
// We reject aliases and ignore instructions for now.
if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
if (!Hack)
PrintFatalError(TheDef->getLoc(),
"ERROR: matchable with tied operand '" + Tok +
"' can never be matched!");
// FIXME: Should reject these. The ARM backend hits this with $lane in a
// bunch of instructions. It is unclear what the right answer is.
DEBUG({
errs() << "warning: '" << TheDef->getName() << "': "
<< "ignoring instruction with tied operand '"
<< Tok << "'\n";
});
return false;
}
}
return true;
}
static std::string getEnumNameForToken(StringRef Str) {
std::string Res;
for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
switch (*it) {
case '*': Res += "_STAR_"; break;
case '%': Res += "_PCT_"; break;
case ':': Res += "_COLON_"; break;
case '!': Res += "_EXCLAIM_"; break;
case '.': Res += "_DOT_"; break;
case '<': Res += "_LT_"; break;
case '>': Res += "_GT_"; break;
case '-': Res += "_MINUS_"; break;
default:
if ((*it >= 'A' && *it <= 'Z') ||
(*it >= 'a' && *it <= 'z') ||
(*it >= '0' && *it <= '9'))
Res += *it;
else
Res += "_" + utostr((unsigned) *it) + "_";
}
}
return Res;
}
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
ClassInfo *&Entry = TokenClasses[Token];
if (!Entry) {
Classes.emplace_front();
Entry = &Classes.front();
Entry->Kind = ClassInfo::Token;
Entry->ClassName = "Token";
Entry->Name = "MCK_" + getEnumNameForToken(Token);
Entry->ValueName = Token;
Entry->PredicateMethod = "<invalid>";
Entry->RenderMethod = "<invalid>";
Entry->ParserMethod = "";
Entry->DiagnosticType = "";
Entry->IsOptional = false;
Entry->DefaultMethod = "<invalid>";
}
return Entry;
}
ClassInfo *
AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
int SubOpIdx) {
Record *Rec = OI.Rec;
if (SubOpIdx != -1)
Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
return getOperandClass(Rec, SubOpIdx);
}
ClassInfo *
AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
if (Rec->isSubClassOf("RegisterOperand")) {
// RegisterOperand may have an associated ParserMatchClass. If it does,
// use it, else just fall back to the underlying register class.
const RecordVal *R = Rec->getValue("ParserMatchClass");
if (!R || !R->getValue())
PrintFatalError("Record `" + Rec->getName() +
"' does not have a ParserMatchClass!\n");
if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
Record *MatchClass = DI->getDef();
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
return CI;
}
// No custom match class. Just use the register class.
Record *ClassRec = Rec->getValueAsDef("RegClass");
if (!ClassRec)
PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
"' has no associated register class!\n");
if (ClassInfo *CI = RegisterClassClasses[ClassRec])
return CI;
PrintFatalError(Rec->getLoc(), "register class has no class info!");
}
if (Rec->isSubClassOf("RegisterClass")) {
if (ClassInfo *CI = RegisterClassClasses[Rec])
return CI;
PrintFatalError(Rec->getLoc(), "register class has no class info!");
}
if (!Rec->isSubClassOf("Operand"))
PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
"' does not derive from class Operand!\n");
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
return CI;
PrintFatalError(Rec->getLoc(), "operand has no match class!");
}
struct LessRegisterSet {
bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
// std::set<T> defines its own compariso "operator<", but it
// performs a lexicographical comparison by T's innate comparison
// for some reason. We don't want non-deterministic pointer
// comparisons so use this instead.
return std::lexicographical_compare(LHS.begin(), LHS.end(),
RHS.begin(), RHS.end(),
LessRecordByID());
}
};
void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
const auto &Registers = Target.getRegBank().getRegisters();
auto &RegClassList = Target.getRegBank().getRegClasses();
typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
// The register sets used for matching.
RegisterSetSet RegisterSets;
// Gather the defined sets.
for (const CodeGenRegisterClass &RC : RegClassList)
RegisterSets.insert(
RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
// Add any required singleton sets.
for (Record *Rec : SingletonRegisters) {
RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
}
// Introduce derived sets where necessary (when a register does not determine
// a unique register set class), and build the mapping of registers to the set
// they should classify to.
std::map<Record*, RegisterSet> RegisterMap;
for (const CodeGenRegister &CGR : Registers) {
// Compute the intersection of all sets containing this register.
RegisterSet ContainingSet;
for (const RegisterSet &RS : RegisterSets) {
if (!RS.count(CGR.TheDef))
continue;
if (ContainingSet.empty()) {
ContainingSet = RS;
continue;
}
RegisterSet Tmp;
std::swap(Tmp, ContainingSet);
std::insert_iterator<RegisterSet> II(ContainingSet,
ContainingSet.begin());
std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
LessRecordByID());
}
if (!ContainingSet.empty()) {
RegisterSets.insert(ContainingSet);
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
}
}
// Construct the register classes.
std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
unsigned Index = 0;
for (const RegisterSet &RS : RegisterSets) {
Classes.emplace_front();
ClassInfo *CI = &Classes.front();
CI->Kind = ClassInfo::RegisterClass0 + Index;
CI->ClassName = "Reg" + utostr(Index);
CI->Name = "MCK_Reg" + utostr(Index);
CI->ValueName = "";
CI->PredicateMethod = ""; // unused
CI->RenderMethod = "addRegOperands";
CI->Registers = RS;
// FIXME: diagnostic type.
CI->DiagnosticType = "";
CI->IsOptional = false;
CI->DefaultMethod = ""; // unused
RegisterSetClasses.insert(std::make_pair(RS, CI));
++Index;
}
// Find the superclasses; we could compute only the subgroup lattice edges,
// but there isn't really a point.
for (const RegisterSet &RS : RegisterSets) {
ClassInfo *CI = RegisterSetClasses[RS];
for (const RegisterSet &RS2 : RegisterSets)
if (RS != RS2 &&
std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
LessRecordByID()))
CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
}
// Name the register classes which correspond to a user defined RegisterClass.
for (const CodeGenRegisterClass &RC : RegClassList) {
// Def will be NULL for non-user defined register classes.
Record *Def = RC.getDef();
if (!Def)
continue;
ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
RC.getOrder().end())];
if (CI->ValueName.empty()) {
CI->ClassName = RC.getName();
CI->Name = "MCK_" + RC.getName();
CI->ValueName = RC.getName();
} else
CI->ValueName = CI->ValueName + "," + RC.getName();
RegisterClassClasses.insert(std::make_pair(Def, CI));
}
// Populate the map for individual registers.
for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
ie = RegisterMap.end(); it != ie; ++it)
RegisterClasses[it->first] = RegisterSetClasses[it->second];
// Name the register classes which correspond to singleton registers.
for (Record *Rec : SingletonRegisters) {
ClassInfo *CI = RegisterClasses[Rec];
assert(CI && "Missing singleton register class info!");
if (CI->ValueName.empty()) {
CI->ClassName = Rec->getName();
CI->Name = "MCK_" + Rec->getName();
CI->ValueName = Rec->getName();
} else
CI->ValueName = CI->ValueName + "," + Rec->getName();
}
}
void AsmMatcherInfo::buildOperandClasses() {
std::vector<Record*> AsmOperands =
Records.getAllDerivedDefinitions("AsmOperandClass");
// Pre-populate AsmOperandClasses map.
for (Record *Rec : AsmOperands) {
Classes.emplace_front();
AsmOperandClasses[Rec] = &Classes.front();
}
unsigned Index = 0;
for (Record *Rec : AsmOperands) {
ClassInfo *CI = AsmOperandClasses[Rec];
CI->Kind = ClassInfo::UserClass0 + Index;
ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
for (Init *I : Supers->getValues()) {
DefInit *DI = dyn_cast<DefInit>(I);
if (!DI) {
PrintError(Rec->getLoc(), "Invalid super class reference!");
continue;
}
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
if (!SC)
PrintError(Rec->getLoc(), "Invalid super class reference!");
else
CI->SuperClasses.push_back(SC);
}
CI->ClassName = Rec->getValueAsString("Name");
CI->Name = "MCK_" + CI->ClassName;
CI->ValueName = Rec->getName();
// Get or construct the predicate method name.
Init *PMName = Rec->getValueInit("PredicateMethod");
if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
CI->PredicateMethod = SI->getValue();
} else {
assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
CI->PredicateMethod = "is" + CI->ClassName;
}
// Get or construct the render method name.
Init *RMName = Rec->getValueInit("RenderMethod");
if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
CI->RenderMethod = SI->getValue();
} else {
assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
CI->RenderMethod = "add" + CI->ClassName + "Operands";
}
// Get the parse method name or leave it as empty.
Init *PRMName = Rec->getValueInit("ParserMethod");
if (StringInit *SI = dyn_cast<StringInit>(PRMName))
CI->ParserMethod = SI->getValue();
// Get the diagnostic type or leave it as empty.
// Get the parse method name or leave it as empty.
Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
CI->DiagnosticType = SI->getValue();
Init *IsOptional = Rec->getValueInit("IsOptional");
if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
CI->IsOptional = BI->getValue();
// Get or construct the default method name.
Init *DMName = Rec->getValueInit("DefaultMethod");
if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
CI->DefaultMethod = SI->getValue();
} else {
assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
CI->DefaultMethod = "default" + CI->ClassName + "Operands";
}
++Index;
}
}
AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
CodeGenTarget &target,
RecordKeeper &records)
: Records(records), AsmParser(asmParser), Target(target) {
}
/// buildOperandMatchInfo - Build the necessary information to handle user
/// defined operand parsing methods.
void AsmMatcherInfo::buildOperandMatchInfo() {
/// Map containing a mask with all operands indices that can be found for
/// that class inside a instruction.
typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
OpClassMaskTy OpClassMask;
for (const auto &MI : Matchables) {
OpClassMask.clear();
// Keep track of all operands of this instructions which belong to the
// same class.
for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
if (Op.Class->ParserMethod.empty())
continue;
unsigned &OperandMask = OpClassMask[Op.Class];
OperandMask |= (1 << i);
}
// Generate operand match info for each mnemonic/operand class pair.
for (const auto &OCM : OpClassMask) {
unsigned OpMask = OCM.second;
ClassInfo *CI = OCM.first;
OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
OpMask));
}
}
}
void AsmMatcherInfo::buildInfo() {
// Build information about all of the AssemblerPredicates.
std::vector<Record*> AllPredicates =
Records.getAllDerivedDefinitions("Predicate");
for (Record *Pred : AllPredicates) {
// Ignore predicates that are not intended for the assembler.
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
continue;
if (Pred->getName().empty())
PrintFatalError(Pred->getLoc(), "Predicate has no name!");
SubtargetFeatures.insert(std::make_pair(
Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
DEBUG(SubtargetFeatures.find(Pred)->second.dump());
assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
}
bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
// Parse the instructions; we need to do this first so that we can gather the
// singleton register classes.
SmallPtrSet<Record*, 16> SingletonRegisters;
unsigned VariantCount = Target.getAsmParserVariantCount();
for (unsigned VC = 0; VC != VariantCount; ++VC) {
Record *AsmVariant = Target.getAsmParserVariant(VC);
std::string CommentDelimiter =
AsmVariant->getValueAsString("CommentDelimiter");
AsmVariantInfo Variant;
Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
Variant.TokenizingCharacters =
AsmVariant->getValueAsString("TokenizingCharacters");
Variant.SeparatorCharacters =
AsmVariant->getValueAsString("SeparatorCharacters");
Variant.BreakCharacters =
AsmVariant->getValueAsString("BreakCharacters");
Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
// If the tblgen -match-prefix option is specified (for tblgen hackers),
// filter the set of instructions we consider.
if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
continue;
// Ignore "codegen only" instructions.
if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
continue;
auto II = llvm::make_unique<MatchableInfo>(*CGI);
II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
// Ignore instructions which shouldn't be matched and diagnose invalid
// instruction definitions with an error.
if (!II->validate(CommentDelimiter, true))
continue;
Matchables.push_back(std::move(II));
}
// Parse all of the InstAlias definitions and stick them in the list of
// matchables.
std::vector<Record*> AllInstAliases =
Records.getAllDerivedDefinitions("InstAlias");
for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
Variant.AsmVariantNo,
Target);
// If the tblgen -match-prefix option is specified (for tblgen hackers),
// filter the set of instruction aliases we consider, based on the target
// instruction.
if (!StringRef(Alias->ResultInst->TheDef->getName())
.startswith( MatchPrefix))
continue;
auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
// Validate the alias definitions.
II->validate(CommentDelimiter, false);
Matchables.push_back(std::move(II));
}
}
// Build info for the register classes.
buildRegisterClasses(SingletonRegisters);
// Build info for the user defined assembly operand classes.
buildOperandClasses();
// Build the information about matchables, now that we have fully formed
// classes.
std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
for (auto &II : Matchables) {
// Parse the tokens after the mnemonic.
// Note: buildInstructionOperandReference may insert new AsmOperands, so
// don't precompute the loop bound.
for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
StringRef Token = Op.Token;
// Check for singleton registers.
if (Record *RegRecord = Op.SingletonReg) {
Op.Class = RegisterClasses[RegRecord];
assert(Op.Class && Op.Class->Registers.size() == 1 &&
"Unexpected class for singleton register");
continue;
}
// Check for simple tokens.
if (Token[0] != '$') {
Op.Class = getTokenClass(Token);
continue;
}
if (Token.size() > 1 && isdigit(Token[1])) {
Op.Class = getTokenClass(Token);
continue;
}
// Otherwise this is an operand reference.
StringRef OperandName;
if (Token[1] == '{')
OperandName = Token.substr(2, Token.size() - 3);
else
OperandName = Token.substr(1);
if (II->DefRec.is<const CodeGenInstruction*>())
buildInstructionOperandReference(II.get(), OperandName, i);
else
buildAliasOperandReference(II.get(), OperandName, Op);
}
if (II->DefRec.is<const CodeGenInstruction*>()) {
II->buildInstructionResultOperands();
// If the instruction has a two-operand alias, build up the
// matchable here. We'll add them in bulk at the end to avoid
// confusing this loop.
std::string Constraint =
II->TheDef->getValueAsString("TwoOperandAliasConstraint");
if (Constraint != "") {
// Start by making a copy of the original matchable.
auto AliasII = llvm::make_unique<MatchableInfo>(*II);
// Adjust it to be a two-operand alias.
AliasII->formTwoOperandAlias(Constraint);
// Add the alias to the matchables list.
NewMatchables.push_back(std::move(AliasII));
}
} else
II->buildAliasResultOperands();
}
if (!NewMatchables.empty())
Matchables.insert(Matchables.end(),
std::make_move_iterator(NewMatchables.begin()),
std::make_move_iterator(NewMatchables.end()));
// Process token alias definitions and set up the associated superclass
// information.
std::vector<Record*> AllTokenAliases =
Records.getAllDerivedDefinitions("TokenAlias");
for (Record *Rec : AllTokenAliases) {
ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
if (FromClass == ToClass)
PrintFatalError(Rec->getLoc(),
"error: Destination value identical to source value.");
FromClass->SuperClasses.push_back(ToClass);
}
// Reorder classes so that classes precede super classes.
Classes.sort();
#ifndef NDEBUG
// Verify that the table is now sorted
for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
for (auto J = I; J != E; ++J) {
assert(!(*J < *I));
assert(I == J || !J->isSubsetOf(*I));
}
}
#endif // NDEBUG
}
/// buildInstructionOperandReference - The specified operand is a reference to a
/// named operand such as $src. Resolve the Class and OperandInfo pointers.
void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo *II,
StringRef OperandName,
unsigned AsmOpIdx) {
const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
const CGIOperandList &Operands = CGI.Operands;
MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
// Map this token to an operand.
unsigned Idx;
if (!Operands.hasOperandNamed(OperandName, Idx))
PrintFatalError(II->TheDef->getLoc(),
"error: unable to find operand: '" + OperandName + "'");
// If the instruction operand has multiple suboperands, but the parser
// match class for the asm operand is still the default "ImmAsmOperand",
// then handle each suboperand separately.
if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
Record *Rec = Operands[Idx].Rec;
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
// Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
StringRef Token = Op->Token; // save this in case Op gets moved
for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
NewAsmOp.SubOpIdx = SI;
II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
}
// Replace Op with first suboperand.
Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
Op->SubOpIdx = 0;
}
}
// Set up the operand class.
Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
// If the named operand is tied, canonicalize it to the untied operand.
// For example, something like:
// (outs GPR:$dst), (ins GPR:$src)
// with an asmstring of
// "inc $src"
// we want to canonicalize to:
// "inc $dst"
// so that we know how to provide the $dst operand when filling in the result.
int OITied = -1;
if (Operands[Idx].MINumOperands == 1)
OITied = Operands[Idx].getTiedRegister();
if (OITied != -1) {
// The tied operand index is an MIOperand index, find the operand that
// contains it.
std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
OperandName = Operands[Idx.first].Name;
Op->SubOpIdx = Idx.second;
}
Op->SrcOpName = OperandName;
}
/// buildAliasOperandReference - When parsing an operand reference out of the
/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
/// operand reference is by looking it up in the result pattern definition.
void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
StringRef OperandName,
MatchableInfo::AsmOperand &Op) {
const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
// Set up the operand class.
for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
if (CGA.ResultOperands[i].isRecord() &&
CGA.ResultOperands[i].getName() == OperandName) {
// It's safe to go with the first one we find, because CodeGenInstAlias
// validates that all operands with the same name have the same record.
Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
// Use the match class from the Alias definition, not the
// destination instruction, as we may have an immediate that's
// being munged by the match class.
Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
Op.SubOpIdx);
Op.SrcOpName = OperandName;
return;
}
PrintFatalError(II->TheDef->getLoc(),
"error: unable to find operand: '" + OperandName + "'");
}
void MatchableInfo::buildInstructionResultOperands() {
const CodeGenInstruction *ResultInst = getResultInst();
// Loop over all operands of the result instruction, determining how to
// populate them.
for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
// If this is a tied operand, just copy from the previously handled operand.
int TiedOp = -1;
if (OpInfo.MINumOperands == 1)
TiedOp = OpInfo.getTiedRegister();
if (TiedOp != -1) {
ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
continue;
}
// Find out what operand from the asmparser this MCInst operand comes from.
int SrcOperand = findAsmOperandNamed(OpInfo.Name);
if (OpInfo.Name.empty() || SrcOperand == -1) {
// This may happen for operands that are tied to a suboperand of a
// complex operand. Simply use a dummy value here; nobody should
// use this operand slot.
// FIXME: The long term goal is for the MCOperand list to not contain
// tied operands at all.
ResOperands.push_back(ResOperand::getImmOp(0));
continue;
}
// Check if the one AsmOperand populates the entire operand.
unsigned NumOperands = OpInfo.MINumOperands;
if (AsmOperands[SrcOperand].SubOpIdx == -1) {
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
continue;
}
// Add a separate ResOperand for each suboperand.
for (unsigned AI = 0; AI < NumOperands; ++AI) {
assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
"unexpected AsmOperands for suboperands");
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
}
}
}
void MatchableInfo::buildAliasResultOperands() {
const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
const CodeGenInstruction *ResultInst = getResultInst();
// Loop over all operands of the result instruction, determining how to
// populate them.
unsigned AliasOpNo = 0;
unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
// If this is a tied operand, just copy from the previously handled operand.
int TiedOp = -1;
if (OpInfo->MINumOperands == 1)
TiedOp = OpInfo->getTiedRegister();
if (TiedOp != -1) {
ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
continue;
}
// Handle all the suboperands for this operand.
const std::string &OpName = OpInfo->Name;
for ( ; AliasOpNo < LastOpNo &&
CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
// Find out what operand from the asmparser that this MCInst operand
// comes from.
switch (CGA.ResultOperands[AliasOpNo].Kind) {
case CodeGenInstAlias::ResultOperand::K_Record: {
StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
int SrcOperand = findAsmOperand(Name, SubIdx);
if (SrcOperand == -1)
PrintFatalError(TheDef->getLoc(), "Instruction '" +
TheDef->getName() + "' has operand '" + OpName +
"' that doesn't appear in asm string!");
unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
NumOperands));
break;
}
case CodeGenInstAlias::ResultOperand::K_Imm: {
int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
ResOperands.push_back(ResOperand::getImmOp(ImmVal));
break;
}
case CodeGenInstAlias::ResultOperand::K_Reg: {
Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
ResOperands.push_back(ResOperand::getRegOp(Reg));
break;
}
}
}
}
}
static unsigned getConverterOperandID(const std::string &Name,
SmallSetVector<std::string, 16> &Table,
bool &IsNew) {
IsNew = Table.insert(Name);
unsigned ID = IsNew ? Table.size() - 1 :
std::find(Table.begin(), Table.end(), Name) - Table.begin();
assert(ID < Table.size());
return ID;
}
static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
std::vector<std::unique_ptr<MatchableInfo>> &Infos,
bool HasMnemonicFirst, bool HasOptionalOperands,
raw_ostream &OS) {
SmallSetVector<std::string, 16> OperandConversionKinds;
SmallSetVector<std::string, 16> InstructionConversionKinds;
std::vector<std::vector<uint8_t> > ConversionTable;
size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
// TargetOperandClass - This is the target's operand class, like X86Operand.
std::string TargetOperandClass = Target.getName() + "Operand";
// Write the convert function to a separate stream, so we can drop it after
// the enum. We'll build up the conversion handlers for the individual
// operand types opportunistically as we encounter them.
std::string ConvertFnBody;
raw_string_ostream CvtOS(ConvertFnBody);
// Start the unified conversion function.
if (HasOptionalOperands) {
CvtOS << "void " << Target.getName() << ClassName << "::\n"
<< "convertToMCInst(unsigned Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const OperandVector &Operands,\n"
<< " const SmallBitVector &OptionalOperandsMask) {\n";
} else {
CvtOS << "void " << Target.getName() << ClassName << "::\n"
<< "convertToMCInst(unsigned Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const OperandVector &Operands) {\n";
}
CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
if (HasOptionalOperands) {
CvtOS << " unsigned NumDefaults = 0;\n";
}
CvtOS << " unsigned OpIdx;\n";
CvtOS << " Inst.setOpcode(Opcode);\n";
CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n";
if (HasOptionalOperands) {
CvtOS << " OpIdx = *(p + 1) - NumDefaults;\n";
} else {
CvtOS << " OpIdx = *(p + 1);\n";
}
CvtOS << " switch (*p) {\n";
CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
CvtOS << " case CVT_Reg:\n";
CvtOS << " static_cast<" << TargetOperandClass
<< "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
CvtOS << " break;\n";
CvtOS << " case CVT_Tied:\n";
CvtOS << " Inst.addOperand(Inst.getOperand(OpIdx));\n";
CvtOS << " break;\n";
std::string OperandFnBody;
raw_string_ostream OpOS(OperandFnBody);
// Start the operand number lookup function.
OpOS << "void " << Target.getName() << ClassName << "::\n"
<< "convertToMapAndConstraints(unsigned Kind,\n";
OpOS.indent(27);
OpOS << "const OperandVector &Operands) {\n"
<< " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
<< " unsigned NumMCOperands = 0;\n"
<< " const uint8_t *Converter = ConversionTable[Kind];\n"
<< " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
<< " switch (*p) {\n"
<< " default: llvm_unreachable(\"invalid conversion entry!\");\n"
<< " case CVT_Reg:\n"
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
<< " Operands[*(p + 1)]->setConstraint(\"r\");\n"
<< " ++NumMCOperands;\n"
<< " break;\n"
<< " case CVT_Tied:\n"
<< " ++NumMCOperands;\n"
<< " break;\n";
// Pre-populate the operand conversion kinds with the standard always
// available entries.
OperandConversionKinds.insert("CVT_Done");
OperandConversionKinds.insert("CVT_Reg");
OperandConversionKinds.insert("CVT_Tied");
enum { CVT_Done, CVT_Reg, CVT_Tied };
for (auto &II : Infos) {
// Check if we have a custom match function.
std::string AsmMatchConverter =
II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
std::string Signature = "ConvertCustom_" + AsmMatchConverter;
II->ConversionFnKind = Signature;
// Check if we have already generated this signature.
if (!InstructionConversionKinds.insert(Signature))
continue;
// Remember this converter for the kind enum.
unsigned KindID = OperandConversionKinds.size();
OperandConversionKinds.insert("CVT_" +
getEnumNameForToken(AsmMatchConverter));
// Add the converter row for this instruction.
ConversionTable.emplace_back();
ConversionTable.back().push_back(KindID);
ConversionTable.back().push_back(CVT_Done);
// Add the handler to the conversion driver function.
CvtOS << " case CVT_"
<< getEnumNameForToken(AsmMatchConverter) << ":\n"
<< " " << AsmMatchConverter << "(Inst, Operands);\n"
<< " break;\n";
// FIXME: Handle the operand number lookup for custom match functions.
continue;
}
// Build the conversion function signature.
std::string Signature = "Convert";
std::vector<uint8_t> ConversionRow;
// Compute the convert enum and the case body.
MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
// Generate code to populate each result operand.
switch (OpInfo.Kind) {
case MatchableInfo::ResOperand::RenderAsmOperand: {
// This comes from something we parsed.
const MatchableInfo::AsmOperand &Op =
II->AsmOperands[OpInfo.AsmOperandNum];
// Registers are always converted the same, don't duplicate the
// conversion function based on them.
Signature += "__";
std::string Class;
Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
Signature += Class;
Signature += utostr(OpInfo.MINumOperands);
Signature += "_" + itostr(OpInfo.AsmOperandNum);
// Add the conversion kind, if necessary, and get the associated ID
// the index of its entry in the vector).
std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
Op.Class->RenderMethod);
if (Op.Class->IsOptional) {
// For optional operands we must also care about DefaultMethod
assert(HasOptionalOperands);
Name += "_" + Op.Class->DefaultMethod;
}
Name = getEnumNameForToken(Name);
bool IsNewConverter = false;
unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
IsNewConverter);
// Add the operand entry to the instruction kind conversion row.
ConversionRow.push_back(ID);
ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
if (!IsNewConverter)
break;
// This is a new operand kind. Add a handler for it to the
// converter driver.
CvtOS << " case " << Name << ":\n";
if (Op.Class->IsOptional) {
// If optional operand is not present in actual instruction then we
// should call its DefaultMethod before RenderMethod
assert(HasOptionalOperands);
CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
<< " " << Op.Class->DefaultMethod << "()"
<< "->" << Op.Class->RenderMethod << "(Inst, "
<< OpInfo.MINumOperands << ");\n"
<< " ++NumDefaults;\n"
<< " } else {\n"
<< " static_cast<" << TargetOperandClass
<< "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
<< "(Inst, " << OpInfo.MINumOperands << ");\n"
<< " }\n";
} else {
CvtOS << " static_cast<" << TargetOperandClass
<< "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
<< "(Inst, " << OpInfo.MINumOperands << ");\n";
}
CvtOS << " break;\n";
// Add a handler for the operand number lookup.
OpOS << " case " << Name << ":\n"
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
if (Op.Class->isRegisterClass())
OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
else
OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
<< " break;\n";
break;
}
case MatchableInfo::ResOperand::TiedOperand: {
// If this operand is tied to a previous one, just copy the MCInst
// operand from the earlier one.We can only tie single MCOperand values.
assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
unsigned TiedOp = OpInfo.TiedOperandNum;
assert(i > TiedOp && "Tied operand precedes its target!");
Signature += "__Tie" + utostr(TiedOp);
ConversionRow.push_back(CVT_Tied);
ConversionRow.push_back(TiedOp);
break;
}
case MatchableInfo::ResOperand::ImmOperand: {
int64_t Val = OpInfo.ImmVal;
std::string Ty = "imm_" + itostr(Val);
Ty = getEnumNameForToken(Ty);
Signature += "__" + Ty;
std::string Name = "CVT_" + Ty;
bool IsNewConverter = false;
unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
IsNewConverter);
// Add the operand entry to the instruction kind conversion row.
ConversionRow.push_back(ID);
ConversionRow.push_back(0);
if (!IsNewConverter)
break;
CvtOS << " case " << Name << ":\n"
<< " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
<< " break;\n";
OpOS << " case " << Name << ":\n"
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
<< " Operands[*(p + 1)]->setConstraint(\"\");\n"
<< " ++NumMCOperands;\n"
<< " break;\n";
break;
}
case MatchableInfo::ResOperand::RegOperand: {
std::string Reg, Name;
if (!OpInfo.Register) {
Name = "reg0";
Reg = "0";
} else {
Reg = getQualifiedName(OpInfo.Register);
Name = "reg" + OpInfo.Register->getName();
}
Signature += "__" + Name;
Name = "CVT_" + Name;
bool IsNewConverter = false;
unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
IsNewConverter);
// Add the operand entry to the instruction kind conversion row.
ConversionRow.push_back(ID);
ConversionRow.push_back(0);
if (!IsNewConverter)
break;
CvtOS << " case " << Name << ":\n"
<< " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
<< " break;\n";
OpOS << " case " << Name << ":\n"
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
<< " Operands[*(p + 1)]->setConstraint(\"m\");\n"
<< " ++NumMCOperands;\n"
<< " break;\n";
}
}
}
// If there were no operands, add to the signature to that effect
if (Signature == "Convert")
Signature += "_NoOperands";
II->ConversionFnKind = Signature;
// Save the signature. If we already have it, don't add a new row
// to the table.
if (!InstructionConversionKinds.insert(Signature))
continue;
// Add the row to the table.
ConversionTable.push_back(std::move(ConversionRow));
}
// Finish up the converter driver function.
CvtOS << " }\n }\n}\n\n";
// Finish up the operand number lookup function.
OpOS << " }\n }\n}\n\n";
OS << "namespace {\n";
// Output the operand conversion kind enum.
OS << "enum OperatorConversionKind {\n";
for (const std::string &Converter : OperandConversionKinds)
OS << " " << Converter << ",\n";
OS << " CVT_NUM_CONVERTERS\n";
OS << "};\n\n";
// Output the instruction conversion kind enum.
OS << "enum InstructionConversionKind {\n";
for (const std::string &Signature : InstructionConversionKinds)
OS << " " << Signature << ",\n";
OS << " CVT_NUM_SIGNATURES\n";
OS << "};\n\n";
OS << "} // end anonymous namespace\n\n";
// Output the conversion table.
OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
<< MaxRowLength << "] = {\n";
for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
OS << " // " << InstructionConversionKinds[Row] << "\n";
OS << " { ";
for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
<< (unsigned)(ConversionTable[Row][i + 1]) << ", ";
OS << "CVT_Done },\n";
}
OS << "};\n\n";
// Spit out the conversion driver function.
OS << CvtOS.str();
// Spit out the operand number lookup function.
OS << OpOS.str();
}
/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void emitMatchClassEnumeration(CodeGenTarget &Target,
std::forward_list<ClassInfo> &Infos,
raw_ostream &OS) {
OS << "namespace {\n\n";
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
<< "/// instruction matching.\n";
OS << "enum MatchClassKind {\n";
OS << " InvalidMatchClass = 0,\n";
OS << " OptionalMatchClass = 1,\n";
for (const auto &CI : Infos) {
OS << " " << CI.Name << ", // ";
if (CI.Kind == ClassInfo::Token) {
OS << "'" << CI.ValueName << "'\n";
} else if (CI.isRegisterClass()) {
if (!CI.ValueName.empty())
OS << "register class '" << CI.ValueName << "'\n";
else
OS << "derived register class\n";
} else {
OS << "user defined class '" << CI.ValueName << "'\n";
}
}
OS << " NumMatchClassKinds\n";
OS << "};\n\n";
OS << "}\n\n";
}
/// emitValidateOperandClass - Emit the function to validate an operand class.
static void emitValidateOperandClass(AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
<< "MatchClassKind Kind) {\n";
OS << " " << Info.Target.getName() << "Operand &Operand = ("
<< Info.Target.getName() << "Operand&)GOp;\n";
// The InvalidMatchClass is not to match any operand.
OS << " if (Kind == InvalidMatchClass)\n";
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
// Check for Token operands first.
// FIXME: Use a more specific diagnostic type.
OS << " if (Operand.isToken())\n";
OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
<< " MCTargetAsmParser::Match_Success :\n"
<< " MCTargetAsmParser::Match_InvalidOperand;\n\n";
// Check the user classes. We don't care what order since we're only
// actually matching against one of them.
OS << " switch (Kind) {\n"
" default: break;\n";
for (const auto &CI : Info.Classes) {
if (!CI.isUserClass())
continue;
OS << " // '" << CI.ClassName << "' class\n";
OS << " case " << CI.Name << ":\n";
OS << " if (Operand." << CI.PredicateMethod << "())\n";
OS << " return MCTargetAsmParser::Match_Success;\n";
if (!CI.DiagnosticType.empty())
OS << " return " << Info.Target.getName() << "AsmParser::Match_"
<< CI.DiagnosticType << ";\n";
else
OS << " break;\n";
}
OS << " } // end switch (Kind)\n\n";
// Check for register operands, including sub-classes.
OS << " if (Operand.isReg()) {\n";
OS << " MatchClassKind OpKind;\n";
OS << " switch (Operand.getReg()) {\n";
OS << " default: OpKind = InvalidMatchClass; break;\n";
for (const auto &RC : Info.RegisterClasses)
OS << " case " << Info.Target.getName() << "::"
<< RC.first->getName() << ": OpKind = " << RC.second->Name
<< "; break;\n";
OS << " }\n";
OS << " return isSubclass(OpKind, Kind) ? "
<< "MCTargetAsmParser::Match_Success :\n "
<< " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n";
// Generic fallthrough match failure case for operands that don't have
// specialized diagnostic types.
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
OS << "}\n\n";
}
/// emitIsSubclass - Emit the subclass predicate function.
static void emitIsSubclass(CodeGenTarget &Target,
std::forward_list<ClassInfo> &Infos,
raw_ostream &OS) {
OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
OS << " if (A == B)\n";
OS << " return true;\n\n";
bool EmittedSwitch = false;
for (const auto &A : Infos) {
std::vector<StringRef> SuperClasses;
if (A.IsOptional)
SuperClasses.push_back("OptionalMatchClass");
for (const auto &B : Infos) {
if (&A != &B && A.isSubsetOf(B))
SuperClasses.push_back(B.Name);
}
if (SuperClasses.empty())
continue;
// If this is the first SuperClass, emit the switch header.
if (!EmittedSwitch) {
OS << " switch (A) {\n";
OS << " default:\n";
OS << " return false;\n";
EmittedSwitch = true;
}
OS << "\n case " << A.Name << ":\n";
if (SuperClasses.size() == 1) {
OS << " return B == " << SuperClasses.back() << ";\n";
continue;
}
if (!SuperClasses.empty()) {
OS << " switch (B) {\n";
OS << " default: return false;\n";
for (StringRef SC : SuperClasses)
OS << " case " << SC << ": return true;\n";
OS << " }\n";
} else {
// No case statement to emit
OS << " return false;\n";
}
}
// If there were case statements emitted into the string stream write the
// default.
if (EmittedSwitch)
OS << " }\n";
else
OS << " return false;\n";
OS << "}\n\n";
}
/// emitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void emitMatchTokenString(CodeGenTarget &Target,
std::forward_list<ClassInfo> &Infos,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
for (const auto &CI : Infos) {
if (CI.Kind == ClassInfo::Token)
Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
}
OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return InvalidMatchClass;\n";
OS << "}\n\n";
}
/// emitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
const auto &Regs = Target.getRegBank().getRegisters();
for (const CodeGenRegister &Reg : Regs) {
if (Reg.TheDef->getValueAsString("AsmName").empty())
continue;
Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
"return " + utostr(Reg.EnumValue) + ";");
}
OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return 0;\n";
OS << "}\n\n";
}
/// Emit the function to match a string to the target
/// specific register enum.
static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringMatcher::StringPair> Matches;
const auto &Regs = Target.getRegBank().getRegisters();
for (const CodeGenRegister &Reg : Regs) {
auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
for (auto AltName : AltNames) {
AltName = StringRef(AltName).trim();
// don't handle empty alternative names
if (AltName.empty())
continue;
Matches.emplace_back(AltName,
"return " + utostr(Reg.EnumValue) + ";");
}
}
OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
StringMatcher("Name", Matches, OS).Emit();
OS << " return 0;\n";
OS << "}\n\n";
}
static const char *getMinimalTypeForRange(uint64_t Range) {
assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
if (Range > 0xFFFFFFFFULL)
return "uint64_t";
if (Range > 0xFFFF)
return "uint32_t";
if (Range > 0xFF)
return "uint16_t";
return "uint8_t";
}
static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
uint64_t MaxIndex = Info.SubtargetFeatures.size();
if (MaxIndex > 0)
MaxIndex--;
return getMinimalTypeForRange(1ULL << MaxIndex);
}
/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
/// definitions.
static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "// Flags for subtarget features that participate in "
<< "instruction matching.\n";
OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
<< " {\n";
for (const auto &SF : Info.SubtargetFeatures) {
const SubtargetFeatureInfo &SFI = SF.second;
OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
}
OS << " Feature_None = 0\n";
OS << "};\n\n";
}
/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
// Get the set of diagnostic types from all of the operand classes.
std::set<StringRef> Types;
for (const auto &OpClassEntry : Info.AsmOperandClasses) {
if (!OpClassEntry.second->DiagnosticType.empty())
Types.insert(OpClassEntry.second->DiagnosticType);
}
if (Types.empty()) return;
// Now emit the enum entries.
for (StringRef Type : Types)
OS << " Match_" << Type << ",\n";
OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
}
/// emitGetSubtargetFeatureName - Emit the helper function to get the
/// user-level name for a subtarget feature.
static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
OS << "// User-level names for subtarget features that participate in\n"
<< "// instruction matching.\n"
<< "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
if (!Info.SubtargetFeatures.empty()) {
OS << " switch(Val) {\n";
for (const auto &SF : Info.SubtargetFeatures) {
const SubtargetFeatureInfo &SFI = SF.second;
// FIXME: Totally just a placeholder name to get the algorithm working.
OS << " case " << SFI.getEnumName() << ": return \""
<< SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
}
OS << " default: return \"(unknown)\";\n";
OS << " }\n";
} else {
// Nothing to emit, so skip the switch
OS << " return \"(unknown)\";\n";
}
OS << "}\n\n";
}
/// emitComputeAvailableFeatures - Emit the function to compute the list of
/// available features given a subtarget.
static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
raw_ostream &OS) {
std::string ClassName =
Info.AsmParser->getValueAsString("AsmParserClassName");
OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
<< "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n";
OS << " uint64_t Features = 0;\n";
for (const auto &SF : Info.SubtargetFeatures) {
const SubtargetFeatureInfo &SFI = SF.second;
OS << " if (";
std::string CondStorage =
SFI.TheDef->getValueAsString("AssemblerCondString");
StringRef Conds = CondStorage;
std::pair<StringRef,StringRef> Comma = Conds.split(',');
bool First = true;
do {
if (!First)
OS << " && ";
bool Neg = false;
StringRef Cond = Comma.first;
if (Cond[0] == '!') {
Neg = true;
Cond = Cond.substr(1);
}
OS << "(";
if (Neg)
OS << "!";
OS << "FB[" << Info.Target.getName() << "::" << Cond << "])";
if (Comma.second.empty())
break;
First = false;
Comma = Comma.second.split(',');
} while (true);
OS << ")\n";
OS << " Features |= " << SFI.getEnumName() << ";\n";
}
OS << " return Features;\n";
OS << "}\n\n";
}
static std::string GetAliasRequiredFeatures(Record *R,
const AsmMatcherInfo &Info) {
std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
std::string Result;
unsigned NumFeatures = 0;
for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
if (!F)
PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
"' is not marked as an AssemblerPredicate!");
if (NumFeatures)
Result += '|';
Result += F->getEnumName();
++NumFeatures;
}
if (NumFeatures > 1)
Result = '(' + Result + ')';
return Result;
}
static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
std::vector<Record*> &Aliases,
unsigned Indent = 0,
StringRef AsmParserVariantName = StringRef()){
// Keep track of all the aliases from a mnemonic. Use an std::map so that the
// iteration order of the map is stable.
std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
for (Record *R : Aliases) {
// FIXME: Allow AssemblerVariantName to be a comma separated list.
std::string AsmVariantName = R->getValueAsString("AsmVariantName");
if (AsmVariantName != AsmParserVariantName)
continue;
AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
}
if (AliasesFromMnemonic.empty())
return;
// Process each alias a "from" mnemonic at a time, building the code executed
// by the string remapper.
std::vector<StringMatcher::StringPair> Cases;
for (const auto &AliasEntry : AliasesFromMnemonic) {
const std::vector<Record*> &ToVec = AliasEntry.second;
// Loop through each alias and emit code that handles each case. If there
// are two instructions without predicates, emit an error. If there is one,
// emit it last.
std::string MatchCode;
int AliasWithNoPredicate = -1;
for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
Record *R = ToVec[i];
std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
// If this unconditionally matches, remember it for later and diagnose
// duplicates.
if (FeatureMask.empty()) {
if (AliasWithNoPredicate != -1) {
// We can't have two aliases from the same mnemonic with no predicate.
PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
"two MnemonicAliases with the same 'from' mnemonic!");
PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
}
AliasWithNoPredicate = i;
continue;
}
if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
if (!MatchCode.empty())
MatchCode += "else ";
MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
}
if (AliasWithNoPredicate != -1) {
Record *R = ToVec[AliasWithNoPredicate];
if (!MatchCode.empty())
MatchCode += "else\n ";
MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
}
MatchCode += "return;";
Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
}
StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
}
/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
/// emit a function for them and return true, otherwise return false.
static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
CodeGenTarget &Target) {
// Ignore aliases when match-prefix is set.
if (!MatchPrefix.empty())
return false;
std::vector<Record*> Aliases =
Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
if (Aliases.empty()) return false;
OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
"uint64_t Features, unsigned VariantID) {\n";
OS << " switch (VariantID) {\n";
unsigned VariantCount = Target.getAsmParserVariantCount();
for (unsigned VC = 0; VC != VariantCount; ++VC) {
Record *AsmVariant = Target.getAsmParserVariant(VC);
int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
OS << " case " << AsmParserVariantNo << ":\n";
emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
AsmParserVariantName);
OS << " break;\n";
}
OS << " }\n";
// Emit aliases that apply to all variants.
emitMnemonicAliasVariant(OS, Info, Aliases);
OS << "}\n\n";
return true;
}
static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
const AsmMatcherInfo &Info, StringRef ClassName,
StringToOffsetTable &StringTable,
unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
unsigned MaxMask = 0;
for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
MaxMask |= OMI.OperandMask;
}
// Emit the static custom operand parsing table;
OS << "namespace {\n";
OS << " struct OperandMatchEntry {\n";
OS << " " << getMinimalRequiredFeaturesType(Info)
<< " RequiredFeatures;\n";
OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
<< " Mnemonic;\n";
OS << " " << getMinimalTypeForRange(std::distance(
Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
OS << " " << getMinimalTypeForRange(MaxMask)
<< " OperandMask;\n\n";
OS << " StringRef getMnemonic() const {\n";
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
OS << " MnemonicTable[Mnemonic]);\n";
OS << " }\n";
OS << " };\n\n";
OS << " // Predicate for searching for an opcode.\n";
OS << " struct LessOpcodeOperand {\n";
OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
OS << " return LHS.getMnemonic() < RHS;\n";
OS << " }\n";
OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
OS << " return LHS < RHS.getMnemonic();\n";
OS << " }\n";
OS << " bool operator()(const OperandMatchEntry &LHS,";
OS << " const OperandMatchEntry &RHS) {\n";
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
OS << " }\n";
OS << " };\n";
OS << "} // end anonymous namespace.\n\n";
OS << "static const OperandMatchEntry OperandMatchTable["
<< Info.OperandMatchInfo.size() << "] = {\n";
OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
const MatchableInfo &II = *OMI.MI;
OS << " { ";
// Write the required features mask.
if (!II.RequiredFeatures.empty()) {
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
if (i) OS << "|";
OS << II.RequiredFeatures[i]->getEnumName();
}
} else
OS << "0";
// Store a pascal-style length byte in the mnemonic.
std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
<< " /* " << II.Mnemonic << " */, ";
OS << OMI.CI->Name;
OS << ", " << OMI.OperandMask;
OS << " /* ";
bool printComma = false;
for (int i = 0, e = 31; i !=e; ++i)
if (OMI.OperandMask & (1 << i)) {
if (printComma)
OS << ", ";
OS << i;
printComma = true;
}
OS << " */";
OS << " },\n";
}
OS << "};\n\n";
// Emit the operand class switch to call the correct custom parser for
// the found operand class.
OS << Target.getName() << ClassName << "::OperandMatchResultTy "
<< Target.getName() << ClassName << "::\n"
<< "tryCustomParseOperand(OperandVector"
<< " &Operands,\n unsigned MCK) {\n\n"
<< " switch(MCK) {\n";
for (const auto &CI : Info.Classes) {
if (CI.ParserMethod.empty())
continue;
OS << " case " << CI.Name << ":\n"
<< " return " << CI.ParserMethod << "(Operands);\n";
}
OS << " default:\n";
OS << " return MatchOperand_NoMatch;\n";
OS << " }\n";
OS << " return MatchOperand_NoMatch;\n";
OS << "}\n\n";
// Emit the static custom operand parser. This code is very similar with
// the other matcher. Also use MatchResultTy here just in case we go for
// a better error handling.
OS << Target.getName() << ClassName << "::OperandMatchResultTy "
<< Target.getName() << ClassName << "::\n"
<< "MatchOperandParserImpl(OperandVector"
<< " &Operands,\n StringRef Mnemonic) {\n";
// Emit code to get the available features.
OS << " // Get the current feature set.\n";
OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
OS << " // Get the next operand index.\n";
OS << " unsigned NextOpNum = Operands.size()"
<< (HasMnemonicFirst ? " - 1" : "") << ";\n";
// Emit code to search the table.
OS << " // Search the table.\n";
if (HasMnemonicFirst) {
OS << " auto MnemonicRange =\n";
OS << " std::equal_range(std::begin(OperandMatchTable), "
"std::end(OperandMatchTable),\n";
OS << " Mnemonic, LessOpcodeOperand());\n\n";
} else {
OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
" std::end(OperandMatchTable));\n";
OS << " if (!Mnemonic.empty())\n";
OS << " MnemonicRange =\n";
OS << " std::equal_range(std::begin(OperandMatchTable), "
"std::end(OperandMatchTable),\n";
OS << " Mnemonic, LessOpcodeOperand());\n\n";
}
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
OS << " return MatchOperand_NoMatch;\n\n";
OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
<< " *ie = MnemonicRange.second; it != ie; ++it) {\n";
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
OS << " assert(Mnemonic == it->getMnemonic());\n\n";
// Emit check that the required features are available.
OS << " // check if the available features match\n";
OS << " if ((AvailableFeatures & it->RequiredFeatures) "
<< "!= it->RequiredFeatures) {\n";
OS << " continue;\n";
OS << " }\n\n";
// Emit check to ensure the operand number matches.
OS << " // check if the operand in question has a custom parser.\n";
OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
OS << " continue;\n\n";
// Emit call to the custom parser method
OS << " // call custom parse method to handle the operand\n";
OS << " OperandMatchResultTy Result = ";
OS << "tryCustomParseOperand(Operands, it->Class);\n";
OS << " if (Result != MatchOperand_NoMatch)\n";
OS << " return Result;\n";
OS << " }\n\n";
OS << " // Okay, we had no match.\n";
OS << " return MatchOperand_NoMatch;\n";
OS << "}\n\n";
}
void AsmMatcherEmitter::run(raw_ostream &OS) {
CodeGenTarget Target(Records);
Record *AsmParser = Target.getAsmParser();
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
// Compute the information on the instructions to match.
AsmMatcherInfo Info(AsmParser, Target, Records);
Info.buildInfo();
// Sort the instruction table using the partial order on classes. We use
// stable_sort to ensure that ambiguous instructions are still
// deterministically ordered.
std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
[](const std::unique_ptr<MatchableInfo> &a,
const std::unique_ptr<MatchableInfo> &b){
return *a < *b;});
#ifndef NDEBUG
// Verify that the table is now sorted
for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
++I) {
for (auto J = I; J != E; ++J) {
assert(!(**J < **I));
}
}
#endif // NDEBUG
DEBUG_WITH_TYPE("instruction_info", {
for (const auto &MI : Info.Matchables)
MI->dump();
});
// Check for ambiguous matchables.
DEBUG_WITH_TYPE("ambiguous_instrs", {
unsigned NumAmbiguous = 0;
for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
++I) {
for (auto J = std::next(I); J != E; ++J) {
const MatchableInfo &A = **I;
const MatchableInfo &B = **J;
if (A.couldMatchAmbiguouslyWith(B)) {
errs() << "warning: ambiguous matchables:\n";
A.dump();
errs() << "\nis incomparable with:\n";
B.dump();
errs() << "\n\n";
++NumAmbiguous;
}
}
}
if (NumAmbiguous)
errs() << "warning: " << NumAmbiguous
<< " ambiguous matchables!\n";
});
// Compute the information on the custom operand parsing.
Info.buildOperandMatchInfo();
bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
bool HasOptionalOperands = Info.hasOptionalOperands();
// Write the output.
// Information for the class declaration.
OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
OS << "#undef GET_ASSEMBLER_HEADER\n";
OS << " // This should be included into the middle of the declaration of\n";
OS << " // your subclasses implementation of MCTargetAsmParser.\n";
OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
if (HasOptionalOperands) {
OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const OperandVector &Operands,\n"
<< " const SmallBitVector &OptionalOperandsMask);\n";
} else {
OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const OperandVector &Operands);\n";
}
OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
OS << " const OperandVector &Operands) override;\n";
if (HasMnemonicFirst)
OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n";
OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
<< " MCInst &Inst,\n"
<< " uint64_t &ErrorInfo,"
<< " bool matchingInlineAsm,\n"
<< " unsigned VariantID = 0);\n";
if (!Info.OperandMatchInfo.empty()) {
OS << "\n enum OperandMatchResultTy {\n";
OS << " MatchOperand_Success, // operand matched successfully\n";
OS << " MatchOperand_NoMatch, // operand did not match\n";
OS << " MatchOperand_ParseFail // operand matched but had errors\n";
OS << " };\n";
OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
OS << " OperandVector &Operands,\n";
OS << " StringRef Mnemonic);\n";
OS << " OperandMatchResultTy tryCustomParseOperand(\n";
OS << " OperandVector &Operands,\n";
OS << " unsigned MCK);\n\n";
}
OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
// Emit the operand match diagnostic enum names.
OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
emitOperandDiagnosticTypes(Info, OS);
OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
OS << "\n#ifdef GET_REGISTER_MATCHER\n";
OS << "#undef GET_REGISTER_MATCHER\n\n";
// Emit the subtarget feature enumeration.
emitSubtargetFeatureFlagEnumeration(Info, OS);
// Emit the function to match a register name to number.
// This should be omitted for Mips target
if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
emitMatchRegisterName(Target, AsmParser, OS);
if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
emitMatchRegisterAltName(Target, AsmParser, OS);
OS << "#endif // GET_REGISTER_MATCHER\n\n";
OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
// Generate the helper function to get the names for subtarget features.
emitGetSubtargetFeatureName(Info, OS);
OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
// Generate the function that remaps for mnemonic aliases.
bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
// Generate the convertToMCInst function to convert operands into an MCInst.
// Also, generate the convertToMapAndConstraints function for MS-style inline
// assembly. The latter doesn't actually generate a MCInst.
emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
HasOptionalOperands, OS);
// Emit the enumeration for classes which participate in matching.
emitMatchClassEnumeration(Target, Info.Classes, OS);
// Emit the routine to match token strings to their match class.
emitMatchTokenString(Target, Info.Classes, OS);
// Emit the subclass predicate routine.
emitIsSubclass(Target, Info.Classes, OS);
// Emit the routine to validate an operand against a match class.
emitValidateOperandClass(Info, OS);
// Emit the available features compute function.
emitComputeAvailableFeatures(Info, OS);
StringToOffsetTable StringTable;
size_t MaxNumOperands = 0;
unsigned MaxMnemonicIndex = 0;
bool HasDeprecation = false;
for (const auto &MI : Info.Matchables) {
MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
HasDeprecation |= MI->HasDeprecation;
// Store a pascal-style length byte in the mnemonic.
std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
MaxMnemonicIndex = std::max(MaxMnemonicIndex,
StringTable.GetOrAddStringOffset(LenMnemonic, false));
}
OS << "static const char *const MnemonicTable =\n";
StringTable.EmitString(OS);
OS << ";\n\n";
// Emit the static match table; unused classes get initalized to 0 which is
// guaranteed to be InvalidMatchClass.
//
// FIXME: We can reduce the size of this table very easily. First, we change
// it so that store the kinds in separate bit-fields for each index, which
// only needs to be the max width used for classes at that index (we also need
// to reject based on this during classification). If we then make sure to
// order the match kinds appropriately (putting mnemonics last), then we
// should only end up using a few bits for each class, especially the ones
// following the mnemonic.
OS << "namespace {\n";
OS << " struct MatchEntry {\n";
OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
<< " Mnemonic;\n";
OS << " uint16_t Opcode;\n";
OS << " " << getMinimalTypeForRange(Info.Matchables.size())
<< " ConvertFn;\n";
OS << " " << getMinimalRequiredFeaturesType(Info)
<< " RequiredFeatures;\n";
OS << " " << getMinimalTypeForRange(
std::distance(Info.Classes.begin(), Info.Classes.end()))
<< " Classes[" << MaxNumOperands << "];\n";
OS << " StringRef getMnemonic() const {\n";
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
OS << " MnemonicTable[Mnemonic]);\n";
OS << " }\n";
OS << " };\n\n";
OS << " // Predicate for searching for an opcode.\n";
OS << " struct LessOpcode {\n";
OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
OS << " return LHS.getMnemonic() < RHS;\n";
OS << " }\n";
OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
OS << " return LHS < RHS.getMnemonic();\n";
OS << " }\n";
OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
OS << " }\n";
OS << " };\n";
OS << "} // end anonymous namespace.\n\n";
unsigned VariantCount = Target.getAsmParserVariantCount();
for (unsigned VC = 0; VC != VariantCount; ++VC) {
Record *AsmVariant = Target.getAsmParserVariant(VC);
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
for (const auto &MI : Info.Matchables) {
if (MI->AsmVariantID != AsmVariantNo)
continue;
// Store a pascal-style length byte in the mnemonic.
std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
<< " /* " << MI->Mnemonic << " */, "
<< Target.getName() << "::"
<< MI->getResultInst()->TheDef->getName() << ", "
<< MI->ConversionFnKind << ", ";
// Write the required features mask.
if (!MI->RequiredFeatures.empty()) {
for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
if (i) OS << "|";
OS << MI->RequiredFeatures[i]->getEnumName();
}
} else
OS << "0";
OS << ", { ";
for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
if (i) OS << ", ";
OS << Op.Class->Name;
}
OS << " }, },\n";
}
OS << "};\n\n";
}
// A method to determine if a mnemonic is in the list.
if (HasMnemonicFirst) {
OS << "bool " << Target.getName() << ClassName << "::\n"
<< "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
OS << " // Find the appropriate table for this asm variant.\n";
OS << " const MatchEntry *Start, *End;\n";
OS << " switch (VariantID) {\n";
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
for (unsigned VC = 0; VC != VariantCount; ++VC) {
Record *AsmVariant = Target.getAsmParserVariant(VC);
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
<< "); End = std::end(MatchTable" << VC << "); break;\n";
}
OS << " }\n";
OS << " // Search the table.\n";
OS << " auto MnemonicRange = ";
OS << "std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
OS << " return MnemonicRange.first != MnemonicRange.second;\n";
OS << "}\n\n";
}
// Finally, build the match function.
OS << "unsigned " << Target.getName() << ClassName << "::\n"
<< "MatchInstructionImpl(const OperandVector &Operands,\n";
OS << " MCInst &Inst, uint64_t &ErrorInfo,\n"
<< " bool matchingInlineAsm, unsigned VariantID) {\n";
OS << " // Eliminate obvious mismatches.\n";
OS << " if (Operands.size() > "
<< (MaxNumOperands + HasMnemonicFirst) << ") {\n";
OS << " ErrorInfo = "
<< (MaxNumOperands + HasMnemonicFirst) << ";\n";
OS << " return Match_InvalidOperand;\n";
OS << " }\n\n";
// Emit code to get the available features.
OS << " // Get the current feature set.\n";
OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
OS << " // Get the instruction mnemonic, which is the first token.\n";
if (HasMnemonicFirst) {
OS << " StringRef Mnemonic = ((" << Target.getName()
<< "Operand&)*Operands[0]).getToken();\n\n";
} else {
OS << " StringRef Mnemonic;\n";
OS << " if (Operands[0]->isToken())\n";
OS << " Mnemonic = ((" << Target.getName()
<< "Operand&)*Operands[0]).getToken();\n\n";
}
if (HasMnemonicAliases) {
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
}
// Emit code to compute the class list for this operand vector.
OS << " // Some state to try to produce better error messages.\n";
OS << " bool HadMatchOtherThanFeatures = false;\n";
OS << " bool HadMatchOtherThanPredicate = false;\n";
OS << " unsigned RetCode = Match_InvalidOperand;\n";
OS << " uint64_t MissingFeatures = ~0ULL;\n";
if (HasOptionalOperands) {
OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
}
OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
OS << " // wrong for all instances of the instruction.\n";
OS << " ErrorInfo = ~0ULL;\n";
// Emit code to search the table.
OS << " // Find the appropriate table for this asm variant.\n";
OS << " const MatchEntry *Start, *End;\n";
OS << " switch (VariantID) {\n";
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
for (unsigned VC = 0; VC != VariantCount; ++VC) {
Record *AsmVariant = Target.getAsmParserVariant(VC);
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
<< "); End = std::end(MatchTable" << VC << "); break;\n";
}
OS << " }\n";
OS << " // Search the table.\n";
if (HasMnemonicFirst) {
OS << " auto MnemonicRange = "
"std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
} else {
OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
OS << " if (!Mnemonic.empty())\n";
OS << " MnemonicRange = "
"std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
}
OS << " // Return a more specific error code if no mnemonics match.\n";
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
OS << " return Match_MnemonicFail;\n\n";
OS << " for (const MatchEntry *it = MnemonicRange.first, "
<< "*ie = MnemonicRange.second;\n";
OS << " it != ie; ++it) {\n";
if (HasMnemonicFirst) {
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
OS << " assert(Mnemonic == it->getMnemonic());\n";
}
// Emit check that the subclasses match.
OS << " bool OperandsValid = true;\n";
if (HasOptionalOperands) {
OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
}
OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
<< ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
<< "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
OS << " auto Formal = "
<< "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
OS << " if (ActualIdx >= Operands.size()) {\n";
OS << " OperandsValid = (Formal == " <<"InvalidMatchClass) || "
"isSubclass(Formal, OptionalMatchClass);\n";
OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n";
if (HasOptionalOperands) {
OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
<< ");\n";
}
OS << " break;\n";
OS << " }\n";
OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
OS << " if (Diag == Match_Success) {\n";
OS << " ++ActualIdx;\n";
OS << " continue;\n";
OS << " }\n";
OS << " // If the generic handler indicates an invalid operand\n";
OS << " // failure, check for a special case.\n";
OS << " if (Diag == Match_InvalidOperand) {\n";
OS << " Diag = validateTargetOperandClass(Actual, Formal);\n";
OS << " if (Diag == Match_Success) {\n";
OS << " ++ActualIdx;\n";
OS << " continue;\n";
OS << " }\n";
OS << " }\n";
OS << " // If current formal operand wasn't matched and it is optional\n"
<< " // then try to match next formal operand\n";
OS << " if (Diag == Match_InvalidOperand "
<< "&& isSubclass(Formal, OptionalMatchClass)) {\n";
if (HasOptionalOperands) {
OS << " OptionalOperandsMask.set(FormalIdx);\n";
}
OS << " continue;\n";
OS << " }\n";
OS << " // If this operand is broken for all of the instances of this\n";
OS << " // mnemonic, keep track of it so we can report loc info.\n";
OS << " // If we already had a match that only failed due to a\n";
OS << " // target predicate, that diagnostic is preferred.\n";
OS << " if (!HadMatchOtherThanPredicate &&\n";
OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
OS << " ErrorInfo = ActualIdx;\n";
OS << " // InvalidOperand is the default. Prefer specificity.\n";
OS << " if (Diag != Match_InvalidOperand)\n";
OS << " RetCode = Diag;\n";
OS << " }\n";
OS << " // Otherwise, just reject this instance of the mnemonic.\n";
OS << " OperandsValid = false;\n";
OS << " break;\n";
OS << " }\n\n";
OS << " if (!OperandsValid) continue;\n";
// Emit check that the required features are available.
OS << " if ((AvailableFeatures & it->RequiredFeatures) "
<< "!= it->RequiredFeatures) {\n";
OS << " HadMatchOtherThanFeatures = true;\n";
OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & "
"~AvailableFeatures;\n";
OS << " if (countPopulation(NewMissingFeatures) <=\n"
" countPopulation(MissingFeatures))\n";
OS << " MissingFeatures = NewMissingFeatures;\n";
OS << " continue;\n";
OS << " }\n";
OS << "\n";
OS << " Inst.clear();\n\n";
OS << " Inst.setOpcode(it->Opcode);\n";
// Verify the instruction with the target-specific match predicate function.
OS << " // We have a potential match but have not rendered the operands.\n"
<< " // Check the target predicate to handle any context sensitive\n"
" // constraints.\n"
<< " // For example, Ties that are referenced multiple times must be\n"
" // checked here to ensure the input is the same for each match\n"
" // constraints. If we leave it any later the ties will have been\n"
" // canonicalized\n"
<< " unsigned MatchResult;\n"
<< " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
"Operands)) != Match_Success) {\n"
<< " Inst.clear();\n"
<< " RetCode = MatchResult;\n"
<< " HadMatchOtherThanPredicate = true;\n"
<< " continue;\n"
<< " }\n\n";
OS << " if (matchingInlineAsm) {\n";
OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
OS << " return Match_Success;\n";
OS << " }\n\n";
OS << " // We have selected a definite instruction, convert the parsed\n"
<< " // operands into the appropriate MCInst.\n";
if (HasOptionalOperands) {
OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
<< " OptionalOperandsMask);\n";
} else {
OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
}
OS << "\n";
// Verify the instruction with the target-specific match predicate function.
OS << " // We have a potential match. Check the target predicate to\n"
<< " // handle any context sensitive constraints.\n"
<< " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
<< " Match_Success) {\n"
<< " Inst.clear();\n"
<< " RetCode = MatchResult;\n"
<< " HadMatchOtherThanPredicate = true;\n"
<< " continue;\n"
<< " }\n\n";
// Call the post-processing function, if used.
std::string InsnCleanupFn =
AsmParser->getValueAsString("AsmParserInstCleanup");
if (!InsnCleanupFn.empty())
OS << " " << InsnCleanupFn << "(Inst);\n";
if (HasDeprecation) {
OS << " std::string Info;\n";
OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
OS << " SMLoc Loc = ((" << Target.getName()
<< "Operand&)*Operands[0]).getStartLoc();\n";
OS << " getParser().Warning(Loc, Info, None);\n";
OS << " }\n";
}
OS << " return Match_Success;\n";
OS << " }\n\n";
OS << " // Okay, we had no match. Try to return a useful error code.\n";
OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
OS << " return RetCode;\n\n";
OS << " // Missing feature matches return which features were missing\n";
OS << " ErrorInfo = MissingFeatures;\n";
OS << " return Match_MissingFeature;\n";
OS << "}\n\n";
if (!Info.OperandMatchInfo.empty())
emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
MaxMnemonicIndex, HasMnemonicFirst);
OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
}
namespace llvm {
void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
AsmMatcherEmitter(RK).run(OS);
}
} // end namespace llvm