llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp

9879 lines
423 KiB
C++

//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#define DEBUG_TYPE "x86-instr-info"
#define GET_INSTRINFO_CTOR_DTOR
#include "X86GenInstrInfo.inc"
static cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
static cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
static cl::opt<bool>
ReMatPICStubLoad("remat-pic-stub-load",
cl::desc("Re-materialize load from stub in PIC mode"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned>
PartialRegUpdateClearance("partial-reg-update-clearance",
cl::desc("Clearance between two register writes "
"for inserting XOR to avoid partial "
"register update"),
cl::init(64), cl::Hidden);
static cl::opt<unsigned>
UndefRegClearance("undef-reg-clearance",
cl::desc("How many idle instructions we would like before "
"certain undef register reads"),
cl::init(128), cl::Hidden);
enum {
// Select which memory operand is being unfolded.
// (stored in bits 0 - 3)
TB_INDEX_0 = 0,
TB_INDEX_1 = 1,
TB_INDEX_2 = 2,
TB_INDEX_3 = 3,
TB_INDEX_4 = 4,
TB_INDEX_MASK = 0xf,
// Do not insert the reverse map (MemOp -> RegOp) into the table.
// This may be needed because there is a many -> one mapping.
TB_NO_REVERSE = 1 << 4,
// Do not insert the forward map (RegOp -> MemOp) into the table.
// This is needed for Native Client, which prohibits branch
// instructions from using a memory operand.
TB_NO_FORWARD = 1 << 5,
TB_FOLDED_LOAD = 1 << 6,
TB_FOLDED_STORE = 1 << 7,
// Minimum alignment required for load/store.
// Used for RegOp->MemOp conversion.
// (stored in bits 8 - 15)
TB_ALIGN_SHIFT = 8,
TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
};
struct X86MemoryFoldTableEntry {
uint16_t RegOp;
uint16_t MemOp;
uint16_t Flags;
};
// Pin the vtable to this file.
void X86InstrInfo::anchor() {}
X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
: X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
: X86::ADJCALLSTACKDOWN32),
(STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
: X86::ADJCALLSTACKUP32),
X86::CATCHRET,
(STI.is64Bit() ? X86::RETQ : X86::RETL)),
Subtarget(STI), RI(STI.getTargetTriple()) {
static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
{ X86::ADC32ri, X86::ADC32mi, 0 },
{ X86::ADC32ri8, X86::ADC32mi8, 0 },
{ X86::ADC32rr, X86::ADC32mr, 0 },
{ X86::ADC64ri32, X86::ADC64mi32, 0 },
{ X86::ADC64ri8, X86::ADC64mi8, 0 },
{ X86::ADC64rr, X86::ADC64mr, 0 },
{ X86::ADD16ri, X86::ADD16mi, 0 },
{ X86::ADD16ri8, X86::ADD16mi8, 0 },
{ X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
{ X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
{ X86::ADD16rr, X86::ADD16mr, 0 },
{ X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
{ X86::ADD32ri, X86::ADD32mi, 0 },
{ X86::ADD32ri8, X86::ADD32mi8, 0 },
{ X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
{ X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
{ X86::ADD32rr, X86::ADD32mr, 0 },
{ X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
{ X86::ADD64ri32, X86::ADD64mi32, 0 },
{ X86::ADD64ri8, X86::ADD64mi8, 0 },
{ X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
{ X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
{ X86::ADD64rr, X86::ADD64mr, 0 },
{ X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
{ X86::ADD8ri, X86::ADD8mi, 0 },
{ X86::ADD8rr, X86::ADD8mr, 0 },
{ X86::AND16ri, X86::AND16mi, 0 },
{ X86::AND16ri8, X86::AND16mi8, 0 },
{ X86::AND16rr, X86::AND16mr, 0 },
{ X86::AND32ri, X86::AND32mi, 0 },
{ X86::AND32ri8, X86::AND32mi8, 0 },
{ X86::AND32rr, X86::AND32mr, 0 },
{ X86::AND64ri32, X86::AND64mi32, 0 },
{ X86::AND64ri8, X86::AND64mi8, 0 },
{ X86::AND64rr, X86::AND64mr, 0 },
{ X86::AND8ri, X86::AND8mi, 0 },
{ X86::AND8rr, X86::AND8mr, 0 },
{ X86::DEC16r, X86::DEC16m, 0 },
{ X86::DEC32r, X86::DEC32m, 0 },
{ X86::DEC64r, X86::DEC64m, 0 },
{ X86::DEC8r, X86::DEC8m, 0 },
{ X86::INC16r, X86::INC16m, 0 },
{ X86::INC32r, X86::INC32m, 0 },
{ X86::INC64r, X86::INC64m, 0 },
{ X86::INC8r, X86::INC8m, 0 },
{ X86::NEG16r, X86::NEG16m, 0 },
{ X86::NEG32r, X86::NEG32m, 0 },
{ X86::NEG64r, X86::NEG64m, 0 },
{ X86::NEG8r, X86::NEG8m, 0 },
{ X86::NOT16r, X86::NOT16m, 0 },
{ X86::NOT32r, X86::NOT32m, 0 },
{ X86::NOT64r, X86::NOT64m, 0 },
{ X86::NOT8r, X86::NOT8m, 0 },
{ X86::OR16ri, X86::OR16mi, 0 },
{ X86::OR16ri8, X86::OR16mi8, 0 },
{ X86::OR16rr, X86::OR16mr, 0 },
{ X86::OR32ri, X86::OR32mi, 0 },
{ X86::OR32ri8, X86::OR32mi8, 0 },
{ X86::OR32rr, X86::OR32mr, 0 },
{ X86::OR64ri32, X86::OR64mi32, 0 },
{ X86::OR64ri8, X86::OR64mi8, 0 },
{ X86::OR64rr, X86::OR64mr, 0 },
{ X86::OR8ri, X86::OR8mi, 0 },
{ X86::OR8rr, X86::OR8mr, 0 },
{ X86::ROL16r1, X86::ROL16m1, 0 },
{ X86::ROL16rCL, X86::ROL16mCL, 0 },
{ X86::ROL16ri, X86::ROL16mi, 0 },
{ X86::ROL32r1, X86::ROL32m1, 0 },
{ X86::ROL32rCL, X86::ROL32mCL, 0 },
{ X86::ROL32ri, X86::ROL32mi, 0 },
{ X86::ROL64r1, X86::ROL64m1, 0 },
{ X86::ROL64rCL, X86::ROL64mCL, 0 },
{ X86::ROL64ri, X86::ROL64mi, 0 },
{ X86::ROL8r1, X86::ROL8m1, 0 },
{ X86::ROL8rCL, X86::ROL8mCL, 0 },
{ X86::ROL8ri, X86::ROL8mi, 0 },
{ X86::ROR16r1, X86::ROR16m1, 0 },
{ X86::ROR16rCL, X86::ROR16mCL, 0 },
{ X86::ROR16ri, X86::ROR16mi, 0 },
{ X86::ROR32r1, X86::ROR32m1, 0 },
{ X86::ROR32rCL, X86::ROR32mCL, 0 },
{ X86::ROR32ri, X86::ROR32mi, 0 },
{ X86::ROR64r1, X86::ROR64m1, 0 },
{ X86::ROR64rCL, X86::ROR64mCL, 0 },
{ X86::ROR64ri, X86::ROR64mi, 0 },
{ X86::ROR8r1, X86::ROR8m1, 0 },
{ X86::ROR8rCL, X86::ROR8mCL, 0 },
{ X86::ROR8ri, X86::ROR8mi, 0 },
{ X86::SAR16r1, X86::SAR16m1, 0 },
{ X86::SAR16rCL, X86::SAR16mCL, 0 },
{ X86::SAR16ri, X86::SAR16mi, 0 },
{ X86::SAR32r1, X86::SAR32m1, 0 },
{ X86::SAR32rCL, X86::SAR32mCL, 0 },
{ X86::SAR32ri, X86::SAR32mi, 0 },
{ X86::SAR64r1, X86::SAR64m1, 0 },
{ X86::SAR64rCL, X86::SAR64mCL, 0 },
{ X86::SAR64ri, X86::SAR64mi, 0 },
{ X86::SAR8r1, X86::SAR8m1, 0 },
{ X86::SAR8rCL, X86::SAR8mCL, 0 },
{ X86::SAR8ri, X86::SAR8mi, 0 },
{ X86::SBB32ri, X86::SBB32mi, 0 },
{ X86::SBB32ri8, X86::SBB32mi8, 0 },
{ X86::SBB32rr, X86::SBB32mr, 0 },
{ X86::SBB64ri32, X86::SBB64mi32, 0 },
{ X86::SBB64ri8, X86::SBB64mi8, 0 },
{ X86::SBB64rr, X86::SBB64mr, 0 },
{ X86::SHL16r1, X86::SHL16m1, 0 },
{ X86::SHL16rCL, X86::SHL16mCL, 0 },
{ X86::SHL16ri, X86::SHL16mi, 0 },
{ X86::SHL32r1, X86::SHL32m1, 0 },
{ X86::SHL32rCL, X86::SHL32mCL, 0 },
{ X86::SHL32ri, X86::SHL32mi, 0 },
{ X86::SHL64r1, X86::SHL64m1, 0 },
{ X86::SHL64rCL, X86::SHL64mCL, 0 },
{ X86::SHL64ri, X86::SHL64mi, 0 },
{ X86::SHL8r1, X86::SHL8m1, 0 },
{ X86::SHL8rCL, X86::SHL8mCL, 0 },
{ X86::SHL8ri, X86::SHL8mi, 0 },
{ X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
{ X86::SHLD16rri8, X86::SHLD16mri8, 0 },
{ X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
{ X86::SHLD32rri8, X86::SHLD32mri8, 0 },
{ X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
{ X86::SHLD64rri8, X86::SHLD64mri8, 0 },
{ X86::SHR16r1, X86::SHR16m1, 0 },
{ X86::SHR16rCL, X86::SHR16mCL, 0 },
{ X86::SHR16ri, X86::SHR16mi, 0 },
{ X86::SHR32r1, X86::SHR32m1, 0 },
{ X86::SHR32rCL, X86::SHR32mCL, 0 },
{ X86::SHR32ri, X86::SHR32mi, 0 },
{ X86::SHR64r1, X86::SHR64m1, 0 },
{ X86::SHR64rCL, X86::SHR64mCL, 0 },
{ X86::SHR64ri, X86::SHR64mi, 0 },
{ X86::SHR8r1, X86::SHR8m1, 0 },
{ X86::SHR8rCL, X86::SHR8mCL, 0 },
{ X86::SHR8ri, X86::SHR8mi, 0 },
{ X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
{ X86::SHRD16rri8, X86::SHRD16mri8, 0 },
{ X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
{ X86::SHRD32rri8, X86::SHRD32mri8, 0 },
{ X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
{ X86::SHRD64rri8, X86::SHRD64mri8, 0 },
{ X86::SUB16ri, X86::SUB16mi, 0 },
{ X86::SUB16ri8, X86::SUB16mi8, 0 },
{ X86::SUB16rr, X86::SUB16mr, 0 },
{ X86::SUB32ri, X86::SUB32mi, 0 },
{ X86::SUB32ri8, X86::SUB32mi8, 0 },
{ X86::SUB32rr, X86::SUB32mr, 0 },
{ X86::SUB64ri32, X86::SUB64mi32, 0 },
{ X86::SUB64ri8, X86::SUB64mi8, 0 },
{ X86::SUB64rr, X86::SUB64mr, 0 },
{ X86::SUB8ri, X86::SUB8mi, 0 },
{ X86::SUB8rr, X86::SUB8mr, 0 },
{ X86::XOR16ri, X86::XOR16mi, 0 },
{ X86::XOR16ri8, X86::XOR16mi8, 0 },
{ X86::XOR16rr, X86::XOR16mr, 0 },
{ X86::XOR32ri, X86::XOR32mi, 0 },
{ X86::XOR32ri8, X86::XOR32mi8, 0 },
{ X86::XOR32rr, X86::XOR32mr, 0 },
{ X86::XOR64ri32, X86::XOR64mi32, 0 },
{ X86::XOR64ri8, X86::XOR64mi8, 0 },
{ X86::XOR64rr, X86::XOR64mr, 0 },
{ X86::XOR8ri, X86::XOR8mi, 0 },
{ X86::XOR8rr, X86::XOR8mr, 0 }
};
for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) {
AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
Entry.RegOp, Entry.MemOp,
// Index 0, folded load and store, no alignment requirement.
Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
}
static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
{ X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
{ X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
{ X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
{ X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
{ X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
{ X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
{ X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
{ X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
{ X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
{ X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
{ X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
{ X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
{ X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
{ X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
{ X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
{ X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
{ X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
{ X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
{ X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
{ X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
{ X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
{ X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
{ X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
{ X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
{ X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
{ X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
{ X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
{ X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
{ X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
{ X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
{ X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
{ X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
{ X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
{ X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
{ X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
{ X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
{ X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
{ X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
{ X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
{ X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
{ X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::MOVDQUrr, X86::MOVDQUmr, TB_FOLDED_STORE },
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
{ X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
{ X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
{ X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
{ X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
{ X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
{ X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
{ X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
{ X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
{ X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
{ X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
{ X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
{ X86::PUSH16r, X86::PUSH16rmm, TB_FOLDED_LOAD },
{ X86::PUSH32r, X86::PUSH32rmm, TB_FOLDED_LOAD },
{ X86::PUSH64r, X86::PUSH64rmm, TB_FOLDED_LOAD },
{ X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
{ X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
{ X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
{ X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
{ X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
{ X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
{ X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
{ X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
{ X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
{ X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
{ X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
{ X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
{ X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
{ X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
{ X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
{ X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
{ X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
{ X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
{ X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
{ X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
{ X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
{ X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
{ X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
// AVX 128-bit versions of foldable instructions
{ X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQUrr, X86::VMOVDQUmr, TB_FOLDED_STORE },
{ X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
{ X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
{ X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
{ X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
{ X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
{ X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
{ X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
{ X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
// AVX 256-bit foldable instructions
{ X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQUYrr, X86::VMOVDQUYmr, TB_FOLDED_STORE },
{ X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
{ X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
// AVX-512 foldable instructions
{ X86::VEXTRACTF32x4Zrr,X86::VEXTRACTF32x4Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTF32x8Zrr,X86::VEXTRACTF32x8Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTF64x2Zrr,X86::VEXTRACTF64x2Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTF64x4Zrr,X86::VEXTRACTF64x4Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTI32x4Zrr,X86::VEXTRACTI32x4Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTI32x8Zrr,X86::VEXTRACTI32x8Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTI64x2Zrr,X86::VEXTRACTI64x2Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTI64x4Zrr,X86::VEXTRACTI64x4Zmr, TB_FOLDED_STORE },
{ X86::VEXTRACTPSZrr, X86::VEXTRACTPSZmr, TB_FOLDED_STORE },
{ X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
{ X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
{ X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
{ X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
{ X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
{ X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
{ X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
{ X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
{ X86::VPMOVDBZrr, X86::VPMOVDBZmr, TB_FOLDED_STORE },
{ X86::VPMOVDWZrr, X86::VPMOVDWZmr, TB_FOLDED_STORE },
{ X86::VPMOVQDZrr, X86::VPMOVQDZmr, TB_FOLDED_STORE },
{ X86::VPMOVQWZrr, X86::VPMOVQWZmr, TB_FOLDED_STORE },
{ X86::VPMOVWBZrr, X86::VPMOVWBZmr, TB_FOLDED_STORE },
{ X86::VPMOVSDBZrr, X86::VPMOVSDBZmr, TB_FOLDED_STORE },
{ X86::VPMOVSDWZrr, X86::VPMOVSDWZmr, TB_FOLDED_STORE },
{ X86::VPMOVSQDZrr, X86::VPMOVSQDZmr, TB_FOLDED_STORE },
{ X86::VPMOVSQWZrr, X86::VPMOVSQWZmr, TB_FOLDED_STORE },
{ X86::VPMOVSWBZrr, X86::VPMOVSWBZmr, TB_FOLDED_STORE },
{ X86::VPMOVUSDBZrr, X86::VPMOVUSDBZmr, TB_FOLDED_STORE },
{ X86::VPMOVUSDWZrr, X86::VPMOVUSDWZmr, TB_FOLDED_STORE },
{ X86::VPMOVUSQDZrr, X86::VPMOVUSQDZmr, TB_FOLDED_STORE },
{ X86::VPMOVUSQWZrr, X86::VPMOVUSQWZmr, TB_FOLDED_STORE },
{ X86::VPMOVUSWBZrr, X86::VPMOVUSWBZmr, TB_FOLDED_STORE },
// AVX-512 foldable instructions (256-bit versions)
{ X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256mr, TB_FOLDED_STORE },
{ X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256mr, TB_FOLDED_STORE },
{ X86::VEXTRACTI32x4Z256rr,X86::VEXTRACTI32x4Z256mr, TB_FOLDED_STORE },
{ X86::VEXTRACTI64x2Z256rr,X86::VEXTRACTI64x2Z256mr, TB_FOLDED_STORE },
{ X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
{ X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
{ X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
{ X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
{ X86::VPMOVDWZ256rr, X86::VPMOVDWZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVQDZ256rr, X86::VPMOVQDZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVWBZ256rr, X86::VPMOVWBZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVSDWZ256rr, X86::VPMOVSDWZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVSQDZ256rr, X86::VPMOVSQDZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVSWBZ256rr, X86::VPMOVSWBZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVUSDWZ256rr, X86::VPMOVUSDWZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVUSQDZ256rr, X86::VPMOVUSQDZ256mr, TB_FOLDED_STORE },
{ X86::VPMOVUSWBZ256rr, X86::VPMOVUSWBZ256mr, TB_FOLDED_STORE },
// AVX-512 foldable instructions (128-bit versions)
{ X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
{ X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
{ X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
{ X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
// F16C foldable instructions
{ X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
{ X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
};
for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) {
AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags);
}
static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
{ X86::BSF16rr, X86::BSF16rm, 0 },
{ X86::BSF32rr, X86::BSF32rm, 0 },
{ X86::BSF64rr, X86::BSF64rm, 0 },
{ X86::BSR16rr, X86::BSR16rm, 0 },
{ X86::BSR32rr, X86::BSR32rm, 0 },
{ X86::BSR64rr, X86::BSR64rm, 0 },
{ X86::CMP16rr, X86::CMP16rm, 0 },
{ X86::CMP32rr, X86::CMP32rm, 0 },
{ X86::CMP64rr, X86::CMP64rm, 0 },
{ X86::CMP8rr, X86::CMP8rm, 0 },
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
{ X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
{ X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
{ X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
{ X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
{ X86::IMUL16rri, X86::IMUL16rmi, 0 },
{ X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
{ X86::IMUL32rri, X86::IMUL32rmi, 0 },
{ X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
{ X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
{ X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
{ X86::Int_COMISDrr, X86::Int_COMISDrm, TB_NO_REVERSE },
{ X86::Int_COMISSrr, X86::Int_COMISSrm, TB_NO_REVERSE },
{ X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, TB_NO_REVERSE },
{ X86::CVTSD2SIrr, X86::CVTSD2SIrm, TB_NO_REVERSE },
{ X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, TB_NO_REVERSE },
{ X86::CVTSS2SIrr, X86::CVTSS2SIrm, TB_NO_REVERSE },
{ X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_NO_REVERSE },
{ X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
{ X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
{ X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
{ X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
{ X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_NO_REVERSE },
{ X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
{ X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, TB_NO_REVERSE },
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, TB_NO_REVERSE },
{ X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, TB_NO_REVERSE },
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, TB_NO_REVERSE },
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, TB_NO_REVERSE },
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, TB_NO_REVERSE },
{ X86::MOV16rr, X86::MOV16rm, 0 },
{ X86::MOV32rr, X86::MOV32rm, 0 },
{ X86::MOV64rr, X86::MOV64rm, 0 },
{ X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
{ X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
{ X86::MOV8rr, X86::MOV8rm, 0 },
{ X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
{ X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
{ X86::MOVDDUPrr, X86::MOVDDUPrm, TB_NO_REVERSE },
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
{ X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
{ X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
{ X86::MOVDQUrr, X86::MOVDQUrm, 0 },
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
{ X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
{ X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
{ X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
{ X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
{ X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
{ X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
{ X86::MOVUPDrr, X86::MOVUPDrm, 0 },
{ X86::MOVUPSrr, X86::MOVUPSrm, 0 },
{ X86::MOVZPQILo2PQIrr, X86::MOVQI2PQIrm, TB_NO_REVERSE },
{ X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
{ X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
{ X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
{ X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
{ X86::PABSBrr, X86::PABSBrm, TB_ALIGN_16 },
{ X86::PABSDrr, X86::PABSDrm, TB_ALIGN_16 },
{ X86::PABSWrr, X86::PABSWrm, TB_ALIGN_16 },
{ X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
{ X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
{ X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
{ X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
{ X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
{ X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_NO_REVERSE },
{ X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_NO_REVERSE },
{ X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_NO_REVERSE },
{ X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_NO_REVERSE },
{ X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_NO_REVERSE },
{ X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_NO_REVERSE },
{ X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_NO_REVERSE },
{ X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_NO_REVERSE },
{ X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_NO_REVERSE },
{ X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_NO_REVERSE },
{ X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_NO_REVERSE },
{ X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_NO_REVERSE },
{ X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
{ X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
{ X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
{ X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
{ X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
{ X86::RCPSSr, X86::RCPSSm, 0 },
{ X86::RCPSSr_Int, X86::RCPSSm_Int, TB_NO_REVERSE },
{ X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
{ X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
{ X86::ROUNDSDr, X86::ROUNDSDm, 0 },
{ X86::ROUNDSSr, X86::ROUNDSSm, 0 },
{ X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
{ X86::RSQRTSSr, X86::RSQRTSSm, 0 },
{ X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, TB_NO_REVERSE },
{ X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
{ X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
{ X86::SQRTSDr, X86::SQRTSDm, 0 },
{ X86::SQRTSDr_Int, X86::SQRTSDm_Int, TB_NO_REVERSE },
{ X86::SQRTSSr, X86::SQRTSSm, 0 },
{ X86::SQRTSSr_Int, X86::SQRTSSm_Int, TB_NO_REVERSE },
{ X86::TEST16rr, X86::TEST16rm, 0 },
{ X86::TEST32rr, X86::TEST32rm, 0 },
{ X86::TEST64rr, X86::TEST64rm, 0 },
{ X86::TEST8rr, X86::TEST8rm, 0 },
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
{ X86::UCOMISDrr, X86::UCOMISDrm, 0 },
{ X86::UCOMISSrr, X86::UCOMISSrm, 0 },
// MMX version of foldable instructions
{ X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 },
{ X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 },
{ X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 },
{ X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 },
{ X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 },
{ X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 },
{ X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 },
{ X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 },
{ X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 },
{ X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 },
// 3DNow! version of foldable instructions
{ X86::PF2IDrr, X86::PF2IDrm, 0 },
{ X86::PF2IWrr, X86::PF2IWrm, 0 },
{ X86::PFRCPrr, X86::PFRCPrm, 0 },
{ X86::PFRSQRTrr, X86::PFRSQRTrm, 0 },
{ X86::PI2FDrr, X86::PI2FDrm, 0 },
{ X86::PI2FWrr, X86::PI2FWrm, 0 },
{ X86::PSWAPDrr, X86::PSWAPDrm, 0 },
// AVX 128-bit versions of foldable instructions
{ X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, TB_NO_REVERSE },
{ X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, TB_NO_REVERSE },
{ X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, TB_NO_REVERSE },
{ X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, TB_NO_REVERSE },
{ X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
{ X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,TB_NO_REVERSE },
{ X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
{ X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, TB_NO_REVERSE },
{ X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
{ X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,TB_NO_REVERSE },
{ X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
{ X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, TB_NO_REVERSE },
{ X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, TB_NO_REVERSE },
{ X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, TB_NO_REVERSE },
{ X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, TB_NO_REVERSE },
{ X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, TB_NO_REVERSE },
{ X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, TB_NO_REVERSE },
{ X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
{ X86::VCVTPD2DQrr, X86::VCVTPD2DQrm, 0 },
{ X86::VCVTPD2PSrr, X86::VCVTPD2PSrm, 0 },
{ X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
{ X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, TB_NO_REVERSE },
{ X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, 0 },
{ X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
{ X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
{ X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
{ X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
{ X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
{ X86::VMOVDDUPrr, X86::VMOVDDUPrm, TB_NO_REVERSE },
{ X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
{ X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
{ X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
{ X86::VMOVDQUrr, X86::VMOVDQUrm, 0 },
{ X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
{ X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
{ X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
{ X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
{ X86::VMOVZPQILo2PQIrr,X86::VMOVQI2PQIrm, TB_NO_REVERSE },
{ X86::VPABSBrr, X86::VPABSBrm, 0 },
{ X86::VPABSDrr, X86::VPABSDrm, 0 },
{ X86::VPABSWrr, X86::VPABSWrm, 0 },
{ X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
{ X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
{ X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
{ X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
{ X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
{ X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
{ X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
{ X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, TB_NO_REVERSE },
{ X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, TB_NO_REVERSE },
{ X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, TB_NO_REVERSE },
{ X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, TB_NO_REVERSE },
{ X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, TB_NO_REVERSE },
{ X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, TB_NO_REVERSE },
{ X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, TB_NO_REVERSE },
{ X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, TB_NO_REVERSE },
{ X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, TB_NO_REVERSE },
{ X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, TB_NO_REVERSE },
{ X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, TB_NO_REVERSE },
{ X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, TB_NO_REVERSE },
{ X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
{ X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
{ X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
{ X86::VPTESTrr, X86::VPTESTrm, 0 },
{ X86::VRCPPSr, X86::VRCPPSm, 0 },
{ X86::VROUNDPDr, X86::VROUNDPDm, 0 },
{ X86::VROUNDPSr, X86::VROUNDPSm, 0 },
{ X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
{ X86::VSQRTPDr, X86::VSQRTPDm, 0 },
{ X86::VSQRTPSr, X86::VSQRTPSm, 0 },
{ X86::VTESTPDrr, X86::VTESTPDrm, 0 },
{ X86::VTESTPSrr, X86::VTESTPSrm, 0 },
{ X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
{ X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
// AVX 256-bit foldable instructions
{ X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, TB_NO_REVERSE },
{ X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
{ X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
{ X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
{ X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
{ X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, TB_NO_REVERSE },
{ X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
{ X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
{ X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
{ X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
{ X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
{ X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
{ X86::VMOVDQUYrr, X86::VMOVDQUYrm, 0 },
{ X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
{ X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
{ X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
{ X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
{ X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
{ X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
{ X86::VPTESTYrr, X86::VPTESTYrm, 0 },
{ X86::VRCPPSYr, X86::VRCPPSYm, 0 },
{ X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
{ X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
{ X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
{ X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
{ X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
{ X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
{ X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
// AVX2 foldable instructions
// VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
// VBROADCASTS{SD}rm memory instructions were available from AVX1.
// TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
// on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
// so they don't need an equivalent limitation.
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
{ X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
{ X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
{ X86::VPABSBYrr, X86::VPABSBYrm, 0 },
{ X86::VPABSDYrr, X86::VPABSDYrm, 0 },
{ X86::VPABSWYrr, X86::VPABSWYrm, 0 },
{ X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, TB_NO_REVERSE },
{ X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, TB_NO_REVERSE },
{ X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, TB_NO_REVERSE },
{ X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, TB_NO_REVERSE },
{ X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, TB_NO_REVERSE },
{ X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, TB_NO_REVERSE },
{ X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, TB_NO_REVERSE },
{ X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, TB_NO_REVERSE },
{ X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
{ X86::VPERMQYri, X86::VPERMQYmi, 0 },
{ X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, TB_NO_REVERSE },
{ X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, TB_NO_REVERSE },
{ X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 },
{ X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 },
{ X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 },
{ X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, TB_NO_REVERSE },
{ X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, TB_NO_REVERSE },
{ X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, TB_NO_REVERSE },
{ X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 },
{ X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 },
{ X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 },
{ X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, TB_NO_REVERSE },
{ X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
{ X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
{ X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
// XOP foldable instructions
{ X86::VFRCZPDrr, X86::VFRCZPDrm, 0 },
{ X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 },
{ X86::VFRCZPSrr, X86::VFRCZPSrm, 0 },
{ X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 },
{ X86::VFRCZSDrr, X86::VFRCZSDrm, 0 },
{ X86::VFRCZSSrr, X86::VFRCZSSrm, 0 },
{ X86::VPHADDBDrr, X86::VPHADDBDrm, 0 },
{ X86::VPHADDBQrr, X86::VPHADDBQrm, 0 },
{ X86::VPHADDBWrr, X86::VPHADDBWrm, 0 },
{ X86::VPHADDDQrr, X86::VPHADDDQrm, 0 },
{ X86::VPHADDWDrr, X86::VPHADDWDrm, 0 },
{ X86::VPHADDWQrr, X86::VPHADDWQrm, 0 },
{ X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 },
{ X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 },
{ X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 },
{ X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 },
{ X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 },
{ X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 },
{ X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 },
{ X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 },
{ X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 },
{ X86::VPROTBri, X86::VPROTBmi, 0 },
{ X86::VPROTBrr, X86::VPROTBmr, 0 },
{ X86::VPROTDri, X86::VPROTDmi, 0 },
{ X86::VPROTDrr, X86::VPROTDmr, 0 },
{ X86::VPROTQri, X86::VPROTQmi, 0 },
{ X86::VPROTQrr, X86::VPROTQmr, 0 },
{ X86::VPROTWri, X86::VPROTWmi, 0 },
{ X86::VPROTWrr, X86::VPROTWmr, 0 },
{ X86::VPSHABrr, X86::VPSHABmr, 0 },
{ X86::VPSHADrr, X86::VPSHADmr, 0 },
{ X86::VPSHAQrr, X86::VPSHAQmr, 0 },
{ X86::VPSHAWrr, X86::VPSHAWmr, 0 },
{ X86::VPSHLBrr, X86::VPSHLBmr, 0 },
{ X86::VPSHLDrr, X86::VPSHLDmr, 0 },
{ X86::VPSHLQrr, X86::VPSHLQmr, 0 },
{ X86::VPSHLWrr, X86::VPSHLWmr, 0 },
// BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
{ X86::BEXTR32rr, X86::BEXTR32rm, 0 },
{ X86::BEXTR64rr, X86::BEXTR64rm, 0 },
{ X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
{ X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
{ X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
{ X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
{ X86::BLCI32rr, X86::BLCI32rm, 0 },
{ X86::BLCI64rr, X86::BLCI64rm, 0 },
{ X86::BLCIC32rr, X86::BLCIC32rm, 0 },
{ X86::BLCIC64rr, X86::BLCIC64rm, 0 },
{ X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
{ X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
{ X86::BLCS32rr, X86::BLCS32rm, 0 },
{ X86::BLCS64rr, X86::BLCS64rm, 0 },
{ X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
{ X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
{ X86::BLSI32rr, X86::BLSI32rm, 0 },
{ X86::BLSI64rr, X86::BLSI64rm, 0 },
{ X86::BLSIC32rr, X86::BLSIC32rm, 0 },
{ X86::BLSIC64rr, X86::BLSIC64rm, 0 },
{ X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
{ X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
{ X86::BLSR32rr, X86::BLSR32rm, 0 },
{ X86::BLSR64rr, X86::BLSR64rm, 0 },
{ X86::BZHI32rr, X86::BZHI32rm, 0 },
{ X86::BZHI64rr, X86::BZHI64rm, 0 },
{ X86::LZCNT16rr, X86::LZCNT16rm, 0 },
{ X86::LZCNT32rr, X86::LZCNT32rm, 0 },
{ X86::LZCNT64rr, X86::LZCNT64rm, 0 },
{ X86::POPCNT16rr, X86::POPCNT16rm, 0 },
{ X86::POPCNT32rr, X86::POPCNT32rm, 0 },
{ X86::POPCNT64rr, X86::POPCNT64rm, 0 },
{ X86::RORX32ri, X86::RORX32mi, 0 },
{ X86::RORX64ri, X86::RORX64mi, 0 },
{ X86::SARX32rr, X86::SARX32rm, 0 },
{ X86::SARX64rr, X86::SARX64rm, 0 },
{ X86::SHRX32rr, X86::SHRX32rm, 0 },
{ X86::SHRX64rr, X86::SHRX64rm, 0 },
{ X86::SHLX32rr, X86::SHLX32rm, 0 },
{ X86::SHLX64rr, X86::SHLX64rm, 0 },
{ X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
{ X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
{ X86::TZCNT16rr, X86::TZCNT16rm, 0 },
{ X86::TZCNT32rr, X86::TZCNT32rm, 0 },
{ X86::TZCNT64rr, X86::TZCNT64rm, 0 },
{ X86::TZMSK32rr, X86::TZMSK32rm, 0 },
{ X86::TZMSK64rr, X86::TZMSK64rm, 0 },
// AVX-512 foldable instructions
{ X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
{ X86::VBROADCASTSSZr_s, X86::VBROADCASTSSZm, TB_NO_REVERSE },
{ X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
{ X86::VBROADCASTSDZr_s, X86::VBROADCASTSDZm, TB_NO_REVERSE },
{ X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
{ X86::VMOVZPQILo2PQIZrr,X86::VMOVQI2PQIZrm, TB_NO_REVERSE },
{ X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
{ X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
{ X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
{ X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
{ X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
{ X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
{ X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
{ X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
{ X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
{ X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
{ X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
{ X86::VPABSDZrr, X86::VPABSDZrm, 0 },
{ X86::VPABSQZrr, X86::VPABSQZrm, 0 },
{ X86::VPERMILPDZri, X86::VPERMILPDZmi, 0 },
{ X86::VPERMILPSZri, X86::VPERMILPSZmi, 0 },
{ X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
{ X86::VPERMQZri, X86::VPERMQZmi, 0 },
{ X86::VPMOVSXBDZrr, X86::VPMOVSXBDZrm, 0 },
{ X86::VPMOVSXBQZrr, X86::VPMOVSXBQZrm, TB_NO_REVERSE },
{ X86::VPMOVSXBWZrr, X86::VPMOVSXBWZrm, 0 },
{ X86::VPMOVSXDQZrr, X86::VPMOVSXDQZrm, 0 },
{ X86::VPMOVSXWDZrr, X86::VPMOVSXWDZrm, 0 },
{ X86::VPMOVSXWQZrr, X86::VPMOVSXWQZrm, 0 },
{ X86::VPMOVZXBDZrr, X86::VPMOVZXBDZrm, 0 },
{ X86::VPMOVZXBQZrr, X86::VPMOVZXBQZrm, TB_NO_REVERSE },
{ X86::VPMOVZXBWZrr, X86::VPMOVZXBWZrm, 0 },
{ X86::VPMOVZXDQZrr, X86::VPMOVZXDQZrm, 0 },
{ X86::VPMOVZXWDZrr, X86::VPMOVZXWDZrm, 0 },
{ X86::VPMOVZXWQZrr, X86::VPMOVZXWQZrm, 0 },
{ X86::VPSHUFDZri, X86::VPSHUFDZmi, 0 },
{ X86::VPSHUFHWZri, X86::VPSHUFHWZmi, 0 },
{ X86::VPSHUFLWZri, X86::VPSHUFLWZmi, 0 },
// AVX-512 foldable instructions (256-bit versions)
{ X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
{ X86::VBROADCASTSSZ256r_s, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
{ X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
{ X86::VBROADCASTSDZ256r_s, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
{ X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
{ X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
{ X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
{ X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
{ X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
{ X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
{ X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
{ X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
{ X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
{ X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
{ X86::VPERMILPDZ256ri, X86::VPERMILPDZ256mi, 0 },
{ X86::VPERMILPSZ256ri, X86::VPERMILPSZ256mi, 0 },
{ X86::VPERMPDZ256ri, X86::VPERMPDZ256mi, 0 },
{ X86::VPERMQZ256ri, X86::VPERMQZ256mi, 0 },
{ X86::VPMOVSXBDZ256rr, X86::VPMOVSXBDZ256rm, TB_NO_REVERSE },
{ X86::VPMOVSXBQZ256rr, X86::VPMOVSXBQZ256rm, TB_NO_REVERSE },
{ X86::VPMOVSXBWZ256rr, X86::VPMOVSXBWZ256rm, 0 },
{ X86::VPMOVSXDQZ256rr, X86::VPMOVSXDQZ256rm, 0 },
{ X86::VPMOVSXWDZ256rr, X86::VPMOVSXWDZ256rm, 0 },
{ X86::VPMOVSXWQZ256rr, X86::VPMOVSXWQZ256rm, TB_NO_REVERSE },
{ X86::VPMOVZXBDZ256rr, X86::VPMOVZXBDZ256rm, TB_NO_REVERSE },
{ X86::VPMOVZXBQZ256rr, X86::VPMOVZXBQZ256rm, TB_NO_REVERSE },
{ X86::VPMOVZXBWZ256rr, X86::VPMOVZXBWZ256rm, 0 },
{ X86::VPMOVZXDQZ256rr, X86::VPMOVZXDQZ256rm, 0 },
{ X86::VPMOVZXWDZ256rr, X86::VPMOVZXWDZ256rm, 0 },
{ X86::VPMOVZXWQZ256rr, X86::VPMOVZXWQZ256rm, TB_NO_REVERSE },
{ X86::VPSHUFDZ256ri, X86::VPSHUFDZ256mi, 0 },
{ X86::VPSHUFHWZ256ri, X86::VPSHUFHWZ256mi, 0 },
{ X86::VPSHUFLWZ256ri, X86::VPSHUFLWZ256mi, 0 },
// AVX-512 foldable instructions (128-bit versions)
{ X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
{ X86::VBROADCASTSSZ128r_s, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
{ X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
{ X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
{ X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
{ X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
{ X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
{ X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
{ X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
{ X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
{ X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
{ X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
{ X86::VPERMILPDZ128ri, X86::VPERMILPDZ128mi, 0 },
{ X86::VPERMILPSZ128ri, X86::VPERMILPSZ128mi, 0 },
{ X86::VPMOVSXBDZ128rr, X86::VPMOVSXBDZ128rm, TB_NO_REVERSE },
{ X86::VPMOVSXBQZ128rr, X86::VPMOVSXBQZ128rm, TB_NO_REVERSE },
{ X86::VPMOVSXBWZ128rr, X86::VPMOVSXBWZ128rm, TB_NO_REVERSE },
{ X86::VPMOVSXDQZ128rr, X86::VPMOVSXDQZ128rm, TB_NO_REVERSE },
{ X86::VPMOVSXWDZ128rr, X86::VPMOVSXWDZ128rm, TB_NO_REVERSE },
{ X86::VPMOVSXWQZ128rr, X86::VPMOVSXWQZ128rm, TB_NO_REVERSE },
{ X86::VPMOVZXBDZ128rr, X86::VPMOVZXBDZ128rm, TB_NO_REVERSE },
{ X86::VPMOVZXBQZ128rr, X86::VPMOVZXBQZ128rm, TB_NO_REVERSE },
{ X86::VPMOVZXBWZ128rr, X86::VPMOVZXBWZ128rm, TB_NO_REVERSE },
{ X86::VPMOVZXDQZ128rr, X86::VPMOVZXDQZ128rm, TB_NO_REVERSE },
{ X86::VPMOVZXWDZ128rr, X86::VPMOVZXWDZ128rm, TB_NO_REVERSE },
{ X86::VPMOVZXWQZ128rr, X86::VPMOVZXWQZ128rm, TB_NO_REVERSE },
{ X86::VPSHUFDZ128ri, X86::VPSHUFDZ128mi, 0 },
{ X86::VPSHUFHWZ128ri, X86::VPSHUFHWZ128mi, 0 },
{ X86::VPSHUFLWZ128ri, X86::VPSHUFLWZ128mi, 0 },
// F16C foldable instructions
{ X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
{ X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
// AES foldable instructions
{ X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
{ X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
{ X86::VAESIMCrr, X86::VAESIMCrm, 0 },
{ X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
};
for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) {
AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
Entry.RegOp, Entry.MemOp,
// Index 1, folded load
Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
}
static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
{ X86::ADC32rr, X86::ADC32rm, 0 },
{ X86::ADC64rr, X86::ADC64rm, 0 },
{ X86::ADD16rr, X86::ADD16rm, 0 },
{ X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
{ X86::ADD32rr, X86::ADD32rm, 0 },
{ X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
{ X86::ADD64rr, X86::ADD64rm, 0 },
{ X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
{ X86::ADD8rr, X86::ADD8rm, 0 },
{ X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
{ X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
{ X86::ADDSDrr, X86::ADDSDrm, 0 },
{ X86::ADDSDrr_Int, X86::ADDSDrm_Int, TB_NO_REVERSE },
{ X86::ADDSSrr, X86::ADDSSrm, 0 },
{ X86::ADDSSrr_Int, X86::ADDSSrm_Int, TB_NO_REVERSE },
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
{ X86::AND16rr, X86::AND16rm, 0 },
{ X86::AND32rr, X86::AND32rm, 0 },
{ X86::AND64rr, X86::AND64rm, 0 },
{ X86::AND8rr, X86::AND8rm, 0 },
{ X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
{ X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
{ X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
{ X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
{ X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
{ X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
{ X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
{ X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
{ X86::CMOVA16rr, X86::CMOVA16rm, 0 },
{ X86::CMOVA32rr, X86::CMOVA32rm, 0 },
{ X86::CMOVA64rr, X86::CMOVA64rm, 0 },
{ X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
{ X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
{ X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
{ X86::CMOVB16rr, X86::CMOVB16rm, 0 },
{ X86::CMOVB32rr, X86::CMOVB32rm, 0 },
{ X86::CMOVB64rr, X86::CMOVB64rm, 0 },
{ X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
{ X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
{ X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
{ X86::CMOVE16rr, X86::CMOVE16rm, 0 },
{ X86::CMOVE32rr, X86::CMOVE32rm, 0 },
{ X86::CMOVE64rr, X86::CMOVE64rm, 0 },
{ X86::CMOVG16rr, X86::CMOVG16rm, 0 },
{ X86::CMOVG32rr, X86::CMOVG32rm, 0 },
{ X86::CMOVG64rr, X86::CMOVG64rm, 0 },
{ X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
{ X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
{ X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
{ X86::CMOVL16rr, X86::CMOVL16rm, 0 },
{ X86::CMOVL32rr, X86::CMOVL32rm, 0 },
{ X86::CMOVL64rr, X86::CMOVL64rm, 0 },
{ X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
{ X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
{ X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
{ X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
{ X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
{ X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
{ X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
{ X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
{ X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
{ X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
{ X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
{ X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
{ X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
{ X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
{ X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
{ X86::CMOVO16rr, X86::CMOVO16rm, 0 },
{ X86::CMOVO32rr, X86::CMOVO32rm, 0 },
{ X86::CMOVO64rr, X86::CMOVO64rm, 0 },
{ X86::CMOVP16rr, X86::CMOVP16rm, 0 },
{ X86::CMOVP32rr, X86::CMOVP32rm, 0 },
{ X86::CMOVP64rr, X86::CMOVP64rm, 0 },
{ X86::CMOVS16rr, X86::CMOVS16rm, 0 },
{ X86::CMOVS32rr, X86::CMOVS32rm, 0 },
{ X86::CMOVS64rr, X86::CMOVS64rm, 0 },
{ X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
{ X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
{ X86::CMPSDrr, X86::CMPSDrm, 0 },
{ X86::CMPSSrr, X86::CMPSSrm, 0 },
{ X86::CRC32r32r32, X86::CRC32r32m32, 0 },
{ X86::CRC32r64r64, X86::CRC32r64m64, 0 },
{ X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
{ X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
{ X86::DIVSDrr, X86::DIVSDrm, 0 },
{ X86::DIVSDrr_Int, X86::DIVSDrm_Int, TB_NO_REVERSE },
{ X86::DIVSSrr, X86::DIVSSrm, 0 },
{ X86::DIVSSrr_Int, X86::DIVSSrm_Int, TB_NO_REVERSE },
{ X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
{ X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
{ X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
{ X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
{ X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
{ X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
{ X86::IMUL16rr, X86::IMUL16rm, 0 },
{ X86::IMUL32rr, X86::IMUL32rm, 0 },
{ X86::IMUL64rr, X86::IMUL64rm, 0 },
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm, TB_NO_REVERSE },
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm, TB_NO_REVERSE },
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, TB_NO_REVERSE },
{ X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
{ X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, TB_NO_REVERSE },
{ X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
{ X86::MAXCPDrr, X86::MAXCPDrm, TB_ALIGN_16 },
{ X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
{ X86::MAXCPSrr, X86::MAXCPSrm, TB_ALIGN_16 },
{ X86::MAXSDrr, X86::MAXSDrm, 0 },
{ X86::MAXCSDrr, X86::MAXCSDrm, 0 },
{ X86::MAXSDrr_Int, X86::MAXSDrm_Int, TB_NO_REVERSE },
{ X86::MAXSSrr, X86::MAXSSrm, 0 },
{ X86::MAXCSSrr, X86::MAXCSSrm, 0 },
{ X86::MAXSSrr_Int, X86::MAXSSrm_Int, TB_NO_REVERSE },
{ X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
{ X86::MINCPDrr, X86::MINCPDrm, TB_ALIGN_16 },
{ X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
{ X86::MINCPSrr, X86::MINCPSrm, TB_ALIGN_16 },
{ X86::MINSDrr, X86::MINSDrm, 0 },
{ X86::MINCSDrr, X86::MINCSDrm, 0 },
{ X86::MINSDrr_Int, X86::MINSDrm_Int, TB_NO_REVERSE },
{ X86::MINSSrr, X86::MINSSrm, 0 },
{ X86::MINCSSrr, X86::MINCSSrm, 0 },
{ X86::MINSSrr_Int, X86::MINSSrm_Int, TB_NO_REVERSE },
{ X86::MOVLHPSrr, X86::MOVHPSrm, TB_NO_REVERSE },
{ X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
{ X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
{ X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
{ X86::MULSDrr, X86::MULSDrm, 0 },
{ X86::MULSDrr_Int, X86::MULSDrm_Int, TB_NO_REVERSE },
{ X86::MULSSrr, X86::MULSSrm, 0 },
{ X86::MULSSrr_Int, X86::MULSSrm_Int, TB_NO_REVERSE },
{ X86::OR16rr, X86::OR16rm, 0 },
{ X86::OR32rr, X86::OR32rm, 0 },
{ X86::OR64rr, X86::OR64rm, 0 },
{ X86::OR8rr, X86::OR8rm, 0 },
{ X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
{ X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
{ X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
{ X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
{ X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
{ X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
{ X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
{ X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
{ X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
{ X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
{ X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
{ X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
{ X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
{ X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
{ X86::PALIGNRrri, X86::PALIGNRrmi, TB_ALIGN_16 },
{ X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
{ X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
{ X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
{ X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
{ X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
{ X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
{ X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
{ X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
{ X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
{ X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
{ X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
{ X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
{ X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
{ X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
{ X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
{ X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
{ X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
{ X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
{ X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
{ X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
{ X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
{ X86::PINSRBrr, X86::PINSRBrm, 0 },
{ X86::PINSRDrr, X86::PINSRDrm, 0 },
{ X86::PINSRQrr, X86::PINSRQrm, 0 },
{ X86::PINSRWrri, X86::PINSRWrmi, 0 },
{ X86::PMADDUBSWrr, X86::PMADDUBSWrm, TB_ALIGN_16 },
{ X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
{ X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
{ X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
{ X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
{ X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
{ X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
{ X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
{ X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
{ X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
{ X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
{ X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
{ X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
{ X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
{ X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
{ X86::PMULHRSWrr, X86::PMULHRSWrm, TB_ALIGN_16 },
{ X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
{ X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
{ X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
{ X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
{ X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
{ X86::PORrr, X86::PORrm, TB_ALIGN_16 },
{ X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
{ X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
{ X86::PSIGNBrr128, X86::PSIGNBrm128, TB_ALIGN_16 },
{ X86::PSIGNWrr128, X86::PSIGNWrm128, TB_ALIGN_16 },
{ X86::PSIGNDrr128, X86::PSIGNDrm128, TB_ALIGN_16 },
{ X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
{ X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
{ X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
{ X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
{ X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
{ X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
{ X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
{ X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
{ X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
{ X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
{ X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
{ X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
{ X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
{ X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
{ X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
{ X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
{ X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
{ X86::ROUNDSDr_Int, X86::ROUNDSDm_Int, TB_NO_REVERSE },
{ X86::ROUNDSSr_Int, X86::ROUNDSSm_Int, TB_NO_REVERSE },
{ X86::SBB32rr, X86::SBB32rm, 0 },
{ X86::SBB64rr, X86::SBB64rm, 0 },
{ X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
{ X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
{ X86::SUB16rr, X86::SUB16rm, 0 },
{ X86::SUB32rr, X86::SUB32rm, 0 },
{ X86::SUB64rr, X86::SUB64rm, 0 },
{ X86::SUB8rr, X86::SUB8rm, 0 },
{ X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
{ X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
{ X86::SUBSDrr, X86::SUBSDrm, 0 },
{ X86::SUBSDrr_Int, X86::SUBSDrm_Int, TB_NO_REVERSE },
{ X86::SUBSSrr, X86::SUBSSrm, 0 },
{ X86::SUBSSrr_Int, X86::SUBSSrm_Int, TB_NO_REVERSE },
// FIXME: TEST*rr -> swapped operand of TEST*mr.
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
{ X86::XOR16rr, X86::XOR16rm, 0 },
{ X86::XOR32rr, X86::XOR32rm, 0 },
{ X86::XOR64rr, X86::XOR64rm, 0 },
{ X86::XOR8rr, X86::XOR8rm, 0 },
{ X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
{ X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
// MMX version of foldable instructions
{ X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 },
{ X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 },
{ X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 },
{ X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 },
{ X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 },
{ X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 },
{ X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 },
{ X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 },
{ X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 },
{ X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 },
{ X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 },
{ X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 },
{ X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 },
{ X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 },
{ X86::MMX_PANDirr, X86::MMX_PANDirm, 0 },
{ X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 },
{ X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 },
{ X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 },
{ X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 },
{ X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 },
{ X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 },
{ X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 },
{ X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 },
{ X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 },
{ X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 },
{ X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 },
{ X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 },
{ X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 },
{ X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 },
{ X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 },
{ X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
{ X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 },
{ X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 },
{ X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 },
{ X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 },
{ X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 },
{ X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 },
{ X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 },
{ X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 },
{ X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 },
{ X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 },
{ X86::MMX_PORirr, X86::MMX_PORirm, 0 },
{ X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 },
{ X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 },
{ X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 },
{ X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 },
{ X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 },
{ X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 },
{ X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 },
{ X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 },
{ X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 },
{ X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 },
{ X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 },
{ X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 },
{ X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 },
{ X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 },
{ X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 },
{ X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 },
{ X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 },
{ X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 },
{ X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 },
{ X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 },
{ X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 },
{ X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 },
{ X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 },
{ X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 },
{ X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 },
{ X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 },
{ X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 },
{ X86::MMX_PXORirr, X86::MMX_PXORirm, 0 },
// 3DNow! version of foldable instructions
{ X86::PAVGUSBrr, X86::PAVGUSBrm, 0 },
{ X86::PFACCrr, X86::PFACCrm, 0 },
{ X86::PFADDrr, X86::PFADDrm, 0 },
{ X86::PFCMPEQrr, X86::PFCMPEQrm, 0 },
{ X86::PFCMPGErr, X86::PFCMPGErm, 0 },
{ X86::PFCMPGTrr, X86::PFCMPGTrm, 0 },
{ X86::PFMAXrr, X86::PFMAXrm, 0 },
{ X86::PFMINrr, X86::PFMINrm, 0 },
{ X86::PFMULrr, X86::PFMULrm, 0 },
{ X86::PFNACCrr, X86::PFNACCrm, 0 },
{ X86::PFPNACCrr, X86::PFPNACCrm, 0 },
{ X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 },
{ X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 },
{ X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 },
{ X86::PFSUBrr, X86::PFSUBrm, 0 },
{ X86::PFSUBRrr, X86::PFSUBRrm, 0 },
{ X86::PMULHRWrr, X86::PMULHRWrm, 0 },
// AVX 128-bit versions of foldable instructions
{ X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
{ X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, TB_NO_REVERSE },
{ X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
{ X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
{ X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
{ X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
{ X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
{ X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
{ X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
{ X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
{ X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
{ X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, TB_NO_REVERSE },
{ X86::VADDPDrr, X86::VADDPDrm, 0 },
{ X86::VADDPSrr, X86::VADDPSrm, 0 },
{ X86::VADDSDrr, X86::VADDSDrm, 0 },
{ X86::VADDSDrr_Int, X86::VADDSDrm_Int, TB_NO_REVERSE },
{ X86::VADDSSrr, X86::VADDSSrm, 0 },
{ X86::VADDSSrr_Int, X86::VADDSSrm_Int, TB_NO_REVERSE },
{ X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
{ X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
{ X86::VANDNPDrr, X86::VANDNPDrm, 0 },
{ X86::VANDNPSrr, X86::VANDNPSrm, 0 },
{ X86::VANDPDrr, X86::VANDPDrm, 0 },
{ X86::VANDPSrr, X86::VANDPSrm, 0 },
{ X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
{ X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
{ X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
{ X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
{ X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
{ X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
{ X86::VCMPSDrr, X86::VCMPSDrm, 0 },
{ X86::VCMPSSrr, X86::VCMPSSrm, 0 },
{ X86::VDIVPDrr, X86::VDIVPDrm, 0 },
{ X86::VDIVPSrr, X86::VDIVPSrm, 0 },
{ X86::VDIVSDrr, X86::VDIVSDrm, 0 },
{ X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, TB_NO_REVERSE },
{ X86::VDIVSSrr, X86::VDIVSSrm, 0 },
{ X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, TB_NO_REVERSE },
{ X86::VDPPDrri, X86::VDPPDrmi, 0 },
{ X86::VDPPSrri, X86::VDPPSrmi, 0 },
{ X86::VHADDPDrr, X86::VHADDPDrm, 0 },
{ X86::VHADDPSrr, X86::VHADDPSrm, 0 },
{ X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
{ X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
{ X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, TB_NO_REVERSE },
{ X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, TB_NO_REVERSE },
{ X86::VMAXCPDrr, X86::VMAXCPDrm, 0 },
{ X86::VMAXCPSrr, X86::VMAXCPSrm, 0 },
{ X86::VMAXCSDrr, X86::VMAXCSDrm, 0 },
{ X86::VMAXCSSrr, X86::VMAXCSSrm, 0 },
{ X86::VMAXPDrr, X86::VMAXPDrm, 0 },
{ X86::VMAXPSrr, X86::VMAXPSrm, 0 },
{ X86::VMAXSDrr, X86::VMAXSDrm, 0 },
{ X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, TB_NO_REVERSE },
{ X86::VMAXSSrr, X86::VMAXSSrm, 0 },
{ X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, TB_NO_REVERSE },
{ X86::VMINCPDrr, X86::VMINCPDrm, 0 },
{ X86::VMINCPSrr, X86::VMINCPSrm, 0 },
{ X86::VMINCSDrr, X86::VMINCSDrm, 0 },
{ X86::VMINCSSrr, X86::VMINCSSrm, 0 },
{ X86::VMINPDrr, X86::VMINPDrm, 0 },
{ X86::VMINPSrr, X86::VMINPSrm, 0 },
{ X86::VMINSDrr, X86::VMINSDrm, 0 },
{ X86::VMINSDrr_Int, X86::VMINSDrm_Int, TB_NO_REVERSE },
{ X86::VMINSSrr, X86::VMINSSrm, 0 },
{ X86::VMINSSrr_Int, X86::VMINSSrm_Int, TB_NO_REVERSE },
{ X86::VMOVLHPSrr, X86::VMOVHPSrm, TB_NO_REVERSE },
{ X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
{ X86::VMULPDrr, X86::VMULPDrm, 0 },
{ X86::VMULPSrr, X86::VMULPSrm, 0 },
{ X86::VMULSDrr, X86::VMULSDrm, 0 },
{ X86::VMULSDrr_Int, X86::VMULSDrm_Int, TB_NO_REVERSE },
{ X86::VMULSSrr, X86::VMULSSrm, 0 },
{ X86::VMULSSrr_Int, X86::VMULSSrm_Int, TB_NO_REVERSE },
{ X86::VORPDrr, X86::VORPDrm, 0 },
{ X86::VORPSrr, X86::VORPSrm, 0 },
{ X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
{ X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
{ X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
{ X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
{ X86::VPADDBrr, X86::VPADDBrm, 0 },
{ X86::VPADDDrr, X86::VPADDDrm, 0 },
{ X86::VPADDQrr, X86::VPADDQrm, 0 },
{ X86::VPADDSBrr, X86::VPADDSBrm, 0 },
{ X86::VPADDSWrr, X86::VPADDSWrm, 0 },
{ X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
{ X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
{ X86::VPADDWrr, X86::VPADDWrm, 0 },
{ X86::VPALIGNRrri, X86::VPALIGNRrmi, 0 },
{ X86::VPANDNrr, X86::VPANDNrm, 0 },
{ X86::VPANDrr, X86::VPANDrm, 0 },
{ X86::VPAVGBrr, X86::VPAVGBrm, 0 },
{ X86::VPAVGWrr, X86::VPAVGWrm, 0 },
{ X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
{ X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
{ X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
{ X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
{ X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
{ X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
{ X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
{ X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
{ X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
{ X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
{ X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
{ X86::VPHADDDrr, X86::VPHADDDrm, 0 },
{ X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
{ X86::VPHADDWrr, X86::VPHADDWrm, 0 },
{ X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
{ X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
{ X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
{ X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
{ X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
{ X86::VPINSRBrr, X86::VPINSRBrm, 0 },
{ X86::VPINSRDrr, X86::VPINSRDrm, 0 },
{ X86::VPINSRQrr, X86::VPINSRQrm, 0 },
{ X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
{ X86::VPMADDUBSWrr, X86::VPMADDUBSWrm, 0 },
{ X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
{ X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
{ X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
{ X86::VPMINSWrr, X86::VPMINSWrm, 0 },
{ X86::VPMINUBrr, X86::VPMINUBrm, 0 },
{ X86::VPMINSBrr, X86::VPMINSBrm, 0 },
{ X86::VPMINSDrr, X86::VPMINSDrm, 0 },
{ X86::VPMINUDrr, X86::VPMINUDrm, 0 },
{ X86::VPMINUWrr, X86::VPMINUWrm, 0 },
{ X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
{ X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
{ X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
{ X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
{ X86::VPMULDQrr, X86::VPMULDQrm, 0 },
{ X86::VPMULHRSWrr, X86::VPMULHRSWrm, 0 },
{ X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
{ X86::VPMULHWrr, X86::VPMULHWrm, 0 },
{ X86::VPMULLDrr, X86::VPMULLDrm, 0 },
{ X86::VPMULLWrr, X86::VPMULLWrm, 0 },
{ X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
{ X86::VPORrr, X86::VPORrm, 0 },
{ X86::VPSADBWrr, X86::VPSADBWrm, 0 },
{ X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
{ X86::VPSIGNBrr128, X86::VPSIGNBrm128, 0 },
{ X86::VPSIGNWrr128, X86::VPSIGNWrm128, 0 },
{ X86::VPSIGNDrr128, X86::VPSIGNDrm128, 0 },
{ X86::VPSLLDrr, X86::VPSLLDrm, 0 },
{ X86::VPSLLQrr, X86::VPSLLQrm, 0 },
{ X86::VPSLLWrr, X86::VPSLLWrm, 0 },
{ X86::VPSRADrr, X86::VPSRADrm, 0 },
{ X86::VPSRAWrr, X86::VPSRAWrm, 0 },
{ X86::VPSRLDrr, X86::VPSRLDrm, 0 },
{ X86::VPSRLQrr, X86::VPSRLQrm, 0 },
{ X86::VPSRLWrr, X86::VPSRLWrm, 0 },
{ X86::VPSUBBrr, X86::VPSUBBrm, 0 },
{ X86::VPSUBDrr, X86::VPSUBDrm, 0 },
{ X86::VPSUBQrr, X86::VPSUBQrm, 0 },
{ X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
{ X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
{ X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
{ X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
{ X86::VPSUBWrr, X86::VPSUBWrm, 0 },
{ X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
{ X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
{ X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
{ X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
{ X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
{ X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
{ X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
{ X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
{ X86::VPXORrr, X86::VPXORrm, 0 },
{ X86::VRCPSSr, X86::VRCPSSm, 0 },
{ X86::VRCPSSr_Int, X86::VRCPSSm_Int, TB_NO_REVERSE },
{ X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
{ X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, TB_NO_REVERSE },
{ X86::VROUNDSDr, X86::VROUNDSDm, 0 },
{ X86::VROUNDSDr_Int, X86::VROUNDSDm_Int, TB_NO_REVERSE },
{ X86::VROUNDSSr, X86::VROUNDSSm, 0 },
{ X86::VROUNDSSr_Int, X86::VROUNDSSm_Int, TB_NO_REVERSE },
{ X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
{ X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
{ X86::VSQRTSDr, X86::VSQRTSDm, 0 },
{ X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, TB_NO_REVERSE },
{ X86::VSQRTSSr, X86::VSQRTSSm, 0 },
{ X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, TB_NO_REVERSE },
{ X86::VSUBPDrr, X86::VSUBPDrm, 0 },
{ X86::VSUBPSrr, X86::VSUBPSrm, 0 },
{ X86::VSUBSDrr, X86::VSUBSDrm, 0 },
{ X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, TB_NO_REVERSE },
{ X86::VSUBSSrr, X86::VSUBSSrm, 0 },
{ X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, TB_NO_REVERSE },
{ X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
{ X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
{ X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
{ X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
{ X86::VXORPDrr, X86::VXORPDrm, 0 },
{ X86::VXORPSrr, X86::VXORPSrm, 0 },
// AVX 256-bit foldable instructions
{ X86::VADDPDYrr, X86::VADDPDYrm, 0 },
{ X86::VADDPSYrr, X86::VADDPSYrm, 0 },
{ X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
{ X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
{ X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
{ X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
{ X86::VANDPDYrr, X86::VANDPDYrm, 0 },
{ X86::VANDPSYrr, X86::VANDPSYrm, 0 },
{ X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
{ X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
{ X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
{ X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
{ X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
{ X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
{ X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
{ X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
{ X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
{ X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
{ X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
{ X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
{ X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
{ X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
{ X86::VMAXCPDYrr, X86::VMAXCPDYrm, 0 },
{ X86::VMAXCPSYrr, X86::VMAXCPSYrm, 0 },
{ X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
{ X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
{ X86::VMINCPDYrr, X86::VMINCPDYrm, 0 },
{ X86::VMINCPSYrr, X86::VMINCPSYrm, 0 },
{ X86::VMINPDYrr, X86::VMINPDYrm, 0 },
{ X86::VMINPSYrr, X86::VMINPSYrm, 0 },
{ X86::VMULPDYrr, X86::VMULPDYrm, 0 },
{ X86::VMULPSYrr, X86::VMULPSYrm, 0 },
{ X86::VORPDYrr, X86::VORPDYrm, 0 },
{ X86::VORPSYrr, X86::VORPSYrm, 0 },
{ X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
{ X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
{ X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
{ X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
{ X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
{ X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
{ X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
{ X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
{ X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
{ X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
{ X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
{ X86::VXORPDYrr, X86::VXORPDYrm, 0 },
{ X86::VXORPSYrr, X86::VXORPSYrm, 0 },
// AVX2 foldable instructions
{ X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
{ X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
{ X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
{ X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
{ X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
{ X86::VPADDBYrr, X86::VPADDBYrm, 0 },
{ X86::VPADDDYrr, X86::VPADDDYrm, 0 },
{ X86::VPADDQYrr, X86::VPADDQYrm, 0 },
{ X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
{ X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
{ X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
{ X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
{ X86::VPADDWYrr, X86::VPADDWYrm, 0 },
{ X86::VPALIGNRYrri, X86::VPALIGNRYrmi, 0 },
{ X86::VPANDNYrr, X86::VPANDNYrm, 0 },
{ X86::VPANDYrr, X86::VPANDYrm, 0 },
{ X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
{ X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
{ X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
{ X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
{ X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 },
{ X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
{ X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
{ X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
{ X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
{ X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
{ X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
{ X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
{ X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
{ X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
{ X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
{ X86::VPERMDYrr, X86::VPERMDYrm, 0 },
{ X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
{ X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
{ X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
{ X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
{ X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
{ X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
{ X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
{ X86::VPMADDUBSWYrr, X86::VPMADDUBSWYrm, 0 },
{ X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
{ X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
{ X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
{ X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
{ X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
{ X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
{ X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
{ X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
{ X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
{ X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
{ X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
{ X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
{ X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
{ X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
{ X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
{ X86::VPMULHRSWYrr, X86::VPMULHRSWYrm, 0 },
{ X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
{ X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
{ X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
{ X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
{ X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
{ X86::VPORYrr, X86::VPORYrm, 0 },
{ X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
{ X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
{ X86::VPSIGNBYrr256, X86::VPSIGNBYrm256, 0 },
{ X86::VPSIGNWYrr256, X86::VPSIGNWYrm256, 0 },
{ X86::VPSIGNDYrr256, X86::VPSIGNDYrm256, 0 },
{ X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
{ X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
{ X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
{ X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
{ X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
{ X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
{ X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
{ X86::VPSRADYrr, X86::VPSRADYrm, 0 },
{ X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
{ X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
{ X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
{ X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
{ X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
{ X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
{ X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
{ X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
{ X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
{ X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
{ X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
{ X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
{ X86::VPSUBQYrr, X86::VPSUBQYrm, 0 },
{ X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
{ X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
{ X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 },
{ X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 },
{ X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
{ X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
{ X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
{ X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
{ X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
{ X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
{ X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
{ X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
{ X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
{ X86::VPXORYrr, X86::VPXORYrm, 0 },
// FMA4 foldable patterns
{ X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_NONE },
{ X86::VFMADDSS4rr_Int, X86::VFMADDSS4mr_Int, TB_NO_REVERSE },
{ X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_NONE },
{ X86::VFMADDSD4rr_Int, X86::VFMADDSD4mr_Int, TB_NO_REVERSE },
{ X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_NONE },
{ X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_NONE },
{ X86::VFMADDPS4Yrr, X86::VFMADDPS4Ymr, TB_ALIGN_NONE },
{ X86::VFMADDPD4Yrr, X86::VFMADDPD4Ymr, TB_ALIGN_NONE },
{ X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, TB_ALIGN_NONE },
{ X86::VFNMADDSS4rr_Int, X86::VFNMADDSS4mr_Int, TB_NO_REVERSE },
{ X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, TB_ALIGN_NONE },
{ X86::VFNMADDSD4rr_Int, X86::VFNMADDSD4mr_Int, TB_NO_REVERSE },
{ X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_NONE },
{ X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_NONE },
{ X86::VFNMADDPS4Yrr, X86::VFNMADDPS4Ymr, TB_ALIGN_NONE },
{ X86::VFNMADDPD4Yrr, X86::VFNMADDPD4Ymr, TB_ALIGN_NONE },
{ X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_NONE },
{ X86::VFMSUBSS4rr_Int, X86::VFMSUBSS4mr_Int, TB_NO_REVERSE },
{ X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_NONE },
{ X86::VFMSUBSD4rr_Int, X86::VFMSUBSD4mr_Int, TB_NO_REVERSE },
{ X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_NONE },
{ X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_NONE },
{ X86::VFMSUBPS4Yrr, X86::VFMSUBPS4Ymr, TB_ALIGN_NONE },
{ X86::VFMSUBPD4Yrr, X86::VFMSUBPD4Ymr, TB_ALIGN_NONE },
{ X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, TB_ALIGN_NONE },
{ X86::VFNMSUBSS4rr_Int, X86::VFNMSUBSS4mr_Int, TB_NO_REVERSE },
{ X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, TB_ALIGN_NONE },
{ X86::VFNMSUBSD4rr_Int, X86::VFNMSUBSD4mr_Int, TB_NO_REVERSE },
{ X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_NONE },
{ X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_NONE },
{ X86::VFNMSUBPS4Yrr, X86::VFNMSUBPS4Ymr, TB_ALIGN_NONE },
{ X86::VFNMSUBPD4Yrr, X86::VFNMSUBPD4Ymr, TB_ALIGN_NONE },
{ X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_NONE },
{ X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_NONE },
{ X86::VFMADDSUBPS4Yrr, X86::VFMADDSUBPS4Ymr, TB_ALIGN_NONE },
{ X86::VFMADDSUBPD4Yrr, X86::VFMADDSUBPD4Ymr, TB_ALIGN_NONE },
{ X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_NONE },
{ X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_NONE },
{ X86::VFMSUBADDPS4Yrr, X86::VFMSUBADDPS4Ymr, TB_ALIGN_NONE },
{ X86::VFMSUBADDPD4Yrr, X86::VFMSUBADDPD4Ymr, TB_ALIGN_NONE },
// XOP foldable instructions
{ X86::VPCMOVrrr, X86::VPCMOVrmr, 0 },
{ X86::VPCMOVrrrY, X86::VPCMOVrmrY, 0 },
{ X86::VPCOMBri, X86::VPCOMBmi, 0 },
{ X86::VPCOMDri, X86::VPCOMDmi, 0 },
{ X86::VPCOMQri, X86::VPCOMQmi, 0 },
{ X86::VPCOMWri, X86::VPCOMWmi, 0 },
{ X86::VPCOMUBri, X86::VPCOMUBmi, 0 },
{ X86::VPCOMUDri, X86::VPCOMUDmi, 0 },
{ X86::VPCOMUQri, X86::VPCOMUQmi, 0 },
{ X86::VPCOMUWri, X86::VPCOMUWmi, 0 },
{ X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 },
{ X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 },
{ X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 },
{ X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 },
{ X86::VPMACSDDrr, X86::VPMACSDDrm, 0 },
{ X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 },
{ X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 },
{ X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 },
{ X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 },
{ X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 },
{ X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 },
{ X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 },
{ X86::VPMACSWDrr, X86::VPMACSWDrm, 0 },
{ X86::VPMACSWWrr, X86::VPMACSWWrm, 0 },
{ X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 },
{ X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 },
{ X86::VPPERMrrr, X86::VPPERMrmr, 0 },
{ X86::VPROTBrr, X86::VPROTBrm, 0 },
{ X86::VPROTDrr, X86::VPROTDrm, 0 },
{ X86::VPROTQrr, X86::VPROTQrm, 0 },
{ X86::VPROTWrr, X86::VPROTWrm, 0 },
{ X86::VPSHABrr, X86::VPSHABrm, 0 },
{ X86::VPSHADrr, X86::VPSHADrm, 0 },
{ X86::VPSHAQrr, X86::VPSHAQrm, 0 },
{ X86::VPSHAWrr, X86::VPSHAWrm, 0 },
{ X86::VPSHLBrr, X86::VPSHLBrm, 0 },
{ X86::VPSHLDrr, X86::VPSHLDrm, 0 },
{ X86::VPSHLQrr, X86::VPSHLQrm, 0 },
{ X86::VPSHLWrr, X86::VPSHLWrm, 0 },
// BMI/BMI2 foldable instructions
{ X86::ANDN32rr, X86::ANDN32rm, 0 },
{ X86::ANDN64rr, X86::ANDN64rm, 0 },
{ X86::MULX32rr, X86::MULX32rm, 0 },
{ X86::MULX64rr, X86::MULX64rm, 0 },
{ X86::PDEP32rr, X86::PDEP32rm, 0 },
{ X86::PDEP64rr, X86::PDEP64rm, 0 },
{ X86::PEXT32rr, X86::PEXT32rm, 0 },
{ X86::PEXT64rr, X86::PEXT64rm, 0 },
// ADX foldable instructions
{ X86::ADCX32rr, X86::ADCX32rm, 0 },
{ X86::ADCX64rr, X86::ADCX64rm, 0 },
{ X86::ADOX32rr, X86::ADOX32rm, 0 },
{ X86::ADOX64rr, X86::ADOX64rm, 0 },
// AVX-512 foldable instructions
{ X86::VADDPDZrr, X86::VADDPDZrm, 0 },
{ X86::VADDPSZrr, X86::VADDPSZrm, 0 },
{ X86::VADDSDZrr, X86::VADDSDZrm, 0 },
{ X86::VADDSDZrr_Int, X86::VADDSDZrm_Int, TB_NO_REVERSE },
{ X86::VADDSSZrr, X86::VADDSSZrm, 0 },
{ X86::VADDSSZrr_Int, X86::VADDSSZrm_Int, TB_NO_REVERSE },
{ X86::VALIGNDZrri, X86::VALIGNDZrmi, 0 },
{ X86::VALIGNQZrri, X86::VALIGNQZrmi, 0 },
{ X86::VANDNPDZrr, X86::VANDNPDZrm, 0 },
{ X86::VANDNPSZrr, X86::VANDNPSZrm, 0 },
{ X86::VANDPDZrr, X86::VANDPDZrm, 0 },
{ X86::VANDPSZrr, X86::VANDPSZrm, 0 },
{ X86::VCMPPDZrri, X86::VCMPPDZrmi, 0 },
{ X86::VCMPPSZrri, X86::VCMPPSZrmi, 0 },
{ X86::VCMPSDZrr, X86::VCMPSDZrm, 0 },
{ X86::VCMPSDZrr_Int, X86::VCMPSDZrm_Int, TB_NO_REVERSE },
{ X86::VCMPSSZrr, X86::VCMPSSZrm, 0 },
{ X86::VCMPSSZrr_Int, X86::VCMPSSZrm_Int, TB_NO_REVERSE },
{ X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
{ X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
{ X86::VDIVSDZrr, X86::VDIVSDZrm, 0 },
{ X86::VDIVSDZrr_Int, X86::VDIVSDZrm_Int, TB_NO_REVERSE },
{ X86::VDIVSSZrr, X86::VDIVSSZrm, 0 },
{ X86::VDIVSSZrr_Int, X86::VDIVSSZrm_Int, TB_NO_REVERSE },
{ X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrm, 0 },
{ X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrm, 0 },
{ X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrm, 0 },
{ X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrm, 0 },
{ X86::VINSERTI32x4Zrr, X86::VINSERTI32x4Zrm, 0 },
{ X86::VINSERTI32x8Zrr, X86::VINSERTI32x8Zrm, 0 },
{ X86::VINSERTI64x2Zrr, X86::VINSERTI64x2Zrm, 0 },
{ X86::VINSERTI64x4Zrr, X86::VINSERTI64x4Zrm, 0 },
{ X86::VMAXCPDZrr, X86::VMAXCPDZrm, 0 },
{ X86::VMAXCPSZrr, X86::VMAXCPSZrm, 0 },
{ X86::VMAXCSDZrr, X86::VMAXCSDZrm, 0 },
{ X86::VMAXCSSZrr, X86::VMAXCSSZrm, 0 },
{ X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
{ X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
{ X86::VMAXSDZrr, X86::VMAXSDZrm, 0 },
{ X86::VMAXSDZrr_Int, X86::VMAXSDZrm_Int, TB_NO_REVERSE },
{ X86::VMAXSSZrr, X86::VMAXSSZrm, 0 },
{ X86::VMAXSSZrr_Int, X86::VMAXSSZrm_Int, TB_NO_REVERSE },
{ X86::VMINCPDZrr, X86::VMINCPDZrm, 0 },
{ X86::VMINCPSZrr, X86::VMINCPSZrm, 0 },
{ X86::VMINCSDZrr, X86::VMINCSDZrm, 0 },
{ X86::VMINCSSZrr, X86::VMINCSSZrm, 0 },
{ X86::VMINPDZrr, X86::VMINPDZrm, 0 },
{ X86::VMINPSZrr, X86::VMINPSZrm, 0 },
{ X86::VMINSDZrr, X86::VMINSDZrm, 0 },
{ X86::VMINSDZrr_Int, X86::VMINSDZrm_Int, TB_NO_REVERSE },
{ X86::VMINSSZrr, X86::VMINSSZrm, 0 },
{ X86::VMINSSZrr_Int, X86::VMINSSZrm_Int, TB_NO_REVERSE },
{ X86::VMULPDZrr, X86::VMULPDZrm, 0 },
{ X86::VMULPSZrr, X86::VMULPSZrm, 0 },
{ X86::VMULSDZrr, X86::VMULSDZrm, 0 },
{ X86::VMULSDZrr_Int, X86::VMULSDZrm_Int, TB_NO_REVERSE },
{ X86::VMULSSZrr, X86::VMULSSZrm, 0 },
{ X86::VMULSSZrr_Int, X86::VMULSSZrm_Int, TB_NO_REVERSE },
{ X86::VORPDZrr, X86::VORPDZrm, 0 },
{ X86::VORPSZrr, X86::VORPSZrm, 0 },
{ X86::VPADDBZrr, X86::VPADDBZrm, 0 },
{ X86::VPADDDZrr, X86::VPADDDZrm, 0 },
{ X86::VPADDQZrr, X86::VPADDQZrm, 0 },
{ X86::VPADDSBZrr, X86::VPADDSBZrm, 0 },
{ X86::VPADDSWZrr, X86::VPADDSWZrm, 0 },
{ X86::VPADDUSBZrr, X86::VPADDUSBZrm, 0 },
{ X86::VPADDUSWZrr, X86::VPADDUSWZrm, 0 },
{ X86::VPADDWZrr, X86::VPADDWZrm, 0 },
{ X86::VPALIGNRZrri, X86::VPALIGNRZrmi, 0 },
{ X86::VPANDDZrr, X86::VPANDDZrm, 0 },
{ X86::VPANDNDZrr, X86::VPANDNDZrm, 0 },
{ X86::VPANDNQZrr, X86::VPANDNQZrm, 0 },
{ X86::VPANDQZrr, X86::VPANDQZrm, 0 },
{ X86::VPCMPBZrri, X86::VPCMPBZrmi, 0 },
{ X86::VPCMPDZrri, X86::VPCMPDZrmi, 0 },
{ X86::VPCMPEQBZrr, X86::VPCMPEQBZrm, 0 },
{ X86::VPCMPEQDZrr, X86::VPCMPEQDZrm, 0 },
{ X86::VPCMPEQQZrr, X86::VPCMPEQQZrm, 0 },
{ X86::VPCMPEQWZrr, X86::VPCMPEQWZrm, 0 },
{ X86::VPCMPGTBZrr, X86::VPCMPGTBZrm, 0 },
{ X86::VPCMPGTDZrr, X86::VPCMPGTDZrm, 0 },
{ X86::VPCMPGTQZrr, X86::VPCMPGTQZrm, 0 },
{ X86::VPCMPGTWZrr, X86::VPCMPGTWZrm, 0 },
{ X86::VPCMPQZrri, X86::VPCMPQZrmi, 0 },
{ X86::VPCMPUBZrri, X86::VPCMPUBZrmi, 0 },
{ X86::VPCMPUDZrri, X86::VPCMPUDZrmi, 0 },
{ X86::VPCMPUQZrri, X86::VPCMPUQZrmi, 0 },
{ X86::VPCMPUWZrri, X86::VPCMPUWZrmi, 0 },
{ X86::VPCMPWZrri, X86::VPCMPWZrmi, 0 },
{ X86::VPERMBZrr, X86::VPERMBZrm, 0 },
{ X86::VPERMDZrr, X86::VPERMDZrm, 0 },
{ X86::VPERMILPDZrr, X86::VPERMILPDZrm, 0 },
{ X86::VPERMILPSZrr, X86::VPERMILPSZrm, 0 },
{ X86::VPERMPDZrr, X86::VPERMPDZrm, 0 },
{ X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
{ X86::VPERMQZrr, X86::VPERMQZrm, 0 },
{ X86::VPERMWZrr, X86::VPERMWZrm, 0 },
{ X86::VPMADDUBSWZrr, X86::VPMADDUBSWZrm, 0 },
{ X86::VPMADDWDZrr, X86::VPMADDWDZrm, 0 },
{ X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
{ X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
{ X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
{ X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
{ X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
{ X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
{ X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
{ X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
{ X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
{ X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
{ X86::VPORDZrr, X86::VPORDZrm, 0 },
{ X86::VPORQZrr, X86::VPORQZrm, 0 },
{ X86::VPSHUFBZrr, X86::VPSHUFBZrm, 0 },
{ X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
{ X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
{ X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
{ X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
{ X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
{ X86::VPSUBBZrr, X86::VPSUBBZrm, 0 },
{ X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
{ X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
{ X86::VPSUBSBZrr, X86::VPSUBSBZrm, 0 },
{ X86::VPSUBSWZrr, X86::VPSUBSWZrm, 0 },
{ X86::VPSUBUSBZrr, X86::VPSUBUSBZrm, 0 },
{ X86::VPSUBUSWZrr, X86::VPSUBUSWZrm, 0 },
{ X86::VPSUBWZrr, X86::VPSUBWZrm, 0 },
{ X86::VPUNPCKHBWZrr, X86::VPUNPCKHBWZrm, 0 },
{ X86::VPUNPCKHDQZrr, X86::VPUNPCKHDQZrm, 0 },
{ X86::VPUNPCKHQDQZrr, X86::VPUNPCKHQDQZrm, 0 },
{ X86::VPUNPCKHWDZrr, X86::VPUNPCKHWDZrm, 0 },
{ X86::VPUNPCKLBWZrr, X86::VPUNPCKLBWZrm, 0 },
{ X86::VPUNPCKLDQZrr, X86::VPUNPCKLDQZrm, 0 },
{ X86::VPUNPCKLQDQZrr, X86::VPUNPCKLQDQZrm, 0 },
{ X86::VPUNPCKLWDZrr, X86::VPUNPCKLWDZrm, 0 },
{ X86::VPXORDZrr, X86::VPXORDZrm, 0 },
{ X86::VPXORQZrr, X86::VPXORQZrm, 0 },
{ X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
{ X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
{ X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
{ X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
{ X86::VSUBSDZrr, X86::VSUBSDZrm, 0 },
{ X86::VSUBSDZrr_Int, X86::VSUBSDZrm_Int, TB_NO_REVERSE },
{ X86::VSUBSSZrr, X86::VSUBSSZrm, 0 },
{ X86::VSUBSSZrr_Int, X86::VSUBSSZrm_Int, TB_NO_REVERSE },
{ X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrm, 0 },
{ X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrm, 0 },
{ X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrm, 0 },
{ X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrm, 0 },
{ X86::VXORPDZrr, X86::VXORPDZrm, 0 },
{ X86::VXORPSZrr, X86::VXORPSZrm, 0 },
// AVX-512{F,VL} foldable instructions
{ X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
{ X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
{ X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
{ X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
{ X86::VALIGNDZ128rri, X86::VALIGNDZ128rmi, 0 },
{ X86::VALIGNDZ256rri, X86::VALIGNDZ256rmi, 0 },
{ X86::VALIGNQZ128rri, X86::VALIGNQZ128rmi, 0 },
{ X86::VALIGNQZ256rri, X86::VALIGNQZ256rmi, 0 },
{ X86::VANDNPDZ128rr, X86::VANDNPDZ128rm, 0 },
{ X86::VANDNPDZ256rr, X86::VANDNPDZ256rm, 0 },
{ X86::VANDNPSZ128rr, X86::VANDNPSZ128rm, 0 },
{ X86::VANDNPSZ256rr, X86::VANDNPSZ256rm, 0 },
{ X86::VANDPDZ128rr, X86::VANDPDZ128rm, 0 },
{ X86::VANDPDZ256rr, X86::VANDPDZ256rm, 0 },
{ X86::VANDPSZ128rr, X86::VANDPSZ128rm, 0 },
{ X86::VANDPSZ256rr, X86::VANDPSZ256rm, 0 },
{ X86::VCMPPDZ128rri, X86::VCMPPDZ128rmi, 0 },
{ X86::VCMPPDZ256rri, X86::VCMPPDZ256rmi, 0 },
{ X86::VCMPPSZ128rri, X86::VCMPPSZ128rmi, 0 },
{ X86::VCMPPSZ256rri, X86::VCMPPSZ256rmi, 0 },
{ X86::VDIVPDZ128rr, X86::VDIVPDZ128rm, 0 },
{ X86::VDIVPDZ256rr, X86::VDIVPDZ256rm, 0 },
{ X86::VDIVPSZ128rr, X86::VDIVPSZ128rm, 0 },
{ X86::VDIVPSZ256rr, X86::VDIVPSZ256rm, 0 },
{ X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rm, 0 },
{ X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rm, 0 },
{ X86::VINSERTI32x4Z256rr,X86::VINSERTI32x4Z256rm, 0 },
{ X86::VINSERTI64x2Z256rr,X86::VINSERTI64x2Z256rm, 0 },
{ X86::VMAXCPDZ128rr, X86::VMAXCPDZ128rm, 0 },
{ X86::VMAXCPDZ256rr, X86::VMAXCPDZ256rm, 0 },
{ X86::VMAXCPSZ128rr, X86::VMAXCPSZ128rm, 0 },
{ X86::VMAXCPSZ256rr, X86::VMAXCPSZ256rm, 0 },
{ X86::VMAXPDZ128rr, X86::VMAXPDZ128rm, 0 },
{ X86::VMAXPDZ256rr, X86::VMAXPDZ256rm, 0 },
{ X86::VMAXPSZ128rr, X86::VMAXPSZ128rm, 0 },
{ X86::VMAXPSZ256rr, X86::VMAXPSZ256rm, 0 },
{ X86::VMINCPDZ128rr, X86::VMINCPDZ128rm, 0 },
{ X86::VMINCPDZ256rr, X86::VMINCPDZ256rm, 0 },
{ X86::VMINCPSZ128rr, X86::VMINCPSZ128rm, 0 },
{ X86::VMINCPSZ256rr, X86::VMINCPSZ256rm, 0 },
{ X86::VMINPDZ128rr, X86::VMINPDZ128rm, 0 },
{ X86::VMINPDZ256rr, X86::VMINPDZ256rm, 0 },
{ X86::VMINPSZ128rr, X86::VMINPSZ128rm, 0 },
{ X86::VMINPSZ256rr, X86::VMINPSZ256rm, 0 },
{ X86::VMULPDZ128rr, X86::VMULPDZ128rm, 0 },
{ X86::VMULPDZ256rr, X86::VMULPDZ256rm, 0 },
{ X86::VMULPSZ128rr, X86::VMULPSZ128rm, 0 },
{ X86::VMULPSZ256rr, X86::VMULPSZ256rm, 0 },
{ X86::VORPDZ128rr, X86::VORPDZ128rm, 0 },
{ X86::VORPDZ256rr, X86::VORPDZ256rm, 0 },
{ X86::VORPSZ128rr, X86::VORPSZ128rm, 0 },
{ X86::VORPSZ256rr, X86::VORPSZ256rm, 0 },
{ X86::VPADDBZ128rr, X86::VPADDBZ128rm, 0 },
{ X86::VPADDBZ256rr, X86::VPADDBZ256rm, 0 },
{ X86::VPADDDZ128rr, X86::VPADDDZ128rm, 0 },
{ X86::VPADDDZ256rr, X86::VPADDDZ256rm, 0 },
{ X86::VPADDQZ128rr, X86::VPADDQZ128rm, 0 },
{ X86::VPADDQZ256rr, X86::VPADDQZ256rm, 0 },
{ X86::VPADDSBZ128rr, X86::VPADDSBZ128rm, 0 },
{ X86::VPADDSBZ256rr, X86::VPADDSBZ256rm, 0 },
{ X86::VPADDSWZ128rr, X86::VPADDSWZ128rm, 0 },
{ X86::VPADDSWZ256rr, X86::VPADDSWZ256rm, 0 },
{ X86::VPADDUSBZ128rr, X86::VPADDUSBZ128rm, 0 },
{ X86::VPADDUSBZ256rr, X86::VPADDUSBZ256rm, 0 },
{ X86::VPADDUSWZ128rr, X86::VPADDUSWZ128rm, 0 },
{ X86::VPADDUSWZ256rr, X86::VPADDUSWZ256rm, 0 },
{ X86::VPADDWZ128rr, X86::VPADDWZ128rm, 0 },
{ X86::VPADDWZ256rr, X86::VPADDWZ256rm, 0 },
{ X86::VPALIGNRZ128rri, X86::VPALIGNRZ128rmi, 0 },
{ X86::VPALIGNRZ256rri, X86::VPALIGNRZ256rmi, 0 },
{ X86::VPANDDZ128rr, X86::VPANDDZ128rm, 0 },
{ X86::VPANDDZ256rr, X86::VPANDDZ256rm, 0 },
{ X86::VPANDNDZ128rr, X86::VPANDNDZ128rm, 0 },
{ X86::VPANDNDZ256rr, X86::VPANDNDZ256rm, 0 },
{ X86::VPANDNQZ128rr, X86::VPANDNQZ128rm, 0 },
{ X86::VPANDNQZ256rr, X86::VPANDNQZ256rm, 0 },
{ X86::VPANDQZ128rr, X86::VPANDQZ128rm, 0 },
{ X86::VPANDQZ256rr, X86::VPANDQZ256rm, 0 },
{ X86::VPCMPBZ128rri, X86::VPCMPBZ128rmi, 0 },
{ X86::VPCMPBZ256rri, X86::VPCMPBZ256rmi, 0 },
{ X86::VPCMPDZ128rri, X86::VPCMPDZ128rmi, 0 },
{ X86::VPCMPDZ256rri, X86::VPCMPDZ256rmi, 0 },
{ X86::VPCMPEQBZ128rr, X86::VPCMPEQBZ128rm, 0 },
{ X86::VPCMPEQBZ256rr, X86::VPCMPEQBZ256rm, 0 },
{ X86::VPCMPEQDZ128rr, X86::VPCMPEQDZ128rm, 0 },
{ X86::VPCMPEQDZ256rr, X86::VPCMPEQDZ256rm, 0 },
{ X86::VPCMPEQQZ128rr, X86::VPCMPEQQZ128rm, 0 },
{ X86::VPCMPEQQZ256rr, X86::VPCMPEQQZ256rm, 0 },
{ X86::VPCMPEQWZ128rr, X86::VPCMPEQWZ128rm, 0 },
{ X86::VPCMPEQWZ256rr, X86::VPCMPEQWZ256rm, 0 },
{ X86::VPCMPGTBZ128rr, X86::VPCMPGTBZ128rm, 0 },
{ X86::VPCMPGTBZ256rr, X86::VPCMPGTBZ256rm, 0 },
{ X86::VPCMPGTDZ128rr, X86::VPCMPGTDZ128rm, 0 },
{ X86::VPCMPGTDZ256rr, X86::VPCMPGTDZ256rm, 0 },
{ X86::VPCMPGTQZ128rr, X86::VPCMPGTQZ128rm, 0 },
{ X86::VPCMPGTQZ256rr, X86::VPCMPGTQZ256rm, 0 },
{ X86::VPCMPGTWZ128rr, X86::VPCMPGTWZ128rm, 0 },
{ X86::VPCMPGTWZ256rr, X86::VPCMPGTWZ256rm, 0 },
{ X86::VPCMPQZ128rri, X86::VPCMPQZ128rmi, 0 },
{ X86::VPCMPQZ256rri, X86::VPCMPQZ256rmi, 0 },
{ X86::VPCMPUBZ128rri, X86::VPCMPUBZ128rmi, 0 },
{ X86::VPCMPUBZ256rri, X86::VPCMPUBZ256rmi, 0 },
{ X86::VPCMPUDZ128rri, X86::VPCMPUDZ128rmi, 0 },
{ X86::VPCMPUDZ256rri, X86::VPCMPUDZ256rmi, 0 },
{ X86::VPCMPUQZ128rri, X86::VPCMPUQZ128rmi, 0 },
{ X86::VPCMPUQZ256rri, X86::VPCMPUQZ256rmi, 0 },
{ X86::VPCMPUWZ128rri, X86::VPCMPUWZ128rmi, 0 },
{ X86::VPCMPUWZ256rri, X86::VPCMPUWZ256rmi, 0 },
{ X86::VPCMPWZ128rri, X86::VPCMPWZ128rmi, 0 },
{ X86::VPCMPWZ256rri, X86::VPCMPWZ256rmi, 0 },
{ X86::VPERMBZ128rr, X86::VPERMBZ128rm, 0 },
{ X86::VPERMBZ256rr, X86::VPERMBZ256rm, 0 },
{ X86::VPERMDZ256rr, X86::VPERMDZ256rm, 0 },
{ X86::VPERMILPDZ128rr, X86::VPERMILPDZ128rm, 0 },
{ X86::VPERMILPDZ256rr, X86::VPERMILPDZ256rm, 0 },
{ X86::VPERMILPSZ128rr, X86::VPERMILPSZ128rm, 0 },
{ X86::VPERMILPSZ256rr, X86::VPERMILPSZ256rm, 0 },
{ X86::VPERMPDZ256rr, X86::VPERMPDZ256rm, 0 },
{ X86::VPERMPSZ256rr, X86::VPERMPSZ256rm, 0 },
{ X86::VPERMQZ256rr, X86::VPERMQZ256rm, 0 },
{ X86::VPERMWZ128rr, X86::VPERMWZ128rm, 0 },
{ X86::VPERMWZ256rr, X86::VPERMWZ256rm, 0 },
{ X86::VPMADDUBSWZ128rr, X86::VPMADDUBSWZ128rm, 0 },
{ X86::VPMADDUBSWZ256rr, X86::VPMADDUBSWZ256rm, 0 },
{ X86::VPMADDWDZ128rr, X86::VPMADDWDZ128rm, 0 },
{ X86::VPMADDWDZ256rr, X86::VPMADDWDZ256rm, 0 },
{ X86::VPORDZ128rr, X86::VPORDZ128rm, 0 },
{ X86::VPORDZ256rr, X86::VPORDZ256rm, 0 },
{ X86::VPORQZ128rr, X86::VPORQZ128rm, 0 },
{ X86::VPORQZ256rr, X86::VPORQZ256rm, 0 },
{ X86::VPSHUFBZ128rr, X86::VPSHUFBZ128rm, 0 },
{ X86::VPSHUFBZ256rr, X86::VPSHUFBZ256rm, 0 },
{ X86::VPSUBBZ128rr, X86::VPSUBBZ128rm, 0 },
{ X86::VPSUBBZ256rr, X86::VPSUBBZ256rm, 0 },
{ X86::VPSUBDZ128rr, X86::VPSUBDZ128rm, 0 },
{ X86::VPSUBDZ256rr, X86::VPSUBDZ256rm, 0 },
{ X86::VPSUBQZ128rr, X86::VPSUBQZ128rm, 0 },
{ X86::VPSUBQZ256rr, X86::VPSUBQZ256rm, 0 },
{ X86::VPSUBSBZ128rr, X86::VPSUBSBZ128rm, 0 },
{ X86::VPSUBSBZ256rr, X86::VPSUBSBZ256rm, 0 },
{ X86::VPSUBSWZ128rr, X86::VPSUBSWZ128rm, 0 },
{ X86::VPSUBSWZ256rr, X86::VPSUBSWZ256rm, 0 },
{ X86::VPSUBUSBZ128rr, X86::VPSUBUSBZ128rm, 0 },
{ X86::VPSUBUSBZ256rr, X86::VPSUBUSBZ256rm, 0 },
{ X86::VPSUBUSWZ128rr, X86::VPSUBUSWZ128rm, 0 },
{ X86::VPSUBUSWZ256rr, X86::VPSUBUSWZ256rm, 0 },
{ X86::VPSUBWZ128rr, X86::VPSUBWZ128rm, 0 },
{ X86::VPSUBWZ256rr, X86::VPSUBWZ256rm, 0 },
{ X86::VPUNPCKHBWZ128rr, X86::VPUNPCKHBWZ128rm, 0 },
{ X86::VPUNPCKHBWZ256rr, X86::VPUNPCKHBWZ256rm, 0 },
{ X86::VPUNPCKHDQZ128rr, X86::VPUNPCKHDQZ128rm, 0 },
{ X86::VPUNPCKHDQZ256rr, X86::VPUNPCKHDQZ256rm, 0 },
{ X86::VPUNPCKHQDQZ128rr, X86::VPUNPCKHQDQZ128rm, 0 },
{ X86::VPUNPCKHQDQZ256rr, X86::VPUNPCKHQDQZ256rm, 0 },
{ X86::VPUNPCKHWDZ128rr, X86::VPUNPCKHWDZ128rm, 0 },
{ X86::VPUNPCKHWDZ256rr, X86::VPUNPCKHWDZ256rm, 0 },
{ X86::VPUNPCKLBWZ128rr, X86::VPUNPCKLBWZ128rm, 0 },
{ X86::VPUNPCKLBWZ256rr, X86::VPUNPCKLBWZ256rm, 0 },
{ X86::VPUNPCKLDQZ128rr, X86::VPUNPCKLDQZ128rm, 0 },
{ X86::VPUNPCKLDQZ256rr, X86::VPUNPCKLDQZ256rm, 0 },
{ X86::VPUNPCKLQDQZ128rr, X86::VPUNPCKLQDQZ128rm, 0 },
{ X86::VPUNPCKLQDQZ256rr, X86::VPUNPCKLQDQZ256rm, 0 },
{ X86::VPUNPCKLWDZ128rr, X86::VPUNPCKLWDZ128rm, 0 },
{ X86::VPUNPCKLWDZ256rr, X86::VPUNPCKLWDZ256rm, 0 },
{ X86::VPXORDZ128rr, X86::VPXORDZ128rm, 0 },
{ X86::VPXORDZ256rr, X86::VPXORDZ256rm, 0 },
{ X86::VPXORQZ128rr, X86::VPXORQZ128rm, 0 },
{ X86::VPXORQZ256rr, X86::VPXORQZ256rm, 0 },
{ X86::VSUBPDZ128rr, X86::VSUBPDZ128rm, 0 },
{ X86::VSUBPDZ256rr, X86::VSUBPDZ256rm, 0 },
{ X86::VSUBPSZ128rr, X86::VSUBPSZ128rm, 0 },
{ X86::VSUBPSZ256rr, X86::VSUBPSZ256rm, 0 },
{ X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rm, 0 },
{ X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rm, 0 },
{ X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rm, 0 },
{ X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rm, 0 },
{ X86::VUNPCKLPDZ128rr, X86::VUNPCKLPDZ128rm, 0 },
{ X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rm, 0 },
{ X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rm, 0 },
{ X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rm, 0 },
{ X86::VXORPDZ128rr, X86::VXORPDZ128rm, 0 },
{ X86::VXORPDZ256rr, X86::VXORPDZ256rm, 0 },
{ X86::VXORPSZ128rr, X86::VXORPSZ128rm, 0 },
{ X86::VXORPSZ256rr, X86::VXORPSZ256rm, 0 },
// AVX-512 masked foldable instructions
{ X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
{ X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
{ X86::VPERMILPDZrikz, X86::VPERMILPDZmikz, 0 },
{ X86::VPERMILPSZrikz, X86::VPERMILPSZmikz, 0 },
{ X86::VPERMPDZrikz, X86::VPERMPDZmikz, 0 },
{ X86::VPERMQZrikz, X86::VPERMQZmikz, 0 },
{ X86::VPMOVSXBDZrrkz, X86::VPMOVSXBDZrmkz, 0 },
{ X86::VPMOVSXBQZrrkz, X86::VPMOVSXBQZrmkz, TB_NO_REVERSE },
{ X86::VPMOVSXBWZrrkz, X86::VPMOVSXBWZrmkz, 0 },
{ X86::VPMOVSXDQZrrkz, X86::VPMOVSXDQZrmkz, 0 },
{ X86::VPMOVSXWDZrrkz, X86::VPMOVSXWDZrmkz, 0 },
{ X86::VPMOVSXWQZrrkz, X86::VPMOVSXWQZrmkz, 0 },
{ X86::VPMOVZXBDZrrkz, X86::VPMOVZXBDZrmkz, 0 },
{ X86::VPMOVZXBQZrrkz, X86::VPMOVZXBQZrmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBWZrrkz, X86::VPMOVZXBWZrmkz, 0 },
{ X86::VPMOVZXDQZrrkz, X86::VPMOVZXDQZrmkz, 0 },
{ X86::VPMOVZXWDZrrkz, X86::VPMOVZXWDZrmkz, 0 },
{ X86::VPMOVZXWQZrrkz, X86::VPMOVZXWQZrmkz, 0 },
{ X86::VPSHUFDZrikz, X86::VPSHUFDZmikz, 0 },
{ X86::VPSHUFHWZrikz, X86::VPSHUFHWZmikz, 0 },
{ X86::VPSHUFLWZrikz, X86::VPSHUFLWZmikz, 0 },
// AVX-512VL 256-bit masked foldable instructions
{ X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
{ X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
{ X86::VPERMILPDZ256rikz, X86::VPERMILPDZ256mikz, 0 },
{ X86::VPERMILPSZ256rikz, X86::VPERMILPSZ256mikz, 0 },
{ X86::VPERMPDZ256rikz, X86::VPERMPDZ256mikz, 0 },
{ X86::VPERMQZ256rikz, X86::VPERMQZ256mikz, 0 },
{ X86::VPMOVSXBDZ256rrkz, X86::VPMOVSXBDZ256rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXBQZ256rrkz, X86::VPMOVSXBQZ256rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXBWZ256rrkz, X86::VPMOVSXBWZ256rmkz, 0 },
{ X86::VPMOVSXDQZ256rrkz, X86::VPMOVSXDQZ256rmkz, 0 },
{ X86::VPMOVSXWDZ256rrkz, X86::VPMOVSXWDZ256rmkz, 0 },
{ X86::VPMOVSXWQZ256rrkz, X86::VPMOVSXWQZ256rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBDZ256rrkz, X86::VPMOVZXBDZ256rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBQZ256rrkz, X86::VPMOVZXBQZ256rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBWZ256rrkz, X86::VPMOVZXBWZ256rmkz, 0 },
{ X86::VPMOVZXDQZ256rrkz, X86::VPMOVZXDQZ256rmkz, 0 },
{ X86::VPMOVZXWDZ256rrkz, X86::VPMOVZXWDZ256rmkz, 0 },
{ X86::VPMOVZXWQZ256rrkz, X86::VPMOVZXWQZ256rmkz, TB_NO_REVERSE },
{ X86::VPSHUFDZ256rikz, X86::VPSHUFDZ256mikz, 0 },
{ X86::VPSHUFHWZ256rikz, X86::VPSHUFHWZ256mikz, 0 },
{ X86::VPSHUFLWZ256rikz, X86::VPSHUFLWZ256mikz, 0 },
// AVX-512VL 128-bit masked foldable instructions
{ X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
{ X86::VPERMILPDZ128rikz, X86::VPERMILPDZ128mikz, 0 },
{ X86::VPERMILPSZ128rikz, X86::VPERMILPSZ128mikz, 0 },
{ X86::VPMOVSXBDZ128rrkz, X86::VPMOVSXBDZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXBQZ128rrkz, X86::VPMOVSXBQZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXBWZ128rrkz, X86::VPMOVSXBWZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXDQZ128rrkz, X86::VPMOVSXDQZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXWDZ128rrkz, X86::VPMOVSXWDZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVSXWQZ128rrkz, X86::VPMOVSXWQZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBDZ128rrkz, X86::VPMOVZXBDZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBQZ128rrkz, X86::VPMOVZXBQZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXBWZ128rrkz, X86::VPMOVZXBWZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXDQZ128rrkz, X86::VPMOVZXDQZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXWDZ128rrkz, X86::VPMOVZXWDZ128rmkz, TB_NO_REVERSE },
{ X86::VPMOVZXWQZ128rrkz, X86::VPMOVZXWQZ128rmkz, TB_NO_REVERSE },
{ X86::VPSHUFDZ128rikz, X86::VPSHUFDZ128mikz, 0 },
{ X86::VPSHUFHWZ128rikz, X86::VPSHUFHWZ128mikz, 0 },
{ X86::VPSHUFLWZ128rikz, X86::VPSHUFLWZ128mikz, 0 },
// AES foldable instructions
{ X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
{ X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
{ X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
{ X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
{ X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
{ X86::VAESDECrr, X86::VAESDECrm, 0 },
{ X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
{ X86::VAESENCrr, X86::VAESENCrm, 0 },
// SHA foldable instructions
{ X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
{ X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
{ X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
{ X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
{ X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
{ X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
{ X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }
};
for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) {
AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
Entry.RegOp, Entry.MemOp,
// Index 2, folded load
Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
}
static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
// FMA4 foldable patterns
{ X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_NONE },
{ X86::VFMADDSS4rr_Int, X86::VFMADDSS4rm_Int, TB_NO_REVERSE },
{ X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_NONE },
{ X86::VFMADDSD4rr_Int, X86::VFMADDSD4rm_Int, TB_NO_REVERSE },
{ X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_NONE },
{ X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_NONE },
{ X86::VFMADDPS4Yrr, X86::VFMADDPS4Yrm, TB_ALIGN_NONE },
{ X86::VFMADDPD4Yrr, X86::VFMADDPD4Yrm, TB_ALIGN_NONE },
{ X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, TB_ALIGN_NONE },
{ X86::VFNMADDSS4rr_Int, X86::VFNMADDSS4rm_Int, TB_NO_REVERSE },
{ X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, TB_ALIGN_NONE },
{ X86::VFNMADDSD4rr_Int, X86::VFNMADDSD4rm_Int, TB_NO_REVERSE },
{ X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_NONE },
{ X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_NONE },
{ X86::VFNMADDPS4Yrr, X86::VFNMADDPS4Yrm, TB_ALIGN_NONE },
{ X86::VFNMADDPD4Yrr, X86::VFNMADDPD4Yrm, TB_ALIGN_NONE },
{ X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_NONE },
{ X86::VFMSUBSS4rr_Int, X86::VFMSUBSS4rm_Int, TB_NO_REVERSE },
{ X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_NONE },
{ X86::VFMSUBSD4rr_Int, X86::VFMSUBSD4rm_Int, TB_NO_REVERSE },
{ X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_NONE },
{ X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_NONE },
{ X86::VFMSUBPS4Yrr, X86::VFMSUBPS4Yrm, TB_ALIGN_NONE },
{ X86::VFMSUBPD4Yrr, X86::VFMSUBPD4Yrm, TB_ALIGN_NONE },
{ X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, TB_ALIGN_NONE },
{ X86::VFNMSUBSS4rr_Int, X86::VFNMSUBSS4rm_Int, TB_NO_REVERSE },
{ X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, TB_ALIGN_NONE },
{ X86::VFNMSUBSD4rr_Int, X86::VFNMSUBSD4rm_Int, TB_NO_REVERSE },
{ X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_NONE },
{ X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_NONE },
{ X86::VFNMSUBPS4Yrr, X86::VFNMSUBPS4Yrm, TB_ALIGN_NONE },
{ X86::VFNMSUBPD4Yrr, X86::VFNMSUBPD4Yrm, TB_ALIGN_NONE },
{ X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_NONE },
{ X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_NONE },
{ X86::VFMADDSUBPS4Yrr, X86::VFMADDSUBPS4Yrm, TB_ALIGN_NONE },
{ X86::VFMADDSUBPD4Yrr, X86::VFMADDSUBPD4Yrm, TB_ALIGN_NONE },
{ X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_NONE },
{ X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_NONE },
{ X86::VFMSUBADDPS4Yrr, X86::VFMSUBADDPS4Yrm, TB_ALIGN_NONE },
{ X86::VFMSUBADDPD4Yrr, X86::VFMSUBADDPD4Yrm, TB_ALIGN_NONE },
// XOP foldable instructions
{ X86::VPCMOVrrr, X86::VPCMOVrrm, 0 },
{ X86::VPCMOVrrrY, X86::VPCMOVrrmY, 0 },
{ X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 },
{ X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 },
{ X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 },
{ X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 },
{ X86::VPPERMrrr, X86::VPPERMrrm, 0 },
// AVX-512 instructions with 3 source operands.
{ X86::VPERMI2Brr, X86::VPERMI2Brm, 0 },
{ X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
{ X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
{ X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
{ X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
{ X86::VPERMI2Wrr, X86::VPERMI2Wrm, 0 },
{ X86::VPERMT2Brr, X86::VPERMT2Brm, 0 },
{ X86::VPERMT2Drr, X86::VPERMT2Drm, 0 },
{ X86::VPERMT2PSrr, X86::VPERMT2PSrm, 0 },
{ X86::VPERMT2PDrr, X86::VPERMT2PDrm, 0 },
{ X86::VPERMT2Qrr, X86::VPERMT2Qrm, 0 },
{ X86::VPERMT2Wrr, X86::VPERMT2Wrm, 0 },
{ X86::VPTERNLOGDZrri, X86::VPTERNLOGDZrmi, 0 },
{ X86::VPTERNLOGQZrri, X86::VPTERNLOGQZrmi, 0 },
// AVX-512VL 256-bit instructions with 3 source operands.
{ X86::VPERMI2B256rr, X86::VPERMI2B256rm, 0 },
{ X86::VPERMI2D256rr, X86::VPERMI2D256rm, 0 },
{ X86::VPERMI2PD256rr, X86::VPERMI2PD256rm, 0 },
{ X86::VPERMI2PS256rr, X86::VPERMI2PS256rm, 0 },
{ X86::VPERMI2Q256rr, X86::VPERMI2Q256rm, 0 },
{ X86::VPERMI2W256rr, X86::VPERMI2W256rm, 0 },
{ X86::VPERMT2B256rr, X86::VPERMT2B256rm, 0 },
{ X86::VPERMT2D256rr, X86::VPERMT2D256rm, 0 },
{ X86::VPERMT2PD256rr, X86::VPERMT2PD256rm, 0 },
{ X86::VPERMT2PS256rr, X86::VPERMT2PS256rm, 0 },
{ X86::VPERMT2Q256rr, X86::VPERMT2Q256rm, 0 },
{ X86::VPERMT2W256rr, X86::VPERMT2W256rm, 0 },
{ X86::VPTERNLOGDZ256rri, X86::VPTERNLOGDZ256rmi, 0 },
{ X86::VPTERNLOGQZ256rri, X86::VPTERNLOGQZ256rmi, 0 },
// AVX-512VL 128-bit instructions with 3 source operands.
{ X86::VPERMI2B128rr, X86::VPERMI2B128rm, 0 },
{ X86::VPERMI2D128rr, X86::VPERMI2D128rm, 0 },
{ X86::VPERMI2PD128rr, X86::VPERMI2PD128rm, 0 },
{ X86::VPERMI2PS128rr, X86::VPERMI2PS128rm, 0 },
{ X86::VPERMI2Q128rr, X86::VPERMI2Q128rm, 0 },
{ X86::VPERMI2W128rr, X86::VPERMI2W128rm, 0 },
{ X86::VPERMT2B128rr, X86::VPERMT2B128rm, 0 },
{ X86::VPERMT2D128rr, X86::VPERMT2D128rm, 0 },
{ X86::VPERMT2PD128rr, X86::VPERMT2PD128rm, 0 },
{ X86::VPERMT2PS128rr, X86::VPERMT2PS128rm, 0 },
{ X86::VPERMT2Q128rr, X86::VPERMT2Q128rm, 0 },
{ X86::VPERMT2W128rr, X86::VPERMT2W128rm, 0 },
{ X86::VPTERNLOGDZ128rri, X86::VPTERNLOGDZ128rmi, 0 },
{ X86::VPTERNLOGQZ128rri, X86::VPTERNLOGQZ128rmi, 0 },
// AVX-512 masked instructions
{ X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
{ X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
{ X86::VALIGNDZrrikz, X86::VALIGNDZrmikz, 0 },
{ X86::VALIGNQZrrikz, X86::VALIGNQZrmikz, 0 },
{ X86::VANDNPDZrrkz, X86::VANDNPDZrmkz, 0 },
{ X86::VANDNPSZrrkz, X86::VANDNPSZrmkz, 0 },
{ X86::VANDPDZrrkz, X86::VANDPDZrmkz, 0 },
{ X86::VANDPSZrrkz, X86::VANDPSZrmkz, 0 },
{ X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
{ X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
{ X86::VINSERTF32x4Zrrkz, X86::VINSERTF32x4Zrmkz, 0 },
{ X86::VINSERTF32x8Zrrkz, X86::VINSERTF32x8Zrmkz, 0 },
{ X86::VINSERTF64x2Zrrkz, X86::VINSERTF64x2Zrmkz, 0 },
{ X86::VINSERTF64x4Zrrkz, X86::VINSERTF64x4Zrmkz, 0 },
{ X86::VINSERTI32x4Zrrkz, X86::VINSERTI32x4Zrmkz, 0 },
{ X86::VINSERTI32x8Zrrkz, X86::VINSERTI32x8Zrmkz, 0 },
{ X86::VINSERTI64x2Zrrkz, X86::VINSERTI64x2Zrmkz, 0 },
{ X86::VINSERTI64x4Zrrkz, X86::VINSERTI64x4Zrmkz, 0 },
{ X86::VMAXCPDZrrkz, X86::VMAXCPDZrmkz, 0 },
{ X86::VMAXCPSZrrkz, X86::VMAXCPSZrmkz, 0 },
{ X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
{ X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
{ X86::VMINCPDZrrkz, X86::VMINCPDZrmkz, 0 },
{ X86::VMINCPSZrrkz, X86::VMINCPSZrmkz, 0 },
{ X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
{ X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
{ X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
{ X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
{ X86::VORPDZrrkz, X86::VORPDZrmkz, 0 },
{ X86::VORPSZrrkz, X86::VORPSZrmkz, 0 },
{ X86::VPADDBZrrkz, X86::VPADDBZrmkz, 0 },
{ X86::VPADDDZrrkz, X86::VPADDDZrmkz, 0 },
{ X86::VPADDQZrrkz, X86::VPADDQZrmkz, 0 },
{ X86::VPADDSBZrrkz, X86::VPADDSBZrmkz, 0 },
{ X86::VPADDSWZrrkz, X86::VPADDSWZrmkz, 0 },
{ X86::VPADDUSBZrrkz, X86::VPADDUSBZrmkz, 0 },
{ X86::VPADDUSWZrrkz, X86::VPADDUSWZrmkz, 0 },
{ X86::VPADDWZrrkz, X86::VPADDWZrmkz, 0 },
{ X86::VPALIGNRZrrikz, X86::VPALIGNRZrmikz, 0 },
{ X86::VPANDDZrrkz, X86::VPANDDZrmkz, 0 },
{ X86::VPANDNDZrrkz, X86::VPANDNDZrmkz, 0 },
{ X86::VPANDNQZrrkz, X86::VPANDNQZrmkz, 0 },
{ X86::VPANDQZrrkz, X86::VPANDQZrmkz, 0 },
{ X86::VPERMBZrrkz, X86::VPERMBZrmkz, 0 },
{ X86::VPERMDZrrkz, X86::VPERMDZrmkz, 0 },
{ X86::VPERMILPDZrrkz, X86::VPERMILPDZrmkz, 0 },
{ X86::VPERMILPSZrrkz, X86::VPERMILPSZrmkz, 0 },
{ X86::VPERMPDZrrkz, X86::VPERMPDZrmkz, 0 },
{ X86::VPERMPSZrrkz, X86::VPERMPSZrmkz, 0 },
{ X86::VPERMQZrrkz, X86::VPERMQZrmkz, 0 },
{ X86::VPERMWZrrkz, X86::VPERMWZrmkz, 0 },
{ X86::VPMADDUBSWZrrkz, X86::VPMADDUBSWZrmkz, 0 },
{ X86::VPMADDWDZrrkz, X86::VPMADDWDZrmkz, 0 },
{ X86::VPORDZrrkz, X86::VPORDZrmkz, 0 },
{ X86::VPORQZrrkz, X86::VPORQZrmkz, 0 },
{ X86::VPSHUFBZrrkz, X86::VPSHUFBZrmkz, 0 },
{ X86::VPSUBBZrrkz, X86::VPSUBBZrmkz, 0 },
{ X86::VPSUBDZrrkz, X86::VPSUBDZrmkz, 0 },
{ X86::VPSUBQZrrkz, X86::VPSUBQZrmkz, 0 },
{ X86::VPSUBSBZrrkz, X86::VPSUBSBZrmkz, 0 },
{ X86::VPSUBSWZrrkz, X86::VPSUBSWZrmkz, 0 },
{ X86::VPSUBUSBZrrkz, X86::VPSUBUSBZrmkz, 0 },
{ X86::VPSUBUSWZrrkz, X86::VPSUBUSWZrmkz, 0 },
{ X86::VPSUBWZrrkz, X86::VPSUBWZrmkz, 0 },
{ X86::VPUNPCKHBWZrrkz, X86::VPUNPCKHBWZrmkz, 0 },
{ X86::VPUNPCKHDQZrrkz, X86::VPUNPCKHDQZrmkz, 0 },
{ X86::VPUNPCKHQDQZrrkz, X86::VPUNPCKHQDQZrmkz, 0 },
{ X86::VPUNPCKHWDZrrkz, X86::VPUNPCKHWDZrmkz, 0 },
{ X86::VPUNPCKLBWZrrkz, X86::VPUNPCKLBWZrmkz, 0 },
{ X86::VPUNPCKLDQZrrkz, X86::VPUNPCKLDQZrmkz, 0 },
{ X86::VPUNPCKLQDQZrrkz, X86::VPUNPCKLQDQZrmkz, 0 },
{ X86::VPUNPCKLWDZrrkz, X86::VPUNPCKLWDZrmkz, 0 },
{ X86::VPXORDZrrkz, X86::VPXORDZrmkz, 0 },
{ X86::VPXORQZrrkz, X86::VPXORQZrmkz, 0 },
{ X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
{ X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
{ X86::VUNPCKHPDZrrkz, X86::VUNPCKHPDZrmkz, 0 },
{ X86::VUNPCKHPSZrrkz, X86::VUNPCKHPSZrmkz, 0 },
{ X86::VUNPCKLPDZrrkz, X86::VUNPCKLPDZrmkz, 0 },
{ X86::VUNPCKLPSZrrkz, X86::VUNPCKLPSZrmkz, 0 },
{ X86::VXORPDZrrkz, X86::VXORPDZrmkz, 0 },
{ X86::VXORPSZrrkz, X86::VXORPSZrmkz, 0 },
// AVX-512{F,VL} masked arithmetic instructions 256-bit
{ X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
{ X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
{ X86::VALIGNDZ256rrikz, X86::VALIGNDZ256rmikz, 0 },
{ X86::VALIGNQZ256rrikz, X86::VALIGNQZ256rmikz, 0 },
{ X86::VANDNPDZ256rrkz, X86::VANDNPDZ256rmkz, 0 },
{ X86::VANDNPSZ256rrkz, X86::VANDNPSZ256rmkz, 0 },
{ X86::VANDPDZ256rrkz, X86::VANDPDZ256rmkz, 0 },
{ X86::VANDPSZ256rrkz, X86::VANDPSZ256rmkz, 0 },
{ X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
{ X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
{ X86::VINSERTF32x4Z256rrkz, X86::VINSERTF32x4Z256rmkz, 0 },
{ X86::VINSERTF64x2Z256rrkz, X86::VINSERTF64x2Z256rmkz, 0 },
{ X86::VINSERTI32x4Z256rrkz, X86::VINSERTI32x4Z256rmkz, 0 },
{ X86::VINSERTI64x2Z256rrkz, X86::VINSERTI64x2Z256rmkz, 0 },
{ X86::VMAXCPDZ256rrkz, X86::VMAXCPDZ256rmkz, 0 },
{ X86::VMAXCPSZ256rrkz, X86::VMAXCPSZ256rmkz, 0 },
{ X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
{ X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
{ X86::VMINCPDZ256rrkz, X86::VMINCPDZ256rmkz, 0 },
{ X86::VMINCPSZ256rrkz, X86::VMINCPSZ256rmkz, 0 },
{ X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
{ X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
{ X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
{ X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
{ X86::VORPDZ256rrkz, X86::VORPDZ256rmkz, 0 },
{ X86::VORPSZ256rrkz, X86::VORPSZ256rmkz, 0 },
{ X86::VPADDBZ256rrkz, X86::VPADDBZ256rmkz, 0 },
{ X86::VPADDDZ256rrkz, X86::VPADDDZ256rmkz, 0 },
{ X86::VPADDQZ256rrkz, X86::VPADDQZ256rmkz, 0 },
{ X86::VPADDSBZ256rrkz, X86::VPADDSBZ256rmkz, 0 },
{ X86::VPADDSWZ256rrkz, X86::VPADDSWZ256rmkz, 0 },
{ X86::VPADDUSBZ256rrkz, X86::VPADDUSBZ256rmkz, 0 },
{ X86::VPADDUSWZ256rrkz, X86::VPADDUSWZ256rmkz, 0 },
{ X86::VPADDWZ256rrkz, X86::VPADDWZ256rmkz, 0 },
{ X86::VPALIGNRZ256rrikz, X86::VPALIGNRZ256rmikz, 0 },
{ X86::VPANDDZ256rrkz, X86::VPANDDZ256rmkz, 0 },
{ X86::VPANDNDZ256rrkz, X86::VPANDNDZ256rmkz, 0 },
{ X86::VPANDNQZ256rrkz, X86::VPANDNQZ256rmkz, 0 },
{ X86::VPANDQZ256rrkz, X86::VPANDQZ256rmkz, 0 },
{ X86::VPERMBZ256rrkz, X86::VPERMBZ256rmkz, 0 },
{ X86::VPERMDZ256rrkz, X86::VPERMDZ256rmkz, 0 },
{ X86::VPERMILPDZ256rrkz, X86::VPERMILPDZ256rmkz, 0 },
{ X86::VPERMILPSZ256rrkz, X86::VPERMILPSZ256rmkz, 0 },
{ X86::VPERMPDZ256rrkz, X86::VPERMPDZ256rmkz, 0 },
{ X86::VPERMPSZ256rrkz, X86::VPERMPSZ256rmkz, 0 },
{ X86::VPERMQZ256rrkz, X86::VPERMQZ256rmkz, 0 },
{ X86::VPERMWZ256rrkz, X86::VPERMWZ256rmkz, 0 },
{ X86::VPMADDUBSWZ256rrkz, X86::VPMADDUBSWZ256rmkz, 0 },
{ X86::VPMADDWDZ256rrkz, X86::VPMADDWDZ256rmkz, 0 },
{ X86::VPORDZ256rrkz, X86::VPORDZ256rmkz, 0 },
{ X86::VPORQZ256rrkz, X86::VPORQZ256rmkz, 0 },
{ X86::VPSHUFBZ256rrkz, X86::VPSHUFBZ256rmkz, 0 },
{ X86::VPSUBBZ256rrkz, X86::VPSUBBZ256rmkz, 0 },
{ X86::VPSUBDZ256rrkz, X86::VPSUBDZ256rmkz, 0 },
{ X86::VPSUBQZ256rrkz, X86::VPSUBQZ256rmkz, 0 },
{ X86::VPSUBSBZ256rrkz, X86::VPSUBSBZ256rmkz, 0 },
{ X86::VPSUBSWZ256rrkz, X86::VPSUBSWZ256rmkz, 0 },
{ X86::VPSUBUSBZ256rrkz, X86::VPSUBUSBZ256rmkz, 0 },
{ X86::VPSUBUSWZ256rrkz, X86::VPSUBUSWZ256rmkz, 0 },
{ X86::VPSUBWZ256rrkz, X86::VPSUBWZ256rmkz, 0 },
{ X86::VPUNPCKHBWZ256rrkz, X86::VPUNPCKHBWZ256rmkz, 0 },
{ X86::VPUNPCKHDQZ256rrkz, X86::VPUNPCKHDQZ256rmkz, 0 },
{ X86::VPUNPCKHQDQZ256rrkz, X86::VPUNPCKHQDQZ256rmkz, 0 },
{ X86::VPUNPCKHWDZ256rrkz, X86::VPUNPCKHWDZ256rmkz, 0 },
{ X86::VPUNPCKLBWZ256rrkz, X86::VPUNPCKLBWZ256rmkz, 0 },
{ X86::VPUNPCKLDQZ256rrkz, X86::VPUNPCKLDQZ256rmkz, 0 },
{ X86::VPUNPCKLQDQZ256rrkz, X86::VPUNPCKLQDQZ256rmkz, 0 },
{ X86::VPUNPCKLWDZ256rrkz, X86::VPUNPCKLWDZ256rmkz, 0 },
{ X86::VPXORDZ256rrkz, X86::VPXORDZ256rmkz, 0 },
{ X86::VPXORQZ256rrkz, X86::VPXORQZ256rmkz, 0 },
{ X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
{ X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
{ X86::VUNPCKHPDZ256rrkz, X86::VUNPCKHPDZ256rmkz, 0 },
{ X86::VUNPCKHPSZ256rrkz, X86::VUNPCKHPSZ256rmkz, 0 },
{ X86::VUNPCKLPDZ256rrkz, X86::VUNPCKLPDZ256rmkz, 0 },
{ X86::VUNPCKLPSZ256rrkz, X86::VUNPCKLPSZ256rmkz, 0 },
{ X86::VXORPDZ256rrkz, X86::VXORPDZ256rmkz, 0 },
{ X86::VXORPSZ256rrkz, X86::VXORPSZ256rmkz, 0 },
// AVX-512{F,VL} masked arithmetic instructions 128-bit
{ X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
{ X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
{ X86::VALIGNDZ128rrikz, X86::VALIGNDZ128rmikz, 0 },
{ X86::VALIGNQZ128rrikz, X86::VALIGNQZ128rmikz, 0 },
{ X86::VANDNPDZ128rrkz, X86::VANDNPDZ128rmkz, 0 },
{ X86::VANDNPSZ128rrkz, X86::VANDNPSZ128rmkz, 0 },
{ X86::VANDPDZ128rrkz, X86::VANDPDZ128rmkz, 0 },
{ X86::VANDPSZ128rrkz, X86::VANDPSZ128rmkz, 0 },
{ X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
{ X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
{ X86::VMAXCPDZ128rrkz, X86::VMAXCPDZ128rmkz, 0 },
{ X86::VMAXCPSZ128rrkz, X86::VMAXCPSZ128rmkz, 0 },
{ X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 },
{ X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
{ X86::VMINCPDZ128rrkz, X86::VMINCPDZ128rmkz, 0 },
{ X86::VMINCPSZ128rrkz, X86::VMINCPSZ128rmkz, 0 },
{ X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
{ X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
{ X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
{ X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
{ X86::VORPDZ128rrkz, X86::VORPDZ128rmkz, 0 },
{ X86::VORPSZ128rrkz, X86::VORPSZ128rmkz, 0 },
{ X86::VPADDBZ128rrkz, X86::VPADDBZ128rmkz, 0 },
{ X86::VPADDDZ128rrkz, X86::VPADDDZ128rmkz, 0 },
{ X86::VPADDQZ128rrkz, X86::VPADDQZ128rmkz, 0 },
{ X86::VPADDSBZ128rrkz, X86::VPADDSBZ128rmkz, 0 },
{ X86::VPADDSWZ128rrkz, X86::VPADDSWZ128rmkz, 0 },
{ X86::VPADDUSBZ128rrkz, X86::VPADDUSBZ128rmkz, 0 },
{ X86::VPADDUSWZ128rrkz, X86::VPADDUSWZ128rmkz, 0 },
{ X86::VPADDWZ128rrkz, X86::VPADDWZ128rmkz, 0 },
{ X86::VPALIGNRZ128rrikz, X86::VPALIGNRZ128rmikz, 0 },
{ X86::VPANDDZ128rrkz, X86::VPANDDZ128rmkz, 0 },
{ X86::VPANDNDZ128rrkz, X86::VPANDNDZ128rmkz, 0 },
{ X86::VPANDNQZ128rrkz, X86::VPANDNQZ128rmkz, 0 },
{ X86::VPANDQZ128rrkz, X86::VPANDQZ128rmkz, 0 },
{ X86::VPERMBZ128rrkz, X86::VPERMBZ128rmkz, 0 },
{ X86::VPERMILPDZ128rrkz, X86::VPERMILPDZ128rmkz, 0 },
{ X86::VPERMILPSZ128rrkz, X86::VPERMILPSZ128rmkz, 0 },
{ X86::VPERMWZ128rrkz, X86::VPERMWZ128rmkz, 0 },
{ X86::VPMADDUBSWZ128rrkz, X86::VPMADDUBSWZ128rmkz, 0 },
{ X86::VPMADDWDZ128rrkz, X86::VPMADDWDZ128rmkz, 0 },
{ X86::VPORDZ128rrkz, X86::VPORDZ128rmkz, 0 },
{ X86::VPORQZ128rrkz, X86::VPORQZ128rmkz, 0 },
{ X86::VPSHUFBZ128rrkz, X86::VPSHUFBZ128rmkz, 0 },
{ X86::VPSUBBZ128rrkz, X86::VPSUBBZ128rmkz, 0 },
{ X86::VPSUBDZ128rrkz, X86::VPSUBDZ128rmkz, 0 },
{ X86::VPSUBQZ128rrkz, X86::VPSUBQZ128rmkz, 0 },
{ X86::VPSUBSBZ128rrkz, X86::VPSUBSBZ128rmkz, 0 },
{ X86::VPSUBSWZ128rrkz, X86::VPSUBSWZ128rmkz, 0 },
{ X86::VPSUBUSBZ128rrkz, X86::VPSUBUSBZ128rmkz, 0 },
{ X86::VPSUBUSWZ128rrkz, X86::VPSUBUSWZ128rmkz, 0 },
{ X86::VPSUBWZ128rrkz, X86::VPSUBWZ128rmkz, 0 },
{ X86::VPUNPCKHBWZ128rrkz, X86::VPUNPCKHBWZ128rmkz, 0 },
{ X86::VPUNPCKHDQZ128rrkz, X86::VPUNPCKHDQZ128rmkz, 0 },
{ X86::VPUNPCKHQDQZ128rrkz, X86::VPUNPCKHQDQZ128rmkz, 0 },
{ X86::VPUNPCKHWDZ128rrkz, X86::VPUNPCKHWDZ128rmkz, 0 },
{ X86::VPUNPCKLBWZ128rrkz, X86::VPUNPCKLBWZ128rmkz, 0 },
{ X86::VPUNPCKLDQZ128rrkz, X86::VPUNPCKLDQZ128rmkz, 0 },
{ X86::VPUNPCKLQDQZ128rrkz, X86::VPUNPCKLQDQZ128rmkz, 0 },
{ X86::VPUNPCKLWDZ128rrkz, X86::VPUNPCKLWDZ128rmkz, 0 },
{ X86::VPXORDZ128rrkz, X86::VPXORDZ128rmkz, 0 },
{ X86::VPXORQZ128rrkz, X86::VPXORQZ128rmkz, 0 },
{ X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
{ X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
{ X86::VUNPCKHPDZ128rrkz, X86::VUNPCKHPDZ128rmkz, 0 },
{ X86::VUNPCKHPSZ128rrkz, X86::VUNPCKHPSZ128rmkz, 0 },
{ X86::VUNPCKLPDZ128rrkz, X86::VUNPCKLPDZ128rmkz, 0 },
{ X86::VUNPCKLPSZ128rrkz, X86::VUNPCKLPSZ128rmkz, 0 },
{ X86::VXORPDZ128rrkz, X86::VXORPDZ128rmkz, 0 },
{ X86::VXORPSZ128rrkz, X86::VXORPSZ128rmkz, 0 },
// AVX-512 masked foldable instructions
{ X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
{ X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
{ X86::VPERMILPDZrik, X86::VPERMILPDZmik, 0 },
{ X86::VPERMILPSZrik, X86::VPERMILPSZmik, 0 },
{ X86::VPERMPDZrik, X86::VPERMPDZmik, 0 },
{ X86::VPERMQZrik, X86::VPERMQZmik, 0 },
{ X86::VPMOVSXBDZrrk, X86::VPMOVSXBDZrmk, 0 },
{ X86::VPMOVSXBQZrrk, X86::VPMOVSXBQZrmk, TB_NO_REVERSE },
{ X86::VPMOVSXBWZrrk, X86::VPMOVSXBWZrmk, 0 },
{ X86::VPMOVSXDQZrrk, X86::VPMOVSXDQZrmk, 0 },
{ X86::VPMOVSXWDZrrk, X86::VPMOVSXWDZrmk, 0 },
{ X86::VPMOVSXWQZrrk, X86::VPMOVSXWQZrmk, 0 },
{ X86::VPMOVZXBDZrrk, X86::VPMOVZXBDZrmk, 0 },
{ X86::VPMOVZXBQZrrk, X86::VPMOVZXBQZrmk, TB_NO_REVERSE },
{ X86::VPMOVZXBWZrrk, X86::VPMOVZXBWZrmk, 0 },
{ X86::VPMOVZXDQZrrk, X86::VPMOVZXDQZrmk, 0 },
{ X86::VPMOVZXWDZrrk, X86::VPMOVZXWDZrmk, 0 },
{ X86::VPMOVZXWQZrrk, X86::VPMOVZXWQZrmk, 0 },
{ X86::VPSHUFDZrik, X86::VPSHUFDZmik, 0 },
{ X86::VPSHUFHWZrik, X86::VPSHUFHWZmik, 0 },
{ X86::VPSHUFLWZrik, X86::VPSHUFLWZmik, 0 },
// AVX-512VL 256-bit masked foldable instructions
{ X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
{ X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
{ X86::VPERMILPDZ256rik, X86::VPERMILPDZ256mik, 0 },
{ X86::VPERMILPSZ256rik, X86::VPERMILPSZ256mik, 0 },
{ X86::VPERMPDZ256rik, X86::VPERMPDZ256mik, 0 },
{ X86::VPERMQZ256rik, X86::VPERMQZ256mik, 0 },
{ X86::VPMOVSXBDZ256rrk, X86::VPMOVSXBDZ256rmk, TB_NO_REVERSE },
{ X86::VPMOVSXBQZ256rrk, X86::VPMOVSXBQZ256rmk, TB_NO_REVERSE },
{ X86::VPMOVSXBWZ256rrk, X86::VPMOVSXBWZ256rmk, 0 },
{ X86::VPMOVSXDQZ256rrk, X86::VPMOVSXDQZ256rmk, 0 },
{ X86::VPMOVSXWDZ256rrk, X86::VPMOVSXWDZ256rmk, 0 },
{ X86::VPMOVSXWQZ256rrk, X86::VPMOVSXWQZ256rmk, TB_NO_REVERSE },
{ X86::VPMOVZXBDZ256rrk, X86::VPMOVZXBDZ256rmk, TB_NO_REVERSE },
{ X86::VPMOVZXBQZ256rrk, X86::VPMOVZXBQZ256rmk, TB_NO_REVERSE },
{ X86::VPMOVZXBWZ256rrk, X86::VPMOVZXBWZ256rmk, 0 },
{ X86::VPMOVZXDQZ256rrk, X86::VPMOVZXDQZ256rmk, 0 },
{ X86::VPMOVZXWDZ256rrk, X86::VPMOVZXWDZ256rmk, 0 },
{ X86::VPMOVZXWQZ256rrk, X86::VPMOVZXWQZ256rmk, TB_NO_REVERSE },
{ X86::VPSHUFDZ256rik, X86::VPSHUFDZ256mik, 0 },
{ X86::VPSHUFHWZ256rik, X86::VPSHUFHWZ256mik, 0 },
{ X86::VPSHUFLWZ256rik, X86::VPSHUFLWZ256mik, 0 },
// AVX-512VL 128-bit masked foldable instructions
{ X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
{ X86::VPERMILPDZ128rik, X86::VPERMILPDZ128mik, 0 },
{ X86::VPERMILPSZ128rik, X86::VPERMILPSZ128mik, 0 },
{ X86::VPMOVSXBDZ128rrk, X86::VPMOVSXBDZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVSXBQZ128rrk, X86::VPMOVSXBQZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVSXBWZ128rrk, X86::VPMOVSXBWZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVSXDQZ128rrk, X86::VPMOVSXDQZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVSXWDZ128rrk, X86::VPMOVSXWDZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVSXWQZ128rrk, X86::VPMOVSXWQZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVZXBDZ128rrk, X86::VPMOVZXBDZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVZXBQZ128rrk, X86::VPMOVZXBQZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVZXBWZ128rrk, X86::VPMOVZXBWZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVZXDQZ128rrk, X86::VPMOVZXDQZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVZXWDZ128rrk, X86::VPMOVZXWDZ128rmk, TB_NO_REVERSE },
{ X86::VPMOVZXWQZ128rrk, X86::VPMOVZXWQZ128rmk, TB_NO_REVERSE },
{ X86::VPSHUFDZ128rik, X86::VPSHUFDZ128mik, 0 },
{ X86::VPSHUFHWZ128rik, X86::VPSHUFHWZ128mik, 0 },
{ X86::VPSHUFLWZ128rik, X86::VPSHUFLWZ128mik, 0 },
};
for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) {
AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
Entry.RegOp, Entry.MemOp,
// Index 3, folded load
Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
}
auto I = X86InstrFMA3Info::rm_begin();
auto E = X86InstrFMA3Info::rm_end();
for (; I != E; ++I) {
if (!I.getGroup()->isKMasked()) {
// Intrinsic forms need to pass TB_NO_REVERSE.
if (I.getGroup()->isIntrinsic()) {
AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
I.getRegOpcode(), I.getMemOpcode(),
TB_ALIGN_NONE | TB_INDEX_3 | TB_FOLDED_LOAD | TB_NO_REVERSE);
} else {
AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
I.getRegOpcode(), I.getMemOpcode(),
TB_ALIGN_NONE | TB_INDEX_3 | TB_FOLDED_LOAD);
}
}
}
static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
// AVX-512 foldable masked instructions
{ X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
{ X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
{ X86::VALIGNDZrrik, X86::VALIGNDZrmik, 0 },
{ X86::VALIGNQZrrik, X86::VALIGNQZrmik, 0 },
{ X86::VANDNPDZrrk, X86::VANDNPDZrmk, 0 },
{ X86::VANDNPSZrrk, X86::VANDNPSZrmk, 0 },
{ X86::VANDPDZrrk, X86::VANDPDZrmk, 0 },
{ X86::VANDPSZrrk, X86::VANDPSZrmk, 0 },
{ X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
{ X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
{ X86::VINSERTF32x4Zrrk, X86::VINSERTF32x4Zrmk, 0 },
{ X86::VINSERTF32x8Zrrk, X86::VINSERTF32x8Zrmk, 0 },
{ X86::VINSERTF64x2Zrrk, X86::VINSERTF64x2Zrmk, 0 },
{ X86::VINSERTF64x4Zrrk, X86::VINSERTF64x4Zrmk, 0 },
{ X86::VINSERTI32x4Zrrk, X86::VINSERTI32x4Zrmk, 0 },
{ X86::VINSERTI32x8Zrrk, X86::VINSERTI32x8Zrmk, 0 },
{ X86::VINSERTI64x2Zrrk, X86::VINSERTI64x2Zrmk, 0 },
{ X86::VINSERTI64x4Zrrk, X86::VINSERTI64x4Zrmk, 0 },
{ X86::VMAXCPDZrrk, X86::VMAXCPDZrmk, 0 },
{ X86::VMAXCPSZrrk, X86::VMAXCPSZrmk, 0 },
{ X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
{ X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
{ X86::VMINCPDZrrk, X86::VMINCPDZrmk, 0 },
{ X86::VMINCPSZrrk, X86::VMINCPSZrmk, 0 },
{ X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
{ X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
{ X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
{ X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
{ X86::VORPDZrrk, X86::VORPDZrmk, 0 },
{ X86::VORPSZrrk, X86::VORPSZrmk, 0 },
{ X86::VPADDBZrrk, X86::VPADDBZrmk, 0 },
{ X86::VPADDDZrrk, X86::VPADDDZrmk, 0 },
{ X86::VPADDQZrrk, X86::VPADDQZrmk, 0 },
{ X86::VPADDSBZrrk, X86::VPADDSBZrmk, 0 },
{ X86::VPADDSWZrrk, X86::VPADDSWZrmk, 0 },
{ X86::VPADDUSBZrrk, X86::VPADDUSBZrmk, 0 },
{ X86::VPADDUSWZrrk, X86::VPADDUSWZrmk, 0 },
{ X86::VPADDWZrrk, X86::VPADDWZrmk, 0 },
{ X86::VPALIGNRZrrik, X86::VPALIGNRZrmik, 0 },
{ X86::VPANDDZrrk, X86::VPANDDZrmk, 0 },
{ X86::VPANDNDZrrk, X86::VPANDNDZrmk, 0 },
{ X86::VPANDNQZrrk, X86::VPANDNQZrmk, 0 },
{ X86::VPANDQZrrk, X86::VPANDQZrmk, 0 },
{ X86::VPERMBZrrk, X86::VPERMBZrmk, 0 },
{ X86::VPERMDZrrk, X86::VPERMDZrmk, 0 },
{ X86::VPERMI2Brrk, X86::VPERMI2Brmk, 0 },
{ X86::VPERMI2Drrk, X86::VPERMI2Drmk, 0 },
{ X86::VPERMI2PSrrk, X86::VPERMI2PSrmk, 0 },
{ X86::VPERMI2PDrrk, X86::VPERMI2PDrmk, 0 },
{ X86::VPERMI2Qrrk, X86::VPERMI2Qrmk, 0 },
{ X86::VPERMI2Wrrk, X86::VPERMI2Wrmk, 0 },
{ X86::VPERMILPDZrrk, X86::VPERMILPDZrmk, 0 },
{ X86::VPERMILPSZrrk, X86::VPERMILPSZrmk, 0 },
{ X86::VPERMPDZrrk, X86::VPERMPDZrmk, 0 },
{ X86::VPERMPSZrrk, X86::VPERMPSZrmk, 0 },
{ X86::VPERMQZrrk, X86::VPERMQZrmk, 0 },
{ X86::VPERMT2Brrk, X86::VPERMT2Brmk, 0 },
{ X86::VPERMT2Drrk, X86::VPERMT2Drmk, 0 },
{ X86::VPERMT2PSrrk, X86::VPERMT2PSrmk, 0 },
{ X86::VPERMT2PDrrk, X86::VPERMT2PDrmk, 0 },
{ X86::VPERMT2Qrrk, X86::VPERMT2Qrmk, 0 },
{ X86::VPERMT2Wrrk, X86::VPERMT2Wrmk, 0 },
{ X86::VPERMWZrrk, X86::VPERMWZrmk, 0 },
{ X86::VPMADDUBSWZrrk, X86::VPMADDUBSWZrmk, 0 },
{ X86::VPMADDWDZrrk, X86::VPMADDWDZrmk, 0 },
{ X86::VPORDZrrk, X86::VPORDZrmk, 0 },
{ X86::VPORQZrrk, X86::VPORQZrmk, 0 },
{ X86::VPSHUFBZrrk, X86::VPSHUFBZrmk, 0 },
{ X86::VPSUBBZrrk, X86::VPSUBBZrmk, 0 },
{ X86::VPSUBDZrrk, X86::VPSUBDZrmk, 0 },
{ X86::VPSUBQZrrk, X86::VPSUBQZrmk, 0 },
{ X86::VPSUBSBZrrk, X86::VPSUBSBZrmk, 0 },
{ X86::VPSUBSWZrrk, X86::VPSUBSWZrmk, 0 },
{ X86::VPSUBUSBZrrk, X86::VPSUBUSBZrmk, 0 },
{ X86::VPSUBUSWZrrk, X86::VPSUBUSWZrmk, 0 },
{ X86::VPTERNLOGDZrrik, X86::VPTERNLOGDZrmik, 0 },
{ X86::VPTERNLOGQZrrik, X86::VPTERNLOGQZrmik, 0 },
{ X86::VPUNPCKHBWZrrk, X86::VPUNPCKHBWZrmk, 0 },
{ X86::VPUNPCKHDQZrrk, X86::VPUNPCKHDQZrmk, 0 },
{ X86::VPUNPCKHQDQZrrk, X86::VPUNPCKHQDQZrmk, 0 },
{ X86::VPUNPCKHWDZrrk, X86::VPUNPCKHWDZrmk, 0 },
{ X86::VPUNPCKLBWZrrk, X86::VPUNPCKLBWZrmk, 0 },
{ X86::VPUNPCKLDQZrrk, X86::VPUNPCKLDQZrmk, 0 },
{ X86::VPUNPCKLQDQZrrk, X86::VPUNPCKLQDQZrmk, 0 },
{ X86::VPUNPCKLWDZrrk, X86::VPUNPCKLWDZrmk, 0 },
{ X86::VPXORDZrrk, X86::VPXORDZrmk, 0 },
{ X86::VPXORQZrrk, X86::VPXORQZrmk, 0 },
{ X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
{ X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
{ X86::VUNPCKHPDZrrk, X86::VUNPCKHPDZrmk, 0 },
{ X86::VUNPCKHPSZrrk, X86::VUNPCKHPSZrmk, 0 },
{ X86::VUNPCKLPDZrrk, X86::VUNPCKLPDZrmk, 0 },
{ X86::VUNPCKLPSZrrk, X86::VUNPCKLPSZrmk, 0 },
{ X86::VXORPDZrrk, X86::VXORPDZrmk, 0 },
{ X86::VXORPSZrrk, X86::VXORPSZrmk, 0 },
// AVX-512{F,VL} foldable masked instructions 256-bit
{ X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
{ X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
{ X86::VALIGNDZ256rrik, X86::VALIGNDZ256rmik, 0 },
{ X86::VALIGNQZ256rrik, X86::VALIGNQZ256rmik, 0 },
{ X86::VANDNPDZ256rrk, X86::VANDNPDZ256rmk, 0 },
{ X86::VANDNPSZ256rrk, X86::VANDNPSZ256rmk, 0 },
{ X86::VANDPDZ256rrk, X86::VANDPDZ256rmk, 0 },
{ X86::VANDPSZ256rrk, X86::VANDPSZ256rmk, 0 },
{ X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
{ X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
{ X86::VINSERTF32x4Z256rrk,X86::VINSERTF32x4Z256rmk, 0 },
{ X86::VINSERTF64x2Z256rrk,X86::VINSERTF64x2Z256rmk, 0 },
{ X86::VINSERTI32x4Z256rrk,X86::VINSERTI32x4Z256rmk, 0 },
{ X86::VINSERTI64x2Z256rrk,X86::VINSERTI64x2Z256rmk, 0 },
{ X86::VMAXCPDZ256rrk, X86::VMAXCPDZ256rmk, 0 },
{ X86::VMAXCPSZ256rrk, X86::VMAXCPSZ256rmk, 0 },
{ X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
{ X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
{ X86::VMINCPDZ256rrk, X86::VMINCPDZ256rmk, 0 },
{ X86::VMINCPSZ256rrk, X86::VMINCPSZ256rmk, 0 },
{ X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
{ X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
{ X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
{ X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
{ X86::VORPDZ256rrk, X86::VORPDZ256rmk, 0 },
{ X86::VORPSZ256rrk, X86::VORPSZ256rmk, 0 },
{ X86::VPADDBZ256rrk, X86::VPADDBZ256rmk, 0 },
{ X86::VPADDDZ256rrk, X86::VPADDDZ256rmk, 0 },
{ X86::VPADDQZ256rrk, X86::VPADDQZ256rmk, 0 },
{ X86::VPADDSBZ256rrk, X86::VPADDSBZ256rmk, 0 },
{ X86::VPADDSWZ256rrk, X86::VPADDSWZ256rmk, 0 },
{ X86::VPADDUSBZ256rrk, X86::VPADDUSBZ256rmk, 0 },
{ X86::VPADDUSWZ256rrk, X86::VPADDUSWZ256rmk, 0 },
{ X86::VPADDWZ256rrk, X86::VPADDWZ256rmk, 0 },
{ X86::VPALIGNRZ256rrik, X86::VPALIGNRZ256rmik, 0 },
{ X86::VPANDDZ256rrk, X86::VPANDDZ256rmk, 0 },
{ X86::VPANDNDZ256rrk, X86::VPANDNDZ256rmk, 0 },
{ X86::VPANDNQZ256rrk, X86::VPANDNQZ256rmk, 0 },
{ X86::VPANDQZ256rrk, X86::VPANDQZ256rmk, 0 },
{ X86::VPERMBZ256rrk, X86::VPERMBZ256rmk, 0 },
{ X86::VPERMDZ256rrk, X86::VPERMDZ256rmk, 0 },
{ X86::VPERMI2B256rrk, X86::VPERMI2B256rmk, 0 },
{ X86::VPERMI2D256rrk, X86::VPERMI2D256rmk, 0 },
{ X86::VPERMI2PD256rrk, X86::VPERMI2PD256rmk, 0 },
{ X86::VPERMI2PS256rrk, X86::VPERMI2PS256rmk, 0 },
{ X86::VPERMI2Q256rrk, X86::VPERMI2Q256rmk, 0 },
{ X86::VPERMI2W256rrk, X86::VPERMI2W256rmk, 0 },
{ X86::VPERMILPDZ256rrk, X86::VPERMILPDZ256rmk, 0 },
{ X86::VPERMILPSZ256rrk, X86::VPERMILPSZ256rmk, 0 },
{ X86::VPERMPDZ256rrk, X86::VPERMPDZ256rmk, 0 },
{ X86::VPERMPSZ256rrk, X86::VPERMPSZ256rmk, 0 },
{ X86::VPERMQZ256rrk, X86::VPERMQZ256rmk, 0 },
{ X86::VPERMT2B256rrk, X86::VPERMT2B256rmk, 0 },
{ X86::VPERMT2D256rrk, X86::VPERMT2D256rmk, 0 },
{ X86::VPERMT2PD256rrk, X86::VPERMT2PD256rmk, 0 },
{ X86::VPERMT2PS256rrk, X86::VPERMT2PS256rmk, 0 },
{ X86::VPERMT2Q256rrk, X86::VPERMT2Q256rmk, 0 },
{ X86::VPERMT2W256rrk, X86::VPERMT2W256rmk, 0 },
{ X86::VPERMWZ256rrk, X86::VPERMWZ256rmk, 0 },
{ X86::VPMADDUBSWZ256rrk, X86::VPMADDUBSWZ256rmk, 0 },
{ X86::VPMADDWDZ256rrk, X86::VPMADDWDZ256rmk, 0 },
{ X86::VPORDZ256rrk, X86::VPORDZ256rmk, 0 },
{ X86::VPORQZ256rrk, X86::VPORQZ256rmk, 0 },
{ X86::VPSHUFBZ256rrk, X86::VPSHUFBZ256rmk, 0 },
{ X86::VPSUBBZ256rrk, X86::VPSUBBZ256rmk, 0 },
{ X86::VPSUBDZ256rrk, X86::VPSUBDZ256rmk, 0 },
{ X86::VPSUBQZ256rrk, X86::VPSUBQZ256rmk, 0 },
{ X86::VPSUBSBZ256rrk, X86::VPSUBSBZ256rmk, 0 },
{ X86::VPSUBSWZ256rrk, X86::VPSUBSWZ256rmk, 0 },
{ X86::VPSUBUSBZ256rrk, X86::VPSUBUSBZ256rmk, 0 },
{ X86::VPSUBUSWZ256rrk, X86::VPSUBUSWZ256rmk, 0 },
{ X86::VPSUBWZ256rrk, X86::VPSUBWZ256rmk, 0 },
{ X86::VPTERNLOGDZ256rrik, X86::VPTERNLOGDZ256rmik, 0 },
{ X86::VPTERNLOGQZ256rrik, X86::VPTERNLOGQZ256rmik, 0 },
{ X86::VPUNPCKHBWZ256rrk, X86::VPUNPCKHBWZ256rmk, 0 },
{ X86::VPUNPCKHDQZ256rrk, X86::VPUNPCKHDQZ256rmk, 0 },
{ X86::VPUNPCKHQDQZ256rrk, X86::VPUNPCKHQDQZ256rmk, 0 },
{ X86::VPUNPCKHWDZ256rrk, X86::VPUNPCKHWDZ256rmk, 0 },
{ X86::VPUNPCKLBWZ256rrk, X86::VPUNPCKLBWZ256rmk, 0 },
{ X86::VPUNPCKLDQZ256rrk, X86::VPUNPCKLDQZ256rmk, 0 },
{ X86::VPUNPCKLQDQZ256rrk, X86::VPUNPCKLQDQZ256rmk, 0 },
{ X86::VPUNPCKLWDZ256rrk, X86::VPUNPCKLWDZ256rmk, 0 },
{ X86::VPXORDZ256rrk, X86::VPXORDZ256rmk, 0 },
{ X86::VPXORQZ256rrk, X86::VPXORQZ256rmk, 0 },
{ X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
{ X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
{ X86::VUNPCKHPDZ256rrk, X86::VUNPCKHPDZ256rmk, 0 },
{ X86::VUNPCKHPSZ256rrk, X86::VUNPCKHPSZ256rmk, 0 },
{ X86::VUNPCKLPDZ256rrk, X86::VUNPCKLPDZ256rmk, 0 },
{ X86::VUNPCKLPSZ256rrk, X86::VUNPCKLPSZ256rmk, 0 },
{ X86::VXORPDZ256rrk, X86::VXORPDZ256rmk, 0 },
{ X86::VXORPSZ256rrk, X86::VXORPSZ256rmk, 0 },
// AVX-512{F,VL} foldable instructions 128-bit
{ X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
{ X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
{ X86::VALIGNDZ128rrik, X86::VALIGNDZ128rmik, 0 },
{ X86::VALIGNQZ128rrik, X86::VALIGNQZ128rmik, 0 },
{ X86::VANDNPDZ128rrk, X86::VANDNPDZ128rmk, 0 },
{ X86::VANDNPSZ128rrk, X86::VANDNPSZ128rmk, 0 },
{ X86::VANDPDZ128rrk, X86::VANDPDZ128rmk, 0 },
{ X86::VANDPSZ128rrk, X86::VANDPSZ128rmk, 0 },
{ X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
{ X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
{ X86::VMAXCPDZ128rrk, X86::VMAXCPDZ128rmk, 0 },
{ X86::VMAXCPSZ128rrk, X86::VMAXCPSZ128rmk, 0 },
{ X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 },
{ X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
{ X86::VMINCPDZ128rrk, X86::VMINCPDZ128rmk, 0 },
{ X86::VMINCPSZ128rrk, X86::VMINCPSZ128rmk, 0 },
{ X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
{ X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
{ X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
{ X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
{ X86::VORPDZ128rrk, X86::VORPDZ128rmk, 0 },
{ X86::VORPSZ128rrk, X86::VORPSZ128rmk, 0 },
{ X86::VPADDBZ128rrk, X86::VPADDBZ128rmk, 0 },
{ X86::VPADDDZ128rrk, X86::VPADDDZ128rmk, 0 },
{ X86::VPADDQZ128rrk, X86::VPADDQZ128rmk, 0 },
{ X86::VPADDSBZ128rrk, X86::VPADDSBZ128rmk, 0 },
{ X86::VPADDSWZ128rrk, X86::VPADDSWZ128rmk, 0 },
{ X86::VPADDUSBZ128rrk, X86::VPADDUSBZ128rmk, 0 },
{ X86::VPADDUSWZ128rrk, X86::VPADDUSWZ128rmk, 0 },
{ X86::VPADDWZ128rrk, X86::VPADDWZ128rmk, 0 },
{ X86::VPALIGNRZ128rrik, X86::VPALIGNRZ128rmik, 0 },
{ X86::VPANDDZ128rrk, X86::VPANDDZ128rmk, 0 },
{ X86::VPANDNDZ128rrk, X86::VPANDNDZ128rmk, 0 },
{ X86::VPANDNQZ128rrk, X86::VPANDNQZ128rmk, 0 },
{ X86::VPANDQZ128rrk, X86::VPANDQZ128rmk, 0 },
{ X86::VPERMBZ128rrk, X86::VPERMBZ128rmk, 0 },
{ X86::VPERMI2B128rrk, X86::VPERMI2B128rmk, 0 },
{ X86::VPERMI2D128rrk, X86::VPERMI2D128rmk, 0 },
{ X86::VPERMI2PD128rrk, X86::VPERMI2PD128rmk, 0 },
{ X86::VPERMI2PS128rrk, X86::VPERMI2PS128rmk, 0 },
{ X86::VPERMI2Q128rrk, X86::VPERMI2Q128rmk, 0 },
{ X86::VPERMI2W128rrk, X86::VPERMI2W128rmk, 0 },
{ X86::VPERMILPDZ128rrk, X86::VPERMILPDZ128rmk, 0 },
{ X86::VPERMILPSZ128rrk, X86::VPERMILPSZ128rmk, 0 },
{ X86::VPERMT2B128rrk, X86::VPERMT2B128rmk, 0 },
{ X86::VPERMT2D128rrk, X86::VPERMT2D128rmk, 0 },
{ X86::VPERMT2PD128rrk, X86::VPERMT2PD128rmk, 0 },
{ X86::VPERMT2PS128rrk, X86::VPERMT2PS128rmk, 0 },
{ X86::VPERMT2Q128rrk, X86::VPERMT2Q128rmk, 0 },
{ X86::VPERMT2W128rrk, X86::VPERMT2W128rmk, 0 },
{ X86::VPERMWZ128rrk, X86::VPERMWZ128rmk, 0 },
{ X86::VPMADDUBSWZ128rrk, X86::VPMADDUBSWZ128rmk, 0 },
{ X86::VPMADDWDZ128rrk, X86::VPMADDWDZ128rmk, 0 },
{ X86::VPORDZ128rrk, X86::VPORDZ128rmk, 0 },
{ X86::VPORQZ128rrk, X86::VPORQZ128rmk, 0 },
{ X86::VPSHUFBZ128rrk, X86::VPSHUFBZ128rmk, 0 },
{ X86::VPSUBBZ128rrk, X86::VPSUBBZ128rmk, 0 },
{ X86::VPSUBDZ128rrk, X86::VPSUBDZ128rmk, 0 },
{ X86::VPSUBQZ128rrk, X86::VPSUBQZ128rmk, 0 },
{ X86::VPSUBSBZ128rrk, X86::VPSUBSBZ128rmk, 0 },
{ X86::VPSUBSWZ128rrk, X86::VPSUBSWZ128rmk, 0 },
{ X86::VPSUBUSBZ128rrk, X86::VPSUBUSBZ128rmk, 0 },
{ X86::VPSUBUSWZ128rrk, X86::VPSUBUSWZ128rmk, 0 },
{ X86::VPSUBWZ128rrk, X86::VPSUBWZ128rmk, 0 },
{ X86::VPTERNLOGDZ128rrik, X86::VPTERNLOGDZ128rmik, 0 },
{ X86::VPTERNLOGQZ128rrik, X86::VPTERNLOGQZ128rmik, 0 },
{ X86::VPUNPCKHBWZ128rrk, X86::VPUNPCKHBWZ128rmk, 0 },
{ X86::VPUNPCKHDQZ128rrk, X86::VPUNPCKHDQZ128rmk, 0 },
{ X86::VPUNPCKHQDQZ128rrk, X86::VPUNPCKHQDQZ128rmk, 0 },
{ X86::VPUNPCKHWDZ128rrk, X86::VPUNPCKHWDZ128rmk, 0 },
{ X86::VPUNPCKLBWZ128rrk, X86::VPUNPCKLBWZ128rmk, 0 },
{ X86::VPUNPCKLDQZ128rrk, X86::VPUNPCKLDQZ128rmk, 0 },
{ X86::VPUNPCKLQDQZ128rrk, X86::VPUNPCKLQDQZ128rmk, 0 },
{ X86::VPUNPCKLWDZ128rrk, X86::VPUNPCKLWDZ128rmk, 0 },
{ X86::VPXORDZ128rrk, X86::VPXORDZ128rmk, 0 },
{ X86::VPXORQZ128rrk, X86::VPXORQZ128rmk, 0 },
{ X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
{ X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
{ X86::VUNPCKHPDZ128rrk, X86::VUNPCKHPDZ128rmk, 0 },
{ X86::VUNPCKHPSZ128rrk, X86::VUNPCKHPSZ128rmk, 0 },
{ X86::VUNPCKLPDZ128rrk, X86::VUNPCKLPDZ128rmk, 0 },
{ X86::VUNPCKLPSZ128rrk, X86::VUNPCKLPSZ128rmk, 0 },
{ X86::VXORPDZ128rrk, X86::VXORPDZ128rmk, 0 },
{ X86::VXORPSZ128rrk, X86::VXORPSZ128rmk, 0 },
// 512-bit three source instructions with zero masking.
{ X86::VPERMI2Brrkz, X86::VPERMI2Brmkz, 0 },
{ X86::VPERMI2Drrkz, X86::VPERMI2Drmkz, 0 },
{ X86::VPERMI2PSrrkz, X86::VPERMI2PSrmkz, 0 },
{ X86::VPERMI2PDrrkz, X86::VPERMI2PDrmkz, 0 },
{ X86::VPERMI2Qrrkz, X86::VPERMI2Qrmkz, 0 },
{ X86::VPERMI2Wrrkz, X86::VPERMI2Wrmkz, 0 },
{ X86::VPERMT2Brrkz, X86::VPERMT2Brmkz, 0 },
{ X86::VPERMT2Drrkz, X86::VPERMT2Drmkz, 0 },
{ X86::VPERMT2PSrrkz, X86::VPERMT2PSrmkz, 0 },
{ X86::VPERMT2PDrrkz, X86::VPERMT2PDrmkz, 0 },
{ X86::VPERMT2Qrrkz, X86::VPERMT2Qrmkz, 0 },
{ X86::VPERMT2Wrrkz, X86::VPERMT2Wrmkz, 0 },
{ X86::VPTERNLOGDZrrikz, X86::VPTERNLOGDZrmikz, 0 },
{ X86::VPTERNLOGQZrrikz, X86::VPTERNLOGQZrmikz, 0 },
// 256-bit three source instructions with zero masking.
{ X86::VPERMI2B256rrkz, X86::VPERMI2B256rmkz, 0 },
{ X86::VPERMI2D256rrkz, X86::VPERMI2D256rmkz, 0 },
{ X86::VPERMI2PD256rrkz, X86::VPERMI2PD256rmkz, 0 },
{ X86::VPERMI2PS256rrkz, X86::VPERMI2PS256rmkz, 0 },
{ X86::VPERMI2Q256rrkz, X86::VPERMI2Q256rmkz, 0 },
{ X86::VPERMI2W256rrkz, X86::VPERMI2W256rmkz, 0 },
{ X86::VPERMT2B256rrkz, X86::VPERMT2B256rmkz, 0 },
{ X86::VPERMT2D256rrkz, X86::VPERMT2D256rmkz, 0 },
{ X86::VPERMT2PD256rrkz, X86::VPERMT2PD256rmkz, 0 },
{ X86::VPERMT2PS256rrkz, X86::VPERMT2PS256rmkz, 0 },
{ X86::VPERMT2Q256rrkz, X86::VPERMT2Q256rmkz, 0 },
{ X86::VPERMT2W256rrkz, X86::VPERMT2W256rmkz, 0 },
{ X86::VPTERNLOGDZ256rrikz,X86::VPTERNLOGDZ256rmikz, 0 },
{ X86::VPTERNLOGQZ256rrikz,X86::VPTERNLOGQZ256rmikz, 0 },
// 128-bit three source instructions with zero masking.
{ X86::VPERMI2B128rrkz, X86::VPERMI2B128rmkz, 0 },
{ X86::VPERMI2D128rrkz, X86::VPERMI2D128rmkz, 0 },
{ X86::VPERMI2PD128rrkz, X86::VPERMI2PD128rmkz, 0 },
{ X86::VPERMI2PS128rrkz, X86::VPERMI2PS128rmkz, 0 },
{ X86::VPERMI2Q128rrkz, X86::VPERMI2Q128rmkz, 0 },
{ X86::VPERMI2W128rrkz, X86::VPERMI2W128rmkz, 0 },
{ X86::VPERMT2B128rrkz, X86::VPERMT2B128rmkz, 0 },
{ X86::VPERMT2D128rrkz, X86::VPERMT2D128rmkz, 0 },
{ X86::VPERMT2PD128rrkz, X86::VPERMT2PD128rmkz, 0 },
{ X86::VPERMT2PS128rrkz, X86::VPERMT2PS128rmkz, 0 },
{ X86::VPERMT2Q128rrkz, X86::VPERMT2Q128rmkz, 0 },
{ X86::VPERMT2W128rrkz, X86::VPERMT2W128rmkz, 0 },
{ X86::VPTERNLOGDZ128rrikz,X86::VPTERNLOGDZ128rmikz, 0 },
{ X86::VPTERNLOGQZ128rrikz,X86::VPTERNLOGQZ128rmikz, 0 },
};
for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) {
AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
Entry.RegOp, Entry.MemOp,
// Index 4, folded load
Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
}
for (I = X86InstrFMA3Info::rm_begin(); I != E; ++I) {
if (I.getGroup()->isKMasked()) {
// Intrinsics need to pass TB_NO_REVERSE.
if (I.getGroup()->isIntrinsic()) {
AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
I.getRegOpcode(), I.getMemOpcode(),
TB_ALIGN_NONE | TB_INDEX_4 | TB_FOLDED_LOAD | TB_NO_REVERSE);
} else {
AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
I.getRegOpcode(), I.getMemOpcode(),
TB_ALIGN_NONE | TB_INDEX_4 | TB_FOLDED_LOAD);
}
}
}
}
void
X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
MemOp2RegOpTableType &M2RTable,
uint16_t RegOp, uint16_t MemOp, uint16_t Flags) {
if ((Flags & TB_NO_FORWARD) == 0) {
assert(!R2MTable.count(RegOp) && "Duplicate entry!");
R2MTable[RegOp] = std::make_pair(MemOp, Flags);
}
if ((Flags & TB_NO_REVERSE) == 0) {
assert(!M2RTable.count(MemOp) &&
"Duplicated entries in unfolding maps?");
M2RTable[MemOp] = std::make_pair(RegOp, Flags);
}
}
bool
X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
switch (MI.getOpcode()) {
default: break;
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
if (!Subtarget.is64Bit())
// It's not always legal to reference the low 8-bit of the larger
// register in 32-bit mode.
return false;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
case X86::MOVSX64rr32: {
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
// Be conservative.
return false;
SrcReg = MI.getOperand(1).getReg();
DstReg = MI.getOperand(0).getReg();
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
SubIdx = X86::sub_8bit;
break;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
SubIdx = X86::sub_16bit;
break;
case X86::MOVSX64rr32:
SubIdx = X86::sub_32bit;
break;
}
return true;
}
}
return false;
}
int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
const MachineFunction *MF = MI.getParent()->getParent();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
if (MI.getOpcode() == getCallFrameSetupOpcode() ||
MI.getOpcode() == getCallFrameDestroyOpcode()) {
unsigned StackAlign = TFI->getStackAlignment();
int SPAdj =
(MI.getOperand(0).getImm() + StackAlign - 1) / StackAlign * StackAlign;
SPAdj -= MI.getOperand(1).getImm();
if (MI.getOpcode() == getCallFrameSetupOpcode())
return SPAdj;
else
return -SPAdj;
}
// To know whether a call adjusts the stack, we need information
// that is bound to the following ADJCALLSTACKUP pseudo.
// Look for the next ADJCALLSTACKUP that follows the call.
if (MI.isCall()) {
const MachineBasicBlock *MBB = MI.getParent();
auto I = ++MachineBasicBlock::const_iterator(MI);
for (auto E = MBB->end(); I != E; ++I) {
if (I->getOpcode() == getCallFrameDestroyOpcode() ||
I->isCall())
break;
}
// If we could not find a frame destroy opcode, then it has already
// been simplified, so we don't care.
if (I->getOpcode() != getCallFrameDestroyOpcode())
return 0;
return -(I->getOperand(1).getImm());
}
// Currently handle only PUSHes we can reasonably expect to see
// in call sequences
switch (MI.getOpcode()) {
default:
return 0;
case X86::PUSH32i8:
case X86::PUSH32r:
case X86::PUSH32rmm:
case X86::PUSH32rmr:
case X86::PUSHi32:
return 4;
case X86::PUSH64i8:
case X86::PUSH64r:
case X86::PUSH64rmm:
case X86::PUSH64rmr:
case X86::PUSH64i32:
return 8;
}
}
/// Return true and the FrameIndex if the specified
/// operand and follow operands form a reference to the stack frame.
bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
int &FrameIndex) const {
if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
MI.getOperand(Op + X86::AddrDisp).isImm() &&
MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
return true;
}
return false;
}
static bool isFrameLoadOpcode(int Opcode) {
switch (Opcode) {
default:
return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPDYrm:
case X86::VMOVAPDYrm:
case X86::VMOVDQUYrm:
case X86::VMOVDQAYrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::VMOVSSZrm:
case X86::VMOVSDZrm:
case X86::VMOVAPSZrm:
case X86::VMOVAPSZ128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVUPSZrm:
case X86::VMOVUPSZ128rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVAPDZrm:
case X86::VMOVAPDZ128rm:
case X86::VMOVAPDZ256rm:
case X86::VMOVUPDZrm:
case X86::VMOVUPDZ128rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU64Zrm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVDQU8Zrm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQU16Z256rm:
case X86::KMOVBkm:
case X86::KMOVWkm:
case X86::KMOVDkm:
case X86::KMOVQkm:
return true;
}
}
static bool isFrameStoreOpcode(int Opcode) {
switch (Opcode) {
default: break;
case X86::MOV8mr:
case X86::MOV16mr:
case X86::MOV32mr:
case X86::MOV64mr:
case X86::ST_FpP64m:
case X86::MOVSSmr:
case X86::MOVSDmr:
case X86::MOVAPSmr:
case X86::MOVUPSmr:
case X86::MOVAPDmr:
case X86::MOVUPDmr:
case X86::MOVDQAmr:
case X86::MOVDQUmr:
case X86::VMOVSSmr:
case X86::VMOVSDmr:
case X86::VMOVAPSmr:
case X86::VMOVUPSmr:
case X86::VMOVAPDmr:
case X86::VMOVUPDmr:
case X86::VMOVDQAmr:
case X86::VMOVDQUmr:
case X86::VMOVUPSYmr:
case X86::VMOVAPSYmr:
case X86::VMOVUPDYmr:
case X86::VMOVAPDYmr:
case X86::VMOVDQUYmr:
case X86::VMOVDQAYmr:
case X86::VMOVSSZmr:
case X86::VMOVSDZmr:
case X86::VMOVUPSZmr:
case X86::VMOVUPSZ128mr:
case X86::VMOVUPSZ256mr:
case X86::VMOVUPSZ128mr_NOVLX:
case X86::VMOVUPSZ256mr_NOVLX:
case X86::VMOVAPSZmr:
case X86::VMOVAPSZ128mr:
case X86::VMOVAPSZ256mr:
case X86::VMOVAPSZ128mr_NOVLX:
case X86::VMOVAPSZ256mr_NOVLX:
case X86::VMOVUPDZmr:
case X86::VMOVUPDZ128mr:
case X86::VMOVUPDZ256mr:
case X86::VMOVAPDZmr:
case X86::VMOVAPDZ128mr:
case X86::VMOVAPDZ256mr:
case X86::VMOVDQA32Zmr:
case X86::VMOVDQA32Z128mr:
case X86::VMOVDQA32Z256mr:
case X86::VMOVDQU32Zmr:
case X86::VMOVDQU32Z128mr:
case X86::VMOVDQU32Z256mr:
case X86::VMOVDQA64Zmr:
case X86::VMOVDQA64Z128mr:
case X86::VMOVDQA64Z256mr:
case X86::VMOVDQU64Zmr:
case X86::VMOVDQU64Z128mr:
case X86::VMOVDQU64Z256mr:
case X86::VMOVDQU8Zmr:
case X86::VMOVDQU8Z128mr:
case X86::VMOVDQU8Z256mr:
case X86::VMOVDQU16Zmr:
case X86::VMOVDQU16Z128mr:
case X86::VMOVDQU16Z256mr:
case X86::MMX_MOVD64mr:
case X86::MMX_MOVQ64mr:
case X86::MMX_MOVNTQmr:
case X86::KMOVBmk:
case X86::KMOVWmk:
case X86::KMOVDmk:
case X86::KMOVQmk:
return true;
}
return false;
}
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (isFrameLoadOpcode(MI.getOpcode()))
if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
return MI.getOperand(0).getReg();
return 0;
}
unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
if (isFrameLoadOpcode(MI.getOpcode())) {
unsigned Reg;
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (isFrameStoreOpcode(MI.getOpcode()))
if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
isFrameOperand(MI, 0, FrameIndex))
return MI.getOperand(X86::AddrNumOperands).getReg();
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
if (isFrameStoreOpcode(MI.getOpcode())) {
unsigned Reg;
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasStoreToStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
// Don't waste compile time scanning use-def chains of physregs.
if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
return false;
bool isPICBase = false;
for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
E = MRI.def_instr_end(); I != E; ++I) {
MachineInstr *DefMI = &*I;
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
AliasAnalysis *AA) const {
switch (MI.getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV8rm_NOREX:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
// AVX-512
case X86::VMOVSSZrm:
case X86::VMOVSDZrm:
case X86::VMOVAPDZ128rm:
case X86::VMOVAPDZ256rm:
case X86::VMOVAPDZrm:
case X86::VMOVAPSZ128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVAPSZrm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVDQU64Zrm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU8Zrm:
case X86::VMOVUPDZ128rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVUPDZrm:
case X86::VMOVUPSZ128rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVUPSZrm: {
// Loads from constant pools are trivially rematerializable.
if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
MI.isDereferenceableInvariantLoad(AA)) {
unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
if (BaseReg == 0 || BaseReg == X86::RIP)
return true;
// Allow re-materialization of PIC load.
if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
return false;
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
case X86::LEA32r:
case X86::LEA64r: {
if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
!MI.getOperand(1 + X86::AddrDisp).isReg()) {
// lea fi#, lea GV, etc. are all rematerializable.
if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
return true;
unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
if (BaseReg == 0)
return true;
// Allow re-materialization of lea PICBase + x.
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
}
// All other instructions marked M_REMATERIALIZABLE are always trivially
// rematerializable.
return true;
}
bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
MachineBasicBlock::iterator E = MBB.end();
// For compile time consideration, if we are not able to determine the
// safety after visiting 4 instructions in each direction, we will assume
// it's not safe.
MachineBasicBlock::iterator Iter = I;
for (unsigned i = 0; Iter != E && i < 4; ++i) {
bool SeenDef = false;
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
MachineOperand &MO = Iter->getOperand(j);
if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
SeenDef = true;
if (!MO.isReg())
continue;
if (MO.getReg() == X86::EFLAGS) {
if (MO.isUse())
return false;
SeenDef = true;
}
}
if (SeenDef)
// This instruction defines EFLAGS, no need to look any further.
return true;
++Iter;
// Skip over DBG_VALUE.
while (Iter != E && Iter->isDebugValue())
++Iter;
}
// It is safe to clobber EFLAGS at the end of a block of no successor has it
// live in.
if (Iter == E) {
for (MachineBasicBlock *S : MBB.successors())
if (S->isLiveIn(X86::EFLAGS))
return false;
return true;
}
MachineBasicBlock::iterator B = MBB.begin();
Iter = I;
for (unsigned i = 0; i < 4; ++i) {
// If we make it to the beginning of the block, it's safe to clobber
// EFLAGS iff EFLAGS is not live-in.
if (Iter == B)
return !MBB.isLiveIn(X86::EFLAGS);
--Iter;
// Skip over DBG_VALUE.
while (Iter != B && Iter->isDebugValue())
--Iter;
bool SawKill = false;
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
MachineOperand &MO = Iter->getOperand(j);
// A register mask may clobber EFLAGS, but we should still look for a
// live EFLAGS def.
if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
SawKill = true;
if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
if (MO.isDef()) return MO.isDead();
if (MO.isKill()) SawKill = true;
}
}
if (SawKill)
// This instruction kills EFLAGS and doesn't redefine it, so
// there's no need to look further.
return true;
}
// Conservative answer.
return false;
}
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SubIdx,
const MachineInstr &Orig,
const TargetRegisterInfo &TRI) const {
bool ClobbersEFLAGS = false;
for (const MachineOperand &MO : Orig.operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
ClobbersEFLAGS = true;
break;
}
}
if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
// The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
// effects.
int Value;
switch (Orig.getOpcode()) {
case X86::MOV32r0: Value = 0; break;
case X86::MOV32r1: Value = 1; break;
case X86::MOV32r_1: Value = -1; break;
default:
llvm_unreachable("Unexpected instruction!");
}
const DebugLoc &DL = Orig.getDebugLoc();
BuildMI(MBB, I, DL, get(X86::MOV32ri))
.add(Orig.getOperand(0))
.addImm(Value);
} else {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
MBB.insert(I, MI);
}
MachineInstr &NewMI = *std::prev(I);
NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
}
/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isDef() &&
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
return true;
}
}
return false;
}
/// Check whether the shift count for a machine operand is non-zero.
inline static unsigned getTruncatedShiftCount(MachineInstr &MI,
unsigned ShiftAmtOperandIdx) {
// The shift count is six bits with the REX.W prefix and five bits without.
unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
return Imm & ShiftCountMask;
}
/// Check whether the given shift count is appropriate
/// can be represented by a LEA instruction.
inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
// Left shift instructions can be transformed into load-effective-address
// instructions if we can encode them appropriately.
// A LEA instruction utilizes a SIB byte to encode its scale factor.
// The SIB.scale field is two bits wide which means that we can encode any
// shift amount less than 4.
return ShAmt < 4 && ShAmt > 0;
}
bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
unsigned Opc, bool AllowSP, unsigned &NewSrc,
bool &isKill, bool &isUndef,
MachineOperand &ImplicitOp,
LiveVariables *LV) const {
MachineFunction &MF = *MI.getParent()->getParent();
const TargetRegisterClass *RC;
if (AllowSP) {
RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
} else {
RC = Opc != X86::LEA32r ?
&X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
}
unsigned SrcReg = Src.getReg();
// For both LEA64 and LEA32 the register already has essentially the right
// type (32-bit or 64-bit) we may just need to forbid SP.
if (Opc != X86::LEA64_32r) {
NewSrc = SrcReg;
isKill = Src.isKill();
isUndef = Src.isUndef();
if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
!MF.getRegInfo().constrainRegClass(NewSrc, RC))
return false;
return true;
}
// This is for an LEA64_32r and incoming registers are 32-bit. One way or
// another we need to add 64-bit registers to the final MI.
if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
ImplicitOp = Src;
ImplicitOp.setImplicit();
NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
isKill = Src.isKill();
isUndef = Src.isUndef();
} else {
// Virtual register of the wrong class, we have to create a temporary 64-bit
// vreg to feed into the LEA.
NewSrc = MF.getRegInfo().createVirtualRegister(RC);
MachineInstr *Copy =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
.add(Src);
// Which is obviously going to be dead after we're done with it.
isKill = true;
isUndef = false;
if (LV)
LV->replaceKillInstruction(SrcReg, MI, *Copy);
}
// We've set all the parameters without issue.
return true;
}
/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
/// LEA to form 3-address code by promoting to a 32-bit superregister and then
/// truncating back down to a 16-bit subregister.
MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
LiveVariables *LV) const {
MachineBasicBlock::iterator MBBI = MI.getIterator();
unsigned Dest = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
bool isDead = MI.getOperand(0).isDead();
bool isKill = MI.getOperand(1).isKill();
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
unsigned Opc, leaInReg;
if (Subtarget.is64Bit()) {
Opc = X86::LEA64_32r;
leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
} else {
Opc = X86::LEA32r;
leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
}
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
// This has the potential to cause partial register stall. e.g.
// movw (%rbp,%rcx,2), %dx
// leal -65(%rdx), %esi
// But testing has shown this *does* help performance in 64-bit mode (at
// least on modern x86 machines).
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
MachineInstr *InsMI =
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg, RegState::Define, X86::sub_16bit)
.addReg(Src, getKillRegState(isKill));
MachineInstrBuilder MIB =
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg);
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::SHL16ri: {
unsigned ShAmt = MI.getOperand(2).getImm();
MIB.addReg(0).addImm(1ULL << ShAmt)
.addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
break;
}
case X86::INC16r:
addRegOffset(MIB, leaInReg, true, 1);
break;
case X86::DEC16r:
addRegOffset(MIB, leaInReg, true, -1);
break;
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm());
break;
case X86::ADD16rr:
case X86::ADD16rr_DB: {
unsigned Src2 = MI.getOperand(2).getReg();
bool isKill2 = MI.getOperand(2).isKill();
unsigned leaInReg2 = 0;
MachineInstr *InsMI2 = nullptr;
if (Src == Src2) {
// ADD16rr %reg1028<kill>, %reg1028
// just a single insert_subreg.
addRegReg(MIB, leaInReg, true, leaInReg, false);
} else {
if (Subtarget.is64Bit())
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
else
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg2, RegState::Define, X86::sub_16bit)
.addReg(Src2, getKillRegState(isKill2));
addRegReg(MIB, leaInReg, true, leaInReg2, true);
}
if (LV && isKill2 && InsMI2)
LV->replaceKillInstruction(Src2, MI, *InsMI2);
break;
}
}
MachineInstr *NewMI = MIB;
MachineInstr *ExtMI =
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
.addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
if (LV) {
// Update live variables
LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
if (isKill)
LV->replaceKillInstruction(Src, MI, *InsMI);
if (isDead)
LV->replaceKillInstruction(Dest, MI, *ExtMI);
}
return ExtMI;
}
/// This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineInstr &MI, LiveVariables *LV) const {
// The following opcodes also sets the condition code register(s). Only
// convert them to equivalent lea if the condition code register def's
// are dead!
if (hasLiveCondCodeDef(MI))
return nullptr;
MachineFunction &MF = *MI.getParent()->getParent();
// All instructions input are two-addr instructions. Get the known operands.
const MachineOperand &Dest = MI.getOperand(0);
const MachineOperand &Src = MI.getOperand(1);
MachineInstr *NewMI = nullptr;
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
// we have better subtarget support, enable the 16-bit LEA generation here.
// 16-bit LEA is also slow on Core2.
bool DisableLEA16 = true;
bool is64Bit = Subtarget.is64Bit();
unsigned MIOpc = MI.getOpcode();
switch (MIOpc) {
default: return nullptr;
case X86::SHL64ri: {
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
// LEA can't handle RSP.
if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
!MF.getRegInfo().constrainRegClass(Src.getReg(),
&X86::GR64_NOSPRegClass))
return nullptr;
NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
.add(Dest)
.addReg(0)
.addImm(1ULL << ShAmt)
.add(Src)
.addImm(0)
.addReg(0);
break;
}
case X86::SHL32ri: {
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
// LEA can't handle ESP.
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
SrcReg, isKill, isUndef, ImplicitOp, LV))
return nullptr;
MachineInstrBuilder MIB =
BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(0)
.addImm(1ULL << ShAmt)
.addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
.addImm(0)
.addReg(0);
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = MIB;
break;
}
case X86::SHL16ri: {
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
: nullptr;
NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
.add(Dest)
.addReg(0)
.addImm(1ULL << ShAmt)
.add(Src)
.addImm(0)
.addReg(0);
break;
}
case X86::INC64r:
case X86::INC32r: {
assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
SrcReg, isKill, isUndef, ImplicitOp, LV))
return nullptr;
MachineInstrBuilder MIB =
BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg,
getKillRegState(isKill) | getUndefRegState(isUndef));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, 1);
break;
}
case X86::INC16r:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
: nullptr;
assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
NewMI = addOffset(
BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1);
break;
case X86::DEC64r:
case X86::DEC32r: {
assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
SrcReg, isKill, isUndef, ImplicitOp, LV))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg, getUndefRegState(isUndef) |
getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, -1);
break;
}
case X86::DEC16r:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
: nullptr;
assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
NewMI = addOffset(
BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1);
break;
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD32rr:
case X86::ADD32rr_DB: {
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc;
if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
Opc = X86::LEA64r;
else
Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
SrcReg, isKill, isUndef, ImplicitOp, LV))
return nullptr;
const MachineOperand &Src2 = MI.getOperand(2);
bool isKill2, isUndef2;
unsigned SrcReg2;
MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
SrcReg2, isKill2, isUndef2, ImplicitOp2, LV))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
if (ImplicitOp2.getReg() != 0)
MIB.add(ImplicitOp2);
NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
// Preserve undefness of the operands.
NewMI->getOperand(1).setIsUndef(isUndef);
NewMI->getOperand(3).setIsUndef(isUndef2);
if (LV && Src2.isKill())
LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
break;
}
case X86::ADD16rr:
case X86::ADD16rr_DB: {
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
: nullptr;
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Src2 = MI.getOperand(2).getReg();
bool isKill2 = MI.getOperand(2).isKill();
NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest),
Src.getReg(), Src.isKill(), Src2, isKill2);
// Preserve undefness of the operands.
bool isUndef = MI.getOperand(1).isUndef();
bool isUndef2 = MI.getOperand(2).isUndef();
NewMI->getOperand(1).setIsUndef(isUndef);
NewMI->getOperand(3).setIsUndef(isUndef2);
if (LV && isKill2)
LV->replaceKillInstruction(Src2, MI, *NewMI);
break;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addOffset(
BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
MI.getOperand(2));
break;
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB: {
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
bool isKill, isUndef;
unsigned SrcReg;
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
SrcReg, isKill, isUndef, ImplicitOp, LV))
return nullptr;
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.addReg(SrcReg, getUndefRegState(isUndef) |
getKillRegState(isKill));
if (ImplicitOp.getReg() != 0)
MIB.add(ImplicitOp);
NewMI = addOffset(MIB, MI.getOperand(2));
break;
}
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
: nullptr;
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addOffset(
BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src),
MI.getOperand(2));
break;
case X86::VMOVDQU8Z128rmk:
case X86::VMOVDQU8Z256rmk:
case X86::VMOVDQU8Zrmk:
case X86::VMOVDQU16Z128rmk:
case X86::VMOVDQU16Z256rmk:
case X86::VMOVDQU16Zrmk:
case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: {
unsigned Opc;
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
}
NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.add(MI.getOperand(2))
.add(Src)
.add(MI.getOperand(3))
.add(MI.getOperand(4))
.add(MI.getOperand(5))
.add(MI.getOperand(6))
.add(MI.getOperand(7));
break;
}
case X86::VMOVDQU8Z128rrk:
case X86::VMOVDQU8Z256rrk:
case X86::VMOVDQU8Zrrk:
case X86::VMOVDQU16Z128rrk:
case X86::VMOVDQU16Z256rrk:
case X86::VMOVDQU16Zrrk:
case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
unsigned Opc;
switch (MIOpc) {
default: llvm_unreachable("Unreachable!");
case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
}
NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
.add(Dest)
.add(MI.getOperand(2))
.add(Src)
.add(MI.getOperand(3));
break;
}
}
if (!NewMI) return nullptr;
if (LV) { // Update live variables
if (Src.isKill())
LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
if (Dest.isDead())
LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
}
MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
return NewMI;
}
/// This determines which of three possible cases of a three source commute
/// the source indexes correspond to taking into account any mask operands.
/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
/// possible.
/// Case 0 - Possible to commute the first and second operands.
/// Case 1 - Possible to commute the first and third operands.
/// Case 2 - Possible to commute the second and third operands.
static int getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
unsigned SrcOpIdx2) {
// Put the lowest index to SrcOpIdx1 to simplify the checks below.
if (SrcOpIdx1 > SrcOpIdx2)
std::swap(SrcOpIdx1, SrcOpIdx2);
unsigned Op1 = 1, Op2 = 2, Op3 = 3;
if (X86II::isKMasked(TSFlags)) {
// The k-mask operand cannot be commuted.
if (SrcOpIdx1 == 2)
return -1;
// For k-zero-masked operations it is Ok to commute the first vector
// operand.
// For regular k-masked operations a conservative choice is done as the
// elements of the first vector operand, for which the corresponding bit
// in the k-mask operand is set to 0, are copied to the result of the
// instruction.
// TODO/FIXME: The commute still may be legal if it is known that the
// k-mask operand is set to either all ones or all zeroes.
// It is also Ok to commute the 1st operand if all users of MI use only
// the elements enabled by the k-mask operand. For example,
// v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
// : v1[i];
// VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
// // Ok, to commute v1 in FMADD213PSZrk.
if (X86II::isKMergeMasked(TSFlags) && SrcOpIdx1 == Op1)
return -1;
Op2++;
Op3++;
}
if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
return 0;
if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
return 1;
if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
return 2;
return -1;
}
unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
const X86InstrFMA3Group &FMA3Group) const {
unsigned Opc = MI.getOpcode();
// Put the lowest index to SrcOpIdx1 to simplify the checks below.
if (SrcOpIdx1 > SrcOpIdx2)
std::swap(SrcOpIdx1, SrcOpIdx2);
// TODO: Commuting the 1st operand of FMA*_Int requires some additional
// analysis. The commute optimization is legal only if all users of FMA*_Int
// use only the lowest element of the FMA*_Int instruction. Such analysis are
// not implemented yet. So, just return 0 in that case.
// When such analysis are available this place will be the right place for
// calling it.
if (FMA3Group.isIntrinsic() && SrcOpIdx1 == 1)
return 0;
// Determine which case this commute is or if it can't be done.
int Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
if (Case < 0)
return 0;
// Define the FMA forms mapping array that helps to map input FMA form
// to output FMA form to preserve the operation semantics after
// commuting the operands.
const unsigned Form132Index = 0;
const unsigned Form213Index = 1;
const unsigned Form231Index = 2;
static const unsigned FormMapping[][3] = {
// 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
// FMA132 A, C, b; ==> FMA231 C, A, b;
// FMA213 B, A, c; ==> FMA213 A, B, c;
// FMA231 C, A, b; ==> FMA132 A, C, b;
{ Form231Index, Form213Index, Form132Index },
// 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
// FMA132 A, c, B; ==> FMA132 B, c, A;
// FMA213 B, a, C; ==> FMA231 C, a, B;
// FMA231 C, a, B; ==> FMA213 B, a, C;
{ Form132Index, Form231Index, Form213Index },
// 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
// FMA132 a, C, B; ==> FMA213 a, B, C;
// FMA213 b, A, C; ==> FMA132 b, C, A;
// FMA231 c, A, B; ==> FMA231 c, B, A;
{ Form213Index, Form132Index, Form231Index }
};
unsigned FMAForms[3];
if (FMA3Group.isRegOpcodeFromGroup(Opc)) {
FMAForms[0] = FMA3Group.getReg132Opcode();
FMAForms[1] = FMA3Group.getReg213Opcode();
FMAForms[2] = FMA3Group.getReg231Opcode();
} else {
FMAForms[0] = FMA3Group.getMem132Opcode();
FMAForms[1] = FMA3Group.getMem213Opcode();
FMAForms[2] = FMA3Group.getMem231Opcode();
}
unsigned FormIndex;
for (FormIndex = 0; FormIndex < 3; FormIndex++)
if (Opc == FMAForms[FormIndex])
break;
// Everything is ready, just adjust the FMA opcode and return it.
FormIndex = FormMapping[Case][FormIndex];
return FMAForms[FormIndex];
}
static bool commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
unsigned SrcOpIdx2) {
uint64_t TSFlags = MI.getDesc().TSFlags;
// Determine which case this commute is or if it can't be done.
int Case = getThreeSrcCommuteCase(TSFlags, SrcOpIdx1, SrcOpIdx2);
if (Case < 0)
return false;
// For each case we need to swap two pairs of bits in the final immediate.
static const uint8_t SwapMasks[3][4] = {
{ 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
{ 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
{ 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
};
uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
// Clear out the bits we are swapping.
uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
SwapMasks[Case][2] | SwapMasks[Case][3]);
// If the immediate had a bit of the pair set, then set the opposite bit.
if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
return true;
}
// Returns true if this is a VPERMI2 or VPERMT2 instrution that can be
// commuted.
static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
#define VPERM_CASES(Suffix) \
case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
#define VPERM_CASES_BROADCAST(Suffix) \
VPERM_CASES(Suffix) \
case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
switch (Opcode) {
default: return false;
VPERM_CASES(B)
VPERM_CASES_BROADCAST(D)
VPERM_CASES_BROADCAST(PD)
VPERM_CASES_BROADCAST(PS)
VPERM_CASES_BROADCAST(Q)
VPERM_CASES(W)
return true;
}
#undef VPERM_CASES_BROADCAST
#undef VPERM_CASES
}
// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
// from the I opcod to the T opcode and vice versa.
static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
#define VPERM_CASES(Orig, New) \
case X86::Orig##128rr: return X86::New##128rr; \
case X86::Orig##128rrkz: return X86::New##128rrkz; \
case X86::Orig##128rm: return X86::New##128rm; \
case X86::Orig##128rmkz: return X86::New##128rmkz; \
case X86::Orig##256rr: return X86::New##256rr; \
case X86::Orig##256rrkz: return X86::New##256rrkz; \
case X86::Orig##256rm: return X86::New##256rm; \
case X86::Orig##256rmkz: return X86::New##256rmkz; \
case X86::Orig##rr: return X86::New##rr; \
case X86::Orig##rrkz: return X86::New##rrkz; \
case X86::Orig##rm: return X86::New##rm; \
case X86::Orig##rmkz: return X86::New##rmkz;
#define VPERM_CASES_BROADCAST(Orig, New) \
VPERM_CASES(Orig, New) \
case X86::Orig##128rmb: return X86::New##128rmb; \
case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
case X86::Orig##256rmb: return X86::New##256rmb; \
case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
case X86::Orig##rmb: return X86::New##rmb; \
case X86::Orig##rmbkz: return X86::New##rmbkz;
switch (Opcode) {
VPERM_CASES(VPERMI2B, VPERMT2B)
VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
VPERM_CASES(VPERMI2W, VPERMT2W)
VPERM_CASES(VPERMT2B, VPERMI2B)
VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
VPERM_CASES(VPERMT2W, VPERMI2W)
}
llvm_unreachable("Unreachable!");
#undef VPERM_CASES_BROADCAST
#undef VPERM_CASES
}
MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
if (NewMI)
return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
return MI;
};
switch (MI.getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
unsigned Opc;
unsigned Size;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
}
unsigned Amt = MI.getOperand(3).getImm();
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
WorkingMI.getOperand(3).setImm(Size - Amt);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::BLENDPDrri:
case X86::BLENDPSrri:
case X86::PBLENDWrri:
case X86::VBLENDPDrri:
case X86::VBLENDPSrri:
case X86::VBLENDPDYrri:
case X86::VBLENDPSYrri:
case X86::VPBLENDDrri:
case X86::VPBLENDWrri:
case X86::VPBLENDDYrri:
case X86::VPBLENDWYrri:{
unsigned Mask;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::BLENDPDrri: Mask = 0x03; break;
case X86::BLENDPSrri: Mask = 0x0F; break;
case X86::PBLENDWrri: Mask = 0xFF; break;
case X86::VBLENDPDrri: Mask = 0x03; break;
case X86::VBLENDPSrri: Mask = 0x0F; break;
case X86::VBLENDPDYrri: Mask = 0x0F; break;
case X86::VBLENDPSYrri: Mask = 0xFF; break;
case X86::VPBLENDDrri: Mask = 0x0F; break;
case X86::VPBLENDWrri: Mask = 0xFF; break;
case X86::VPBLENDDYrri: Mask = 0xFF; break;
case X86::VPBLENDWYrri: Mask = 0xFF; break;
}
// Only the least significant bits of Imm are used.
unsigned Imm = MI.getOperand(3).getImm() & Mask;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Mask ^ Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::MOVSDrr:
case X86::MOVSSrr:
case X86::VMOVSDrr:
case X86::VMOVSSrr:{
// On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
if (!Subtarget.hasSSE41())
return nullptr;
unsigned Mask, Opc;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
}
// MOVSD/MOVSS's 2nd operand is a FR64/FR32 reg class - we need to copy
// this over to a VR128 class like the 1st operand to use a BLENDPD/BLENDPS.
auto &MRI = MI.getParent()->getParent()->getRegInfo();
auto VR128RC = MRI.getRegClass(MI.getOperand(1).getReg());
unsigned VR128 = MRI.createVirtualRegister(VR128RC);
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY),
VR128)
.addReg(MI.getOperand(2).getReg());
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
WorkingMI.getOperand(2).setReg(VR128);
WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::PCLMULQDQrr:
case X86::VPCLMULQDQrr:{
// SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
// SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
unsigned Imm = MI.getOperand(3).getImm();
unsigned Src1Hi = Imm & 0x01;
unsigned Src2Hi = Imm & 0x10;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::CMPSDrr:
case X86::CMPSSrr:
case X86::CMPPDrri:
case X86::CMPPSrri:
case X86::VCMPSDrr:
case X86::VCMPSSrr:
case X86::VCMPPDrri:
case X86::VCMPPSrri:
case X86::VCMPPDYrri:
case X86::VCMPPSYrri:
case X86::VCMPSDZrr:
case X86::VCMPSSZrr:
case X86::VCMPPDZrri:
case X86::VCMPPSZrri:
case X86::VCMPPDZ128rri:
case X86::VCMPPSZ128rri:
case X86::VCMPPDZ256rri:
case X86::VCMPPSZ256rri: {
// Float comparison can be safely commuted for
// Ordered/Unordered/Equal/NotEqual tests
unsigned Imm = MI.getOperand(3).getImm() & 0x7;
switch (Imm) {
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
default:
return nullptr;
}
}
case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
case X86::VPCMPWZrri: case X86::VPCMPUWZrri: {
// Flip comparison mode immediate (if necessary).
unsigned Imm = MI.getOperand(3).getImm() & 0x7;
switch (Imm) {
default: llvm_unreachable("Unreachable!");
case 0x01: Imm = 0x06; break; // LT -> NLE
case 0x02: Imm = 0x05; break; // LE -> NLT
case 0x05: Imm = 0x02; break; // NLT -> LE
case 0x06: Imm = 0x01; break; // NLE -> LT
case 0x00: // EQ
case 0x03: // FALSE
case 0x04: // NE
case 0x07: // TRUE
break;
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPCOMBri: case X86::VPCOMUBri:
case X86::VPCOMDri: case X86::VPCOMUDri:
case X86::VPCOMQri: case X86::VPCOMUQri:
case X86::VPCOMWri: case X86::VPCOMUWri: {
// Flip comparison mode immediate (if necessary).
unsigned Imm = MI.getOperand(3).getImm() & 0x7;
switch (Imm) {
default: llvm_unreachable("Unreachable!");
case 0x00: Imm = 0x02; break; // LT -> GT
case 0x01: Imm = 0x03; break; // LE -> GE
case 0x02: Imm = 0x00; break; // GT -> LT
case 0x03: Imm = 0x01; break; // GE -> LE
case 0x04: // EQ
case 0x05: // NE
case 0x06: // FALSE
case 0x07: // TRUE
break;
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Imm);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPERM2F128rr:
case X86::VPERM2I128rr: {
// Flip permute source immediate.
// Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
// Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
unsigned Imm = MI.getOperand(3).getImm() & 0xFF;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::MOVHLPSrr:
case X86::UNPCKHPDrr: {
if (!Subtarget.hasSSE2())
return nullptr;
unsigned Opc = MI.getOpcode();
switch (Opc) {
default: llvm_unreachable("Unreachable!");
case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
unsigned Opc;
switch (MI.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZrmik:
case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ128rmik:
case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGDZ256rmik:
case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZrmik:
case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ128rmik:
case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGQZ256rmik:
case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: {
auto &WorkingMI = cloneIfNew(MI);
if (!commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2))
return nullptr;
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
default: {
if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
const X86InstrFMA3Group *FMA3Group =
X86InstrFMA3Info::getFMA3Group(MI.getOpcode());
if (FMA3Group) {
unsigned Opc =
getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
if (Opc == 0)
return nullptr;
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}
}
}
bool X86InstrInfo::findFMA3CommutedOpIndices(
const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2,
const X86InstrFMA3Group &FMA3Group) const {
if (!findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2))
return false;
// Check if we can adjust the opcode to preserve the semantics when
// commute the register operands.
return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2, FMA3Group) != 0;
}
bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
uint64_t TSFlags = MI.getDesc().TSFlags;
unsigned FirstCommutableVecOp = 1;
unsigned LastCommutableVecOp = 3;
unsigned KMaskOp = 0;
if (X86II::isKMasked(TSFlags)) {
// The k-mask operand has index = 2 for masked and zero-masked operations.
KMaskOp = 2;
// The operand with index = 1 is used as a source for those elements for
// which the corresponding bit in the k-mask is set to 0.
if (X86II::isKMergeMasked(TSFlags))
FirstCommutableVecOp = 3;
LastCommutableVecOp++;
}
if (isMem(MI, LastCommutableVecOp))
LastCommutableVecOp--;
// Only the first RegOpsNum operands are commutable.
// Also, the value 'CommuteAnyOperandIndex' is valid here as it means
// that the operand is not specified/fixed.
if (SrcOpIdx1 != CommuteAnyOperandIndex &&
(SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
SrcOpIdx1 == KMaskOp))
return false;
if (SrcOpIdx2 != CommuteAnyOperandIndex &&
(SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
SrcOpIdx2 == KMaskOp))
return false;
// Look for two different register operands assumed to be commutable
// regardless of the FMA opcode. The FMA opcode is adjusted later.
if (SrcOpIdx1 == CommuteAnyOperandIndex ||
SrcOpIdx2 == CommuteAnyOperandIndex) {
unsigned CommutableOpIdx1 = SrcOpIdx1;
unsigned CommutableOpIdx2 = SrcOpIdx2;
// At least one of operands to be commuted is not specified and
// this method is free to choose appropriate commutable operands.
if (SrcOpIdx1 == SrcOpIdx2)
// Both of operands are not fixed. By default set one of commutable
// operands to the last register operand of the instruction.
CommutableOpIdx2 = LastCommutableVecOp;
else if (SrcOpIdx2 == CommuteAnyOperandIndex)
// Only one of operands is not fixed.
CommutableOpIdx2 = SrcOpIdx1;
// CommutableOpIdx2 is well defined now. Let's choose another commutable
// operand and assign its index to CommutableOpIdx1.
unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
for (CommutableOpIdx1 = LastCommutableVecOp;
CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
// Just ignore and skip the k-mask operand.
if (CommutableOpIdx1 == KMaskOp)
continue;
// The commuted operands must have different registers.
// Otherwise, the commute transformation does not change anything and
// is useless then.
if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
break;
}
// No appropriate commutable operands were found.
if (CommutableOpIdx1 < FirstCommutableVecOp)
return false;
// Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
// to return those values.
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
}
return true;
}
bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
const MCInstrDesc &Desc = MI.getDesc();
if (!Desc.isCommutable())
return false;
switch (MI.getOpcode()) {
case X86::CMPSDrr:
case X86::CMPSSrr:
case X86::CMPPDrri:
case X86::CMPPSrri:
case X86::VCMPSDrr:
case X86::VCMPSSrr:
case X86::VCMPPDrri:
case X86::VCMPPSrri:
case X86::VCMPPDYrri:
case X86::VCMPPSYrri:
case X86::VCMPSDZrr:
case X86::VCMPSSZrr:
case X86::VCMPPDZrri:
case X86::VCMPPSZrri:
case X86::VCMPPDZ128rri:
case X86::VCMPPSZ128rri:
case X86::VCMPPDZ256rri:
case X86::VCMPPSZ256rri: {
// Float comparison can be safely commuted for
// Ordered/Unordered/Equal/NotEqual tests
unsigned Imm = MI.getOperand(3).getImm() & 0x7;
switch (Imm) {
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
// The indices of the commutable operands are 1 and 2.
// Assign them to the returned operand indices here.
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
}
return false;
}
case X86::MOVSDrr:
case X86::MOVSSrr:
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
if (Subtarget.hasSSE41())
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
return false;
}
case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZrmik:
case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ128rmik:
case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGDZ256rmik:
case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZrmik:
case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ128rmik:
case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGQZ256rmik:
case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
default:
const X86InstrFMA3Group *FMA3Group =
X86InstrFMA3Info::getFMA3Group(MI.getOpcode());
if (FMA3Group)
return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, *FMA3Group);
// Handled masked instructions since we need to skip over the mask input
// and the preserved input.
if (Desc.TSFlags & X86II::EVEX_K) {
// First assume that the first input is the mask operand and skip past it.
unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
// Check if the first input is tied. If there isn't one then we only
// need to skip the mask operand which we did above.
if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
MCOI::TIED_TO) != -1)) {
// If this is zero masking instruction with a tied operand, we need to
// move the first index back to the first input since this must
// be a 3 input instruction and we want the first two non-mask inputs.
// Otherwise this is a 2 input instruction with a preserved input and
// mask, so we need to move the indices to skip one more input.
if (Desc.TSFlags & X86II::EVEX_Z)
--CommutableOpIdx1;
else {
++CommutableOpIdx1;
++CommutableOpIdx2;
}
}
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
if (!MI.getOperand(SrcOpIdx1).isReg() ||
!MI.getOperand(SrcOpIdx2).isReg())
// No idea.
return false;
return true;
}
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
}
return false;
}
static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
case X86::JE_1: return X86::COND_E;
case X86::JNE_1: return X86::COND_NE;
case X86::JL_1: return X86::COND_L;
case X86::JLE_1: return X86::COND_LE;
case X86::JG_1: return X86::COND_G;
case X86::JGE_1: return X86::COND_GE;
case X86::JB_1: return X86::COND_B;
case X86::JBE_1: return X86::COND_BE;
case X86::JA_1: return X86::COND_A;
case X86::JAE_1: return X86::COND_AE;
case X86::JS_1: return X86::COND_S;
case X86::JNS_1: return X86::COND_NS;
case X86::JP_1: return X86::COND_P;
case X86::JNP_1: return X86::COND_NP;
case X86::JO_1: return X86::COND_O;
case X86::JNO_1: return X86::COND_NO;
}
}
/// Return condition code of a SET opcode.
static X86::CondCode getCondFromSETOpc(unsigned Opc) {
switch (Opc) {
default: return X86::COND_INVALID;
case X86::SETAr: case X86::SETAm: return X86::COND_A;
case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
case X86::SETBr: case X86::SETBm: return X86::COND_B;
case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
case X86::SETEr: case X86::SETEm: return X86::COND_E;
case X86::SETGr: case X86::SETGm: return X86::COND_G;
case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
case X86::SETLr: case X86::SETLm: return X86::COND_L;
case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
case X86::SETOr: case X86::SETOm: return X86::COND_O;
case X86::SETPr: case X86::SETPm: return X86::COND_P;
case X86::SETSr: case X86::SETSm: return X86::COND_S;
}
}
/// Return condition code of a CMov opcode.
X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
switch (Opc) {
default: return X86::COND_INVALID;
case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
return X86::COND_A;
case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
return X86::COND_AE;
case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
return X86::COND_B;
case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
return X86::COND_BE;
case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
return X86::COND_E;
case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
return X86::COND_G;
case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
return X86::COND_GE;
case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
return X86::COND_L;
case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
return X86::COND_LE;
case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
return X86::COND_NE;
case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
return X86::COND_NO;
case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
return X86::COND_NP;
case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
return X86::COND_NS;
case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
return X86::COND_O;
case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
return X86::COND_P;
case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
return X86::COND_S;
}
}
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::JE_1;
case X86::COND_NE: return X86::JNE_1;
case X86::COND_L: return X86::JL_1;
case X86::COND_LE: return X86::JLE_1;
case X86::COND_G: return X86::JG_1;
case X86::COND_GE: return X86::JGE_1;
case X86::COND_B: return X86::JB_1;
case X86::COND_BE: return X86::JBE_1;
case X86::COND_A: return X86::JA_1;
case X86::COND_AE: return X86::JAE_1;
case X86::COND_S: return X86::JS_1;
case X86::COND_NS: return X86::JNS_1;
case X86::COND_P: return X86::JP_1;
case X86::COND_NP: return X86::JNP_1;
case X86::COND_O: return X86::JO_1;
case X86::COND_NO: return X86::JNO_1;
}
}
/// Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
case X86::COND_LE: return X86::COND_G;
case X86::COND_G: return X86::COND_LE;
case X86::COND_GE: return X86::COND_L;
case X86::COND_B: return X86::COND_AE;
case X86::COND_BE: return X86::COND_A;
case X86::COND_A: return X86::COND_BE;
case X86::COND_AE: return X86::COND_B;
case X86::COND_S: return X86::COND_NS;
case X86::COND_NS: return X86::COND_S;
case X86::COND_P: return X86::COND_NP;
case X86::COND_NP: return X86::COND_P;
case X86::COND_O: return X86::COND_NO;
case X86::COND_NO: return X86::COND_O;
case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
}
}
/// Assuming the flags are set by MI(a,b), return the condition code if we
/// modify the instructions such that flags are set by MI(b,a).
static X86::CondCode getSwappedCondition(X86::CondCode CC) {
switch (CC) {
default: return X86::COND_INVALID;
case X86::COND_E: return X86::COND_E;
case X86::COND_NE: return X86::COND_NE;
case X86::COND_L: return X86::COND_G;
case X86::COND_LE: return X86::COND_GE;
case X86::COND_G: return X86::COND_L;
case X86::COND_GE: return X86::COND_LE;
case X86::COND_B: return X86::COND_A;
case X86::COND_BE: return X86::COND_AE;
case X86::COND_A: return X86::COND_B;
case X86::COND_AE: return X86::COND_BE;
}
}
/// Return a set opcode for the given condition and
/// whether it has memory operand.
unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
static const uint16_t Opc[16][2] = {
{ X86::SETAr, X86::SETAm },
{ X86::SETAEr, X86::SETAEm },
{ X86::SETBr, X86::SETBm },
{ X86::SETBEr, X86::SETBEm },
{ X86::SETEr, X86::SETEm },
{ X86::SETGr, X86::SETGm },
{ X86::SETGEr, X86::SETGEm },
{ X86::SETLr, X86::SETLm },
{ X86::SETLEr, X86::SETLEm },
{ X86::SETNEr, X86::SETNEm },
{ X86::SETNOr, X86::SETNOm },
{ X86::SETNPr, X86::SETNPm },
{ X86::SETNSr, X86::SETNSm },
{ X86::SETOr, X86::SETOm },
{ X86::SETPr, X86::SETPm },
{ X86::SETSr, X86::SETSm }
};
assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
return Opc[CC][HasMemoryOperand ? 1 : 0];
}
/// Return a cmov opcode for the given condition,
/// register size in bytes, and operand type.
unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
bool HasMemoryOperand) {
static const uint16_t Opc[32][3] = {
{ X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
{ X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
{ X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
{ X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
{ X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
{ X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
{ X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
{ X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
{ X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
{ X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
{ X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
{ X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
{ X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
{ X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
{ X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
{ X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
{ X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
{ X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
{ X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
{ X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
{ X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
{ X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
{ X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
{ X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
{ X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
{ X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
{ X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
{ X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
{ X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
{ X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
{ X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
{ X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
};
assert(CC < 16 && "Can only handle standard cond codes");
unsigned Idx = HasMemoryOperand ? 16+CC : CC;
switch(RegBytes) {
default: llvm_unreachable("Illegal register size!");
case 2: return Opc[Idx][0];
case 4: return Opc[Idx][1];
case 8: return Opc[Idx][2];
}
}
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
if (!MI.isTerminator()) return false;
// Conditional branch is a special case.
if (MI.isBranch() && !MI.isBarrier())
return true;
if (!MI.isPredicable())
return true;
return !isPredicated(MI);
}
bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case X86::TCRETURNdi:
case X86::TCRETURNri:
case X86::TCRETURNmi:
case X86::TCRETURNdi64:
case X86::TCRETURNri64:
case X86::TCRETURNmi64:
return true;
default:
return false;
}
}
bool X86InstrInfo::canMakeTailCallConditional(
SmallVectorImpl<MachineOperand> &BranchCond,
const MachineInstr &TailCall) const {
if (TailCall.getOpcode() != X86::TCRETURNdi &&
TailCall.getOpcode() != X86::TCRETURNdi64) {
// Only direct calls can be done with a conditional branch.
return false;
}
if (Subtarget.isTargetWin64()) {
// Conditional tail calls confuse the Win64 unwinder.
// TODO: Allow them for "leaf" functions; PR30337.
return false;
}
assert(BranchCond.size() == 1);
if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
// Can't make a conditional tail call with this condition.
return false;
}
const X86MachineFunctionInfo *X86FI =
TailCall.getParent()->getParent()->getInfo<X86MachineFunctionInfo>();
if (X86FI->getTCReturnAddrDelta() != 0 ||
TailCall.getOperand(1).getImm() != 0) {
// A conditional tail call cannot do any stack adjustment.
return false;
}
return true;
}
void X86InstrInfo::replaceBranchWithTailCall(
MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
const MachineInstr &TailCall) const {
assert(canMakeTailCallConditional(BranchCond, TailCall));
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (!I->isBranch())
assert(0 && "Can't find the branch to replace!");
X86::CondCode CC = getCondFromBranchOpc(I->getOpcode());
assert(BranchCond.size() == 1);
if (CC != BranchCond[0].getImm())
continue;
break;
}
unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
: X86::TCRETURNdi64cc;
auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
MIB->addOperand(TailCall.getOperand(0)); // Destination.
MIB.addImm(0); // Stack offset (not used).
MIB->addOperand(BranchCond[0]); // Condition.
MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
I->eraseFromParent();
}
// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
// not be a fallthrough MBB now due to layout changes). Return nullptr if the
// fallthrough MBB cannot be identified.
static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
MachineBasicBlock *TBB) {
// Look for non-EHPad successors other than TBB. If we find exactly one, it
// is the fallthrough MBB. If we find zero, then TBB is both the target MBB
// and fallthrough MBB. If we find more than one, we cannot identify the
// fallthrough MBB and should return nullptr.
MachineBasicBlock *FallthroughBB = nullptr;
for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
continue;
// Return a nullptr if we found more than one fallthrough successor.
if (FallthroughBB && FallthroughBB != TBB)
return nullptr;
FallthroughBB = *SI;
}
return FallthroughBB;
}
bool X86InstrInfo::AnalyzeBranchImpl(
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
MachineBasicBlock::iterator UnCondBrIter = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator instruction, we're
// done.
if (!isUnpredicatedTerminator(*I))
break;
// A terminator that isn't a branch can't easily be handled by this
// analysis.
if (!I->isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == X86::JMP_1) {
UnCondBrIter = I;
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (std::next(I) != MBB.end())
std::next(I)->eraseFromParent();
Cond.clear();
FBB = nullptr;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = nullptr;
I->eraseFromParent();
I = MBB.end();
UnCondBrIter = MBB.end();
continue;
}
// TBB is used to indicate the unconditional destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
if (AllowModify && UnCondBrIter != MBB.end() &&
MBB.isLayoutSuccessor(TargetBB)) {
// If we can modify the code and it ends in something like:
//
// jCC L1
// jmp L2
// L1:
// ...
// L2:
//
// Then we can change this to:
//
// jnCC L2
// L1:
// ...
// L2:
//
// Which is a bit more efficient.
// We conditionally jump to the fall-through block.
BranchCode = GetOppositeBranchCondition(BranchCode);
unsigned JNCC = GetCondBranchFromCond(BranchCode);
MachineBasicBlock::iterator OldInst = I;
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
.addMBB(UnCondBrIter->getOperand(0).getMBB());
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
.addMBB(TargetBB);
OldInst->eraseFromParent();
UnCondBrIter->eraseFromParent();
// Restart the analysis.
UnCondBrIter = MBB.end();
I = MBB.end();
continue;
}
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
CondBranches.push_back(&*I);
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination and their condition
// opcodes fit one of the special multi-branch idioms.
assert(Cond.size() == 1);
assert(TBB);
// If the conditions are the same, we can leave them alone.
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
auto NewTBB = I->getOperand(0).getMBB();
if (OldBranchCode == BranchCode && TBB == NewTBB)
continue;
// If they differ, see if they fit one of the known patterns. Theoretically,
// we could handle more patterns here, but we shouldn't expect to see them
// if instruction selection has done a reasonable job.
if (TBB == NewTBB &&
((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
BranchCode = X86::COND_NE_OR_P;
} else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
return true;
// X86::COND_E_AND_NP usually has two different branch destinations.
//
// JP B1
// JE B2
// JMP B1
// B1:
// B2:
//
// Here this condition branches to B2 only if NP && E. It has another
// equivalent form:
//
// JNE B1
// JNP B2
// JMP B1
// B1:
// B2:
//
// Similarly it branches to B2 only if E && NP. That is why this condition
// is named with COND_E_AND_NP.
BranchCode = X86::COND_E_AND_NP;
} else
return true;
// Update the MachineOperand.
Cond[0].setImm(BranchCode);
CondBranches.push_back(&*I);
}
return false;
}
bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
SmallVector<MachineInstr *, 4> CondBranches;
return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
}
bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
MachineBranchPredicate &MBP,
bool AllowModify) const {
using namespace std::placeholders;
SmallVector<MachineOperand, 4> Cond;
SmallVector<MachineInstr *, 4> CondBranches;
if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
AllowModify))
return true;
if (Cond.size() != 1)
return true;
assert(MBP.TrueDest && "expected!");
if (!MBP.FalseDest)
MBP.FalseDest = MBB.getNextNode();
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineInstr *ConditionDef = nullptr;
bool SingleUseCondition = true;
for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
if (I->modifiesRegister(X86::EFLAGS, TRI)) {
ConditionDef = &*I;
break;
}
if (I->readsRegister(X86::EFLAGS, TRI))
SingleUseCondition = false;
}
if (!ConditionDef)
return true;
if (SingleUseCondition) {
for (auto *Succ : MBB.successors())
if (Succ->isLiveIn(X86::EFLAGS))
SingleUseCondition = false;
}
MBP.ConditionDef = ConditionDef;
MBP.SingleUseCondition = SingleUseCondition;
// Currently we only recognize the simple pattern:
//
// test %reg, %reg
// je %label
//
const unsigned TestOpcode =
Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
if (ConditionDef->getOpcode() == TestOpcode &&
ConditionDef->getNumOperands() == 3 &&
ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
(Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
MBP.LHS = ConditionDef->getOperand(0);
MBP.RHS = MachineOperand::CreateImm(0);
MBP.Predicate = Cond[0].getImm() == X86::COND_NE
? MachineBranchPredicate::PRED_NE
: MachineBranchPredicate::PRED_EQ;
return false;
}
return true;
}
unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != X86::JMP_1 &&
getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
// Shouldn't be a fall through.
assert(TBB && "insertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"X86 branch conditions have one component!");
assert(!BytesAdded && "code size not handled");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
return 1;
}
// If FBB is null, it is implied to be a fall-through block.
bool FallThru = FBB == nullptr;
// Conditional branch.
unsigned Count = 0;
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
switch (CC) {
case X86::COND_NE_OR_P:
// Synthesize NE_OR_P with two branches.
BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
++Count;
BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
++Count;
break;
case X86::COND_E_AND_NP:
// Use the next block of MBB as FBB if it is null.
if (FBB == nullptr) {
FBB = getFallThroughMBB(&MBB, TBB);
assert(FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.");
}
// Synthesize COND_E_AND_NP with two branches.
BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB);
++Count;
BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
++Count;
break;
default: {
unsigned Opc = GetCondBranchFromCond(CC);
BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
++Count;
}
}
if (!FallThru) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
++Count;
}
return Count;
}
bool X86InstrInfo::
canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
unsigned TrueReg, unsigned FalseReg,
int &CondCycles, int &TrueCycles, int &FalseCycles) const {
// Not all subtargets have cmov instructions.
if (!Subtarget.hasCMov())
return false;
if (Cond.size() != 1)
return false;
// We cannot do the composite conditions, at least not in SSA form.
if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
return false;
// Check register classes.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
if (!RC)
return false;
// We have cmov instructions for 16, 32, and 64 bit general purpose registers.
if (X86::GR16RegClass.hasSubClassEq(RC) ||
X86::GR32RegClass.hasSubClassEq(RC) ||
X86::GR64RegClass.hasSubClassEq(RC)) {
// This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
// Bridge. Probably Ivy Bridge as well.
CondCycles = 2;
TrueCycles = 2;
FalseCycles = 2;
return true;
}
// Can't do vectors.
return false;
}
void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, unsigned DstReg,
ArrayRef<MachineOperand> Cond, unsigned TrueReg,
unsigned FalseReg) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
assert(Cond.size() == 1 && "Invalid Cond array");
unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
MRI.getRegClass(DstReg)->getSize(),
false /*HasMemoryOperand*/);
BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
}
/// Test if the given register is a physical h register.
static bool isHReg(unsigned Reg) {
return X86::GR8_ABCD_HRegClass.contains(Reg);
}
// Try and copy between VR128/VR64 and GR64 registers.
static unsigned CopyToFromAsymmetricReg(unsigned &DestReg, unsigned &SrcReg,
const X86Subtarget &Subtarget) {
bool HasAVX = Subtarget.hasAVX();
bool HasAVX512 = Subtarget.hasAVX512();
// SrcReg(MaskReg) -> DestReg(GR64)
// SrcReg(MaskReg) -> DestReg(GR32)
// SrcReg(MaskReg) -> DestReg(GR16)
// SrcReg(MaskReg) -> DestReg(GR8)
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
if (X86::VK16RegClass.contains(SrcReg)) {
if (X86::GR64RegClass.contains(DestReg)) {
assert(Subtarget.hasBWI());
return X86::KMOVQrk;
}
if (X86::GR32RegClass.contains(DestReg))
return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
if (X86::GR16RegClass.contains(DestReg)) {
DestReg = getX86SubSuperRegister(DestReg, 32);
return X86::KMOVWrk;
}
if (X86::GR8RegClass.contains(DestReg)) {
DestReg = getX86SubSuperRegister(DestReg, 32);
return Subtarget.hasDQI() ? X86::KMOVBrk : X86::KMOVWrk;
}
}
// SrcReg(GR64) -> DestReg(MaskReg)
// SrcReg(GR32) -> DestReg(MaskReg)
// SrcReg(GR16) -> DestReg(MaskReg)
// SrcReg(GR8) -> DestReg(MaskReg)
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
if (X86::VK16RegClass.contains(DestReg)) {
if (X86::GR64RegClass.contains(SrcReg)) {
assert(Subtarget.hasBWI());
return X86::KMOVQkr;
}
if (X86::GR32RegClass.contains(SrcReg))
return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
if (X86::GR16RegClass.contains(SrcReg)) {
SrcReg = getX86SubSuperRegister(SrcReg, 32);
return X86::KMOVWkr;
}
if (X86::GR8RegClass.contains(SrcReg)) {
SrcReg = getX86SubSuperRegister(SrcReg, 32);
return Subtarget.hasDQI() ? X86::KMOVBkr : X86::KMOVWkr;
}
}
// SrcReg(VR128) -> DestReg(GR64)
// SrcReg(VR64) -> DestReg(GR64)
// SrcReg(GR64) -> DestReg(VR128)
// SrcReg(GR64) -> DestReg(VR64)
if (X86::GR64RegClass.contains(DestReg)) {
if (X86::VR128XRegClass.contains(SrcReg))
// Copy from a VR128 register to a GR64 register.
return HasAVX512 ? X86::VMOVPQIto64Zrr :
HasAVX ? X86::VMOVPQIto64rr :
X86::MOVPQIto64rr;
if (X86::VR64RegClass.contains(SrcReg))
// Copy from a VR64 register to a GR64 register.
return X86::MMX_MOVD64from64rr;
} else if (X86::GR64RegClass.contains(SrcReg)) {
// Copy from a GR64 register to a VR128 register.
if (X86::VR128XRegClass.contains(DestReg))
return HasAVX512 ? X86::VMOV64toPQIZrr :
HasAVX ? X86::VMOV64toPQIrr :
X86::MOV64toPQIrr;
// Copy from a GR64 register to a VR64 register.
if (X86::VR64RegClass.contains(DestReg))
return X86::MMX_MOVD64to64rr;
}
// SrcReg(FR32) -> DestReg(GR32)
// SrcReg(GR32) -> DestReg(FR32)
if (X86::GR32RegClass.contains(DestReg) &&
X86::FR32XRegClass.contains(SrcReg))
// Copy from a FR32 register to a GR32 register.
return HasAVX512 ? X86::VMOVSS2DIZrr :
HasAVX ? X86::VMOVSS2DIrr :
X86::MOVSS2DIrr;
if (X86::FR32XRegClass.contains(DestReg) &&
X86::GR32RegClass.contains(SrcReg))
// Copy from a GR32 register to a FR32 register.
return HasAVX512 ? X86::VMOVDI2SSZrr :
HasAVX ? X86::VMOVDI2SSrr :
X86::MOVDI2SSrr;
return 0;
}
void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, unsigned DestReg,
unsigned SrcReg, bool KillSrc) const {
// First deal with the normal symmetric copies.
bool HasAVX = Subtarget.hasAVX();
bool HasVLX = Subtarget.hasVLX();
unsigned Opc = 0;
if (X86::GR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV64rr;
else if (X86::GR32RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV32rr;
else if (X86::GR16RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV16rr;
else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Subtarget.is64Bit()) {
Opc = X86::MOV8rr_NOREX;
// Both operands must be encodable without an REX prefix.
assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
"8-bit H register can not be copied outside GR8_NOREX");
} else
Opc = X86::MOV8rr;
}
else if (X86::VR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MMX_MOVQ64rr;
else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
if (HasVLX)
Opc = X86::VMOVAPSZ128rr;
else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
else {
// If this an extended register and we don't have VLX we need to use a
// 512-bit move.
Opc = X86::VMOVAPSZrr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
&X86::VR512RegClass);
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
&X86::VR512RegClass);
}
} else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
if (HasVLX)
Opc = X86::VMOVAPSZ256rr;
else if (X86::VR256RegClass.contains(DestReg, SrcReg))
Opc = X86::VMOVAPSYrr;
else {
// If this an extended register and we don't have VLX we need to use a
// 512-bit move.
Opc = X86::VMOVAPSZrr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
&X86::VR512RegClass);
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
&X86::VR512RegClass);
}
} else if (X86::VR512RegClass.contains(DestReg, SrcReg))
Opc = X86::VMOVAPSZrr;
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
else if (X86::VK16RegClass.contains(DestReg, SrcReg))
Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
if (!Opc)
Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
bool FromEFLAGS = SrcReg == X86::EFLAGS;
bool ToEFLAGS = DestReg == X86::EFLAGS;
int Reg = FromEFLAGS ? DestReg : SrcReg;
bool is32 = X86::GR32RegClass.contains(Reg);
bool is64 = X86::GR64RegClass.contains(Reg);
if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) {
int Mov = is64 ? X86::MOV64rr : X86::MOV32rr;
int Push = is64 ? X86::PUSH64r : X86::PUSH32r;
int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32;
int Pop = is64 ? X86::POP64r : X86::POP32r;
int PopF = is64 ? X86::POPF64 : X86::POPF32;
int AX = is64 ? X86::RAX : X86::EAX;
if (!Subtarget.hasLAHFSAHF()) {
assert(Subtarget.is64Bit() &&
"Not having LAHF/SAHF only happens on 64-bit.");
// Moving EFLAGS to / from another register requires a push and a pop.
// Notice that we have to adjust the stack if we don't want to clobber the
// first frame index. See X86FrameLowering.cpp - usesTheStack.
if (FromEFLAGS) {
BuildMI(MBB, MI, DL, get(PushF));
BuildMI(MBB, MI, DL, get(Pop), DestReg);
}
if (ToEFLAGS) {
BuildMI(MBB, MI, DL, get(Push))
.addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(PopF));
}
return;
}
// The flags need to be saved, but saving EFLAGS with PUSHF/POPF is
// inefficient. Instead:
// - Save the overflow flag OF into AL using SETO, and restore it using a
// signed 8-bit addition of AL and INT8_MAX.
// - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH
// using LAHF/SAHF.
// - When RAX/EAX is live and isn't the destination register, make sure it
// isn't clobbered by PUSH/POP'ing it before and after saving/restoring
// the flags.
// This approach is ~2.25x faster than using PUSHF/POPF.
//
// This is still somewhat inefficient because we don't know which flags are
// actually live inside EFLAGS. Were we able to do a single SETcc instead of
// SETO+LAHF / ADDB+SAHF the code could be 1.02x faster.
//
// PUSHF/POPF is also potentially incorrect because it affects other flags
// such as TF/IF/DF, which LLVM doesn't model.
//
// Notice that we have to adjust the stack if we don't want to clobber the
// first frame index.
// See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment.
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineBasicBlock::LivenessQueryResult LQR =
MBB.computeRegisterLiveness(TRI, AX, MI);
// We do not want to save and restore AX if we do not have to.
// Moreover, if we do so whereas AX is dead, we would need to set
// an undef flag on the use of AX, otherwise the verifier will
// complain that we read an undef value.
// We do not want to change the behavior of the machine verifier
// as this is usually wrong to read an undef value.
if (MachineBasicBlock::LQR_Unknown == LQR) {
LivePhysRegs LPR(TRI);
LPR.addLiveOuts(MBB);
MachineBasicBlock::iterator I = MBB.end();
while (I != MI) {
--I;
LPR.stepBackward(*I);
}
// AX contains the top most register in the aliasing hierarchy.
// It may not be live, but one of its aliases may be.
for (MCRegAliasIterator AI(AX, TRI, true);
AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI)
LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live
: MachineBasicBlock::LQR_Dead;
}
bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR);
if (!AXDead)
BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true));
if (FromEFLAGS) {
BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL);
BuildMI(MBB, MI, DL, get(X86::LAHF));
BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX);
}
if (ToEFLAGS) {
BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL)
.addReg(X86::AL)
.addImm(INT8_MAX);
BuildMI(MBB, MI, DL, get(X86::SAHF));
}
if (!AXDead)
BuildMI(MBB, MI, DL, get(Pop), AX);
return;
}
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
<< " to " << RI.getName(DestReg) << '\n');
llvm_unreachable("Cannot emit physreg copy instruction");
}
static unsigned getLoadStoreRegOpcode(unsigned Reg,
const TargetRegisterClass *RC,
bool isStackAligned,
const X86Subtarget &STI,
bool load) {
bool HasAVX = STI.hasAVX();
bool HasAVX512 = STI.hasAVX512();
bool HasVLX = STI.hasVLX();
switch (RC->getSize()) {
default:
llvm_unreachable("Unknown spill size");
case 1:
assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
if (STI.is64Bit())
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
return load ? X86::MOV8rm : X86::MOV8mr;
case 2:
if (X86::VK16RegClass.hasSubClassEq(RC))
return load ? X86::KMOVWkm : X86::KMOVWmk;
assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
return load ? X86::MOV16rm : X86::MOV16mr;
case 4:
if (X86::GR32RegClass.hasSubClassEq(RC))
return load ? X86::MOV32rm : X86::MOV32mr;
if (X86::FR32XRegClass.hasSubClassEq(RC))
return load ?
(HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
(HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
if (X86::RFP32RegClass.hasSubClassEq(RC))
return load ? X86::LD_Fp32m : X86::ST_Fp32m;
if (X86::VK32RegClass.hasSubClassEq(RC))
return load ? X86::KMOVDkm : X86::KMOVDmk;
llvm_unreachable("Unknown 4-byte regclass");
case 8:
if (X86::GR64RegClass.hasSubClassEq(RC))
return load ? X86::MOV64rm : X86::MOV64mr;
if (X86::FR64XRegClass.hasSubClassEq(RC))
return load ?
(HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
(HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
if (X86::VR64RegClass.hasSubClassEq(RC))
return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
if (X86::RFP64RegClass.hasSubClassEq(RC))
return load ? X86::LD_Fp64m : X86::ST_Fp64m;
if (X86::VK64RegClass.hasSubClassEq(RC))
return load ? X86::KMOVQkm : X86::KMOVQmk;
llvm_unreachable("Unknown 8-byte regclass");
case 10:
assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
return load ? X86::LD_Fp80m : X86::ST_FpP80m;
case 16: {
assert(X86::VR128XRegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
// If stack is realigned we can use aligned stores.
if (isStackAligned)
return load ?
(HasVLX ? X86::VMOVAPSZ128rm :
HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
HasAVX ? X86::VMOVAPSrm :
X86::MOVAPSrm):
(HasVLX ? X86::VMOVAPSZ128mr :
HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
HasAVX ? X86::VMOVAPSmr :
X86::MOVAPSmr);
else
return load ?
(HasVLX ? X86::VMOVUPSZ128rm :
HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
HasAVX ? X86::VMOVUPSrm :
X86::MOVUPSrm):
(HasVLX ? X86::VMOVUPSZ128mr :
HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
HasAVX ? X86::VMOVUPSmr :
X86::MOVUPSmr);
}
case 32:
assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
// If stack is realigned we can use aligned stores.
if (isStackAligned)
return load ?
(HasVLX ? X86::VMOVAPSZ256rm :
HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
X86::VMOVAPSYrm) :
(HasVLX ? X86::VMOVAPSZ256mr :
HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
X86::VMOVAPSYmr);
else
return load ?
(HasVLX ? X86::VMOVUPSZ256rm :
HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
X86::VMOVUPSYrm) :
(HasVLX ? X86::VMOVUPSZ256mr :
HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
X86::VMOVUPSYmr);
case 64:
assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
if (isStackAligned)
return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
else
return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
}
}
bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
int64_t &Offset,
const TargetRegisterInfo *TRI) const {
const MCInstrDesc &Desc = MemOp.getDesc();
int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
if (MemRefBegin < 0)
return false;
MemRefBegin += X86II::getOperandBias(Desc);
MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
if (!BaseMO.isReg()) // Can be an MO_FrameIndex
return false;
BaseReg = BaseMO.getReg();
if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
return false;
if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
X86::NoRegister)
return false;
const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
// Displacement can be symbolic
if (!DispMO.isImm())
return false;
Offset = DispMO.getImm();
return true;
}
static unsigned getStoreRegOpcode(unsigned SrcReg,
const TargetRegisterClass *RC,
bool isStackAligned,
const X86Subtarget &STI) {
return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
}
static unsigned getLoadRegOpcode(unsigned DestReg,
const TargetRegisterClass *RC,
bool isStackAligned,
const X86Subtarget &STI) {
return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
}
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= RC->getSize() &&
"Stack slot too small for store");
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned =
(Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
RI.canRealignStack(MF);
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
}
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned = MMOBegin != MMOEnd &&
(*MMOBegin)->getAlignment() >= Alignment;
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.add(Addr[i]);
MIB.addReg(SrcReg, getKillRegState(isKill));
(*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned =
(Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
RI.canRealignStack(MF);
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
}
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned = MMOBegin != MMOEnd &&
(*MMOBegin)->getAlignment() >= Alignment;
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.add(Addr[i]);
(*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
unsigned &SrcReg2, int &CmpMask,
int &CmpValue) const {
switch (MI.getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri:
if (!MI.getOperand(1).isImm())
return false;
SrcReg = MI.getOperand(0).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = MI.getOperand(1).getImm();
return true;
// A SUB can be used to perform comparison.
case X86::SUB64rm:
case X86::SUB32rm:
case X86::SUB16rm:
case X86::SUB8rm:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = 0;
return true;
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = MI.getOperand(2).getReg();
CmpMask = ~0;
CmpValue = 0;
return true;
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
if (!MI.getOperand(2).isImm())
return false;
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = MI.getOperand(2).getImm();
return true;
case X86::CMP64rr:
case X86::CMP32rr:
case X86::CMP16rr:
case X86::CMP8rr:
SrcReg = MI.getOperand(0).getReg();
SrcReg2 = MI.getOperand(1).getReg();
CmpMask = ~0;
CmpValue = 0;
return true;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
SrcReg = MI.getOperand(0).getReg();
if (MI.getOperand(1).getReg() != SrcReg)
return false;
// Compare against zero.
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = 0;
return true;
}
return false;
}
/// Check whether the first instruction, whose only
/// purpose is to update flags, can be made redundant.
/// CMPrr can be made redundant by SUBrr if the operands are the same.
/// This function can be extended later on.
/// SrcReg, SrcRegs: register operands for FlagI.
/// ImmValue: immediate for FlagI if it takes an immediate.
inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg,
unsigned SrcReg2, int ImmValue,
MachineInstr &OI) {
if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
(FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
(FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
(FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
((OI.getOperand(1).getReg() == SrcReg &&
OI.getOperand(2).getReg() == SrcReg2) ||
(OI.getOperand(1).getReg() == SrcReg2 &&
OI.getOperand(2).getReg() == SrcReg)))
return true;
if (((FlagI.getOpcode() == X86::CMP64ri32 &&
OI.getOpcode() == X86::SUB64ri32) ||
(FlagI.getOpcode() == X86::CMP64ri8 &&
OI.getOpcode() == X86::SUB64ri8) ||
(FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
(FlagI.getOpcode() == X86::CMP32ri8 &&
OI.getOpcode() == X86::SUB32ri8) ||
(FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
(FlagI.getOpcode() == X86::CMP16ri8 &&
OI.getOpcode() == X86::SUB16ri8) ||
(FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
OI.getOperand(1).getReg() == SrcReg &&
OI.getOperand(2).getImm() == ImmValue)
return true;
return false;
}
/// Check whether the definition can be converted
/// to remove a comparison against zero.
inline static bool isDefConvertible(MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return false;
// The shift instructions only modify ZF if their shift count is non-zero.
// N.B.: The processor truncates the shift count depending on the encoding.
case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
return getTruncatedShiftCount(MI, 2) != 0;
// Some left shift instructions can be turned into LEA instructions but only
// if their flags aren't used. Avoid transforming such instructions.
case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
if (isTruncatedShiftCountForLEA(ShAmt)) return false;
return ShAmt != 0;
}
case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
return getTruncatedShiftCount(MI, 3) != 0;
case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
case X86::ADC32ri: case X86::ADC32ri8:
case X86::ADC32rr: case X86::ADC64ri32:
case X86::ADC64ri8: case X86::ADC64rr:
case X86::SBB32ri: case X86::SBB32ri8:
case X86::SBB32rr: case X86::SBB64ri32:
case X86::SBB64ri8: case X86::SBB64rr:
case X86::ANDN32rr: case X86::ANDN32rm:
case X86::ANDN64rr: case X86::ANDN64rm:
case X86::BEXTR32rr: case X86::BEXTR64rr:
case X86::BEXTR32rm: case X86::BEXTR64rm:
case X86::BLSI32rr: case X86::BLSI32rm:
case X86::BLSI64rr: case X86::BLSI64rm:
case X86::BLSMSK32rr:case X86::BLSMSK32rm:
case X86::BLSMSK64rr:case X86::BLSMSK64rm:
case X86::BLSR32rr: case X86::BLSR32rm:
case X86::BLSR64rr: case X86::BLSR64rm:
case X86::BZHI32rr: case X86::BZHI32rm:
case X86::BZHI64rr: case X86::BZHI64rm:
case X86::LZCNT16rr: case X86::LZCNT16rm:
case X86::LZCNT32rr: case X86::LZCNT32rm:
case X86::LZCNT64rr: case X86::LZCNT64rm:
case X86::POPCNT16rr:case X86::POPCNT16rm:
case X86::POPCNT32rr:case X86::POPCNT32rm:
case X86::POPCNT64rr:case X86::POPCNT64rm:
case X86::TZCNT16rr: case X86::TZCNT16rm:
case X86::TZCNT32rr: case X86::TZCNT32rm:
case X86::TZCNT64rr: case X86::TZCNT64rm:
return true;
}
}
/// Check whether the use can be converted to remove a comparison against zero.
static X86::CondCode isUseDefConvertible(MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return X86::COND_INVALID;
case X86::LZCNT16rr: case X86::LZCNT16rm:
case X86::LZCNT32rr: case X86::LZCNT32rm:
case X86::LZCNT64rr: case X86::LZCNT64rm:
return X86::COND_B;
case X86::POPCNT16rr:case X86::POPCNT16rm:
case X86::POPCNT32rr:case X86::POPCNT32rm:
case X86::POPCNT64rr:case X86::POPCNT64rm:
return X86::COND_E;
case X86::TZCNT16rr: case X86::TZCNT16rm:
case X86::TZCNT32rr: case X86::TZCNT32rm:
case X86::TZCNT64rr: case X86::TZCNT64rm:
return X86::COND_B;
}
}
/// Check if there exists an earlier instruction that
/// operates on the same source operands and sets flags in the same way as
/// Compare; remove Compare if possible.
bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
unsigned SrcReg2, int CmpMask,
int CmpValue,
const MachineRegisterInfo *MRI) const {
// Check whether we can replace SUB with CMP.
unsigned NewOpcode = 0;
switch (CmpInstr.getOpcode()) {
default: break;
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB8ri:
case X86::SUB64rm:
case X86::SUB32rm:
case X86::SUB16rm:
case X86::SUB8rm:
case X86::SUB64rr:
case X86::SUB32rr:
case X86::SUB16rr:
case X86::SUB8rr: {
if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
return false;
// There is no use of the destination register, we can replace SUB with CMP.
switch (CmpInstr.getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
}
CmpInstr.setDesc(get(NewOpcode));
CmpInstr.RemoveOperand(0);
// Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
return false;
}
}
// Get the unique definition of SrcReg.
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
if (!MI) return false;
// CmpInstr is the first instruction of the BB.
MachineBasicBlock::iterator I = CmpInstr, Def = MI;
// If we are comparing against zero, check whether we can use MI to update
// EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
return false;
// If we have a use of the source register between the def and our compare
// instruction we can eliminate the compare iff the use sets EFLAGS in the
// right way.
bool ShouldUpdateCC = false;
X86::CondCode NewCC = X86::COND_INVALID;
if (IsCmpZero && !isDefConvertible(*MI)) {
// Scan forward from the use until we hit the use we're looking for or the
// compare instruction.
for (MachineBasicBlock::iterator J = MI;; ++J) {
// Do we have a convertible instruction?
NewCC = isUseDefConvertible(*J);
if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
J->getOperand(1).getReg() == SrcReg) {
assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
ShouldUpdateCC = true; // Update CC later on.
// This is not a def of SrcReg, but still a def of EFLAGS. Keep going
// with the new def.
Def = J;
MI = &*Def;
break;
}
if (J == I)
return false;
}
}
// We are searching for an earlier instruction that can make CmpInstr
// redundant and that instruction will be saved in Sub.
MachineInstr *Sub = nullptr;
const TargetRegisterInfo *TRI = &getRegisterInfo();
// We iterate backward, starting from the instruction before CmpInstr and
// stop when reaching the definition of a source register or done with the BB.
// RI points to the instruction before CmpInstr.
// If the definition is in this basic block, RE points to the definition;
// otherwise, RE is the rend of the basic block.
MachineBasicBlock::reverse_iterator
RI = ++I.getReverse(),
RE = CmpInstr.getParent() == MI->getParent()
? Def.getReverse() /* points to MI */
: CmpInstr.getParent()->rend();
MachineInstr *Movr0Inst = nullptr;
for (; RI != RE; ++RI) {
MachineInstr &Instr = *RI;
// Check whether CmpInstr can be made redundant by the current instruction.
if (!IsCmpZero &&
isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
Sub = &Instr;
break;
}
if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
Instr.readsRegister(X86::EFLAGS, TRI)) {
// This instruction modifies or uses EFLAGS.
// MOV32r0 etc. are implemented with xor which clobbers condition code.
// They are safe to move up, if the definition to EFLAGS is dead and
// earlier instructions do not read or write EFLAGS.
if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
Movr0Inst = &Instr;
continue;
}
// We can't remove CmpInstr.
return false;
}
}
// Return false if no candidates exist.
if (!IsCmpZero && !Sub)
return false;
bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
Sub->getOperand(2).getReg() == SrcReg);
// Scan forward from the instruction after CmpInstr for uses of EFLAGS.
// It is safe to remove CmpInstr if EFLAGS is redefined or killed.
// If we are done with the basic block, we need to check whether EFLAGS is
// live-out.
bool IsSafe = false;
SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
for (++I; I != E; ++I) {
const MachineInstr &Instr = *I;
bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
// We should check the usage if this instruction uses and updates EFLAGS.
if (!UseEFLAGS && ModifyEFLAGS) {
// It is safe to remove CmpInstr if EFLAGS is updated again.
IsSafe = true;
break;
}
if (!UseEFLAGS && !ModifyEFLAGS)
continue;
// EFLAGS is used by this instruction.
X86::CondCode OldCC = X86::COND_INVALID;
bool OpcIsSET = false;
if (IsCmpZero || IsSwapped) {
// We decode the condition code from opcode.
if (Instr.isBranch())
OldCC = getCondFromBranchOpc(Instr.getOpcode());
else {
OldCC = getCondFromSETOpc(Instr.getOpcode());
if (OldCC != X86::COND_INVALID)
OpcIsSET = true;
else
OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
}
if (OldCC == X86::COND_INVALID) return false;
}
if (IsCmpZero) {
switch (OldCC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO:
// CF and OF are used, we can't perform this optimization.
return false;
}
// If we're updating the condition code check if we have to reverse the
// condition.
if (ShouldUpdateCC)
switch (OldCC) {
default:
return false;
case X86::COND_E:
break;
case X86::COND_NE:
NewCC = GetOppositeBranchCondition(NewCC);
break;
}
} else if (IsSwapped) {
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
// to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
// We swap the condition code and synthesize the new opcode.
NewCC = getSwappedCondition(OldCC);
if (NewCC == X86::COND_INVALID) return false;
}
if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
// Synthesize the new opcode.
bool HasMemoryOperand = Instr.hasOneMemOperand();
unsigned NewOpc;
if (Instr.isBranch())
NewOpc = GetCondBranchFromCond(NewCC);
else if(OpcIsSET)
NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
else {
unsigned DstReg = Instr.getOperand(0).getReg();
NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
HasMemoryOperand);
}
// Push the MachineInstr to OpsToUpdate.
// If it is safe to remove CmpInstr, the condition code of these
// instructions will be modified.
OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
}
if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
// It is safe to remove CmpInstr if EFLAGS is updated again or killed.
IsSafe = true;
break;
}
}
// If EFLAGS is not killed nor re-defined, we should check whether it is
// live-out. If it is live-out, do not optimize.
if ((IsCmpZero || IsSwapped) && !IsSafe) {
MachineBasicBlock *MBB = CmpInstr.getParent();
for (MachineBasicBlock *Successor : MBB->successors())
if (Successor->isLiveIn(X86::EFLAGS))
return false;
}
// The instruction to be updated is either Sub or MI.
Sub = IsCmpZero ? MI : Sub;
// Move Movr0Inst to the appropriate place before Sub.
if (Movr0Inst) {
// Look backwards until we find a def that doesn't use the current EFLAGS.
Def = Sub;
MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
InsertE = Sub->getParent()->rend();
for (; InsertI != InsertE; ++InsertI) {
MachineInstr *Instr = &*InsertI;
if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
Instr->modifiesRegister(X86::EFLAGS, TRI)) {
Sub->getParent()->remove(Movr0Inst);
Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
Movr0Inst);
break;
}
}
if (InsertI == InsertE)
return false;
}
// Make sure Sub instruction defines EFLAGS and mark the def live.
unsigned i = 0, e = Sub->getNumOperands();
for (; i != e; ++i) {
MachineOperand &MO = Sub->getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
MO.setIsDead(false);
break;
}
}
assert(i != e && "Unable to locate a def EFLAGS operand");
CmpInstr.eraseFromParent();
// Modify the condition code of instructions in OpsToUpdate.
for (auto &Op : OpsToUpdate)
Op.first->setDesc(get(Op.second));
return true;
}
/// Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if load defines a virtual
/// register, the virtual register is used once in the same BB, and the
/// instructions in-between do not load or store, and have no side effects.
MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
const MachineRegisterInfo *MRI,
unsigned &FoldAsLoadDefReg,
MachineInstr *&DefMI) const {
// Check whether we can move DefMI here.
DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
assert(DefMI);
bool SawStore = false;
if (!DefMI->isSafeToMove(nullptr, SawStore))
return nullptr;
// Collect information about virtual register operands of MI.
SmallVector<unsigned, 1> SrcOperandIds;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg != FoldAsLoadDefReg)
continue;
// Do not fold if we have a subreg use or a def.
if (MO.getSubReg() || MO.isDef())
return nullptr;
SrcOperandIds.push_back(i);
}
if (SrcOperandIds.empty())
return nullptr;
// Check whether we can fold the def into SrcOperandId.
if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
FoldAsLoadDefReg = 0;
return FoldMI;
}
return nullptr;
}
/// Expand a single-def pseudo instruction to a two-addr
/// instruction with two undef reads of the register being defined.
/// This is used for mapping:
/// %xmm4 = V_SET0
/// to:
/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
///
static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc) {
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
unsigned Reg = MIB->getOperand(0).getReg();
MIB->setDesc(Desc);
// MachineInstr::addOperand() will insert explicit operands before any
// implicit operands.
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
// But we don't trust that.
assert(MIB->getOperand(1).getReg() == Reg &&
MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
return true;
}
/// Expand a single-def pseudo instruction to a two-addr
/// instruction with two %k0 reads.
/// This is used for mapping:
/// %k4 = K_SET1
/// to:
/// %k4 = KXNORrr %k0, %k0
static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc, unsigned Reg) {
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
MIB->setDesc(Desc);
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
return true;
}
static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
bool MinusOne) {
MachineBasicBlock &MBB = *MIB->getParent();
DebugLoc DL = MIB->getDebugLoc();
unsigned Reg = MIB->getOperand(0).getReg();
// Insert the XOR.
BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
// Turn the pseudo into an INC or DEC.
MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
MIB.addReg(Reg);
return true;
}
static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
const TargetInstrInfo &TII,
const X86Subtarget &Subtarget) {
MachineBasicBlock &MBB = *MIB->getParent();
DebugLoc DL = MIB->getDebugLoc();
int64_t Imm = MIB->getOperand(1).getImm();
assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
MachineBasicBlock::iterator I = MIB.getInstr();
int StackAdjustment;
if (Subtarget.is64Bit()) {
assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
MIB->getOpcode() == X86::MOV32ImmSExti8);
// Can't use push/pop lowering if the function might write to the red zone.
X86MachineFunctionInfo *X86FI =
MBB.getParent()->getInfo<X86MachineFunctionInfo>();
if (X86FI->getUsesRedZone()) {
MIB->setDesc(TII.get(MIB->getOpcode() ==
X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
return true;
}
// 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
// widen the register if necessary.
StackAdjustment = 8;
BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
MIB->setDesc(TII.get(X86::POP64r));
MIB->getOperand(0)
.setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
} else {
assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
StackAdjustment = 4;
BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
MIB->setDesc(TII.get(X86::POP32r));
}
// Build CFI if necessary.
MachineFunction &MF = *MBB.getParent();
const X86FrameLowering *TFL = Subtarget.getFrameLowering();
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
bool NeedsDwarfCFI =
!IsWin64Prologue &&
(MF.getMMI().hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry());
bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
if (EmitCFI) {
TFL->BuildCFI(MBB, I, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
TFL->BuildCFI(MBB, std::next(I), DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
}
return true;
}
// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
// code sequence is needed for other targets.
static void expandLoadStackGuard(MachineInstrBuilder &MIB,
const TargetInstrInfo &TII) {
MachineBasicBlock &MBB = *MIB->getParent();
DebugLoc DL = MIB->getDebugLoc();
unsigned Reg = MIB->getOperand(0).getReg();
const GlobalValue *GV =
cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
auto Flags = MachineMemOperand::MOLoad |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant;
MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
MachineBasicBlock::iterator I = MIB.getInstr();
BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
.addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
.addMemOperand(MMO);
MIB->setDebugLoc(DL);
MIB->setDesc(TII.get(X86::MOV64rm));
MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
}
// This is used to handle spills for 128/256-bit registers when we have AVX512,
// but not VLX. If it uses an extended register we need to use an instruction
// that loads the lower 128/256-bit, but is available with only AVX512F.
static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
const TargetRegisterInfo *TRI,
const MCInstrDesc &LoadDesc,
const MCInstrDesc &BroadcastDesc,
unsigned SubIdx) {
unsigned DestReg = MIB->getOperand(0).getReg();
// Check if DestReg is XMM16-31 or YMM16-31.
if (TRI->getEncodingValue(DestReg) < 16) {
// We can use a normal VEX encoded load.
MIB->setDesc(LoadDesc);
} else {
// Use a 128/256-bit VBROADCAST instruction.
MIB->setDesc(BroadcastDesc);
// Change the destination to a 512-bit register.
DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
MIB->getOperand(0).setReg(DestReg);
}
return true;
}
// This is used to handle spills for 128/256-bit registers when we have AVX512,
// but not VLX. If it uses an extended register we need to use an instruction
// that stores the lower 128/256-bit, but is available with only AVX512F.
static bool expandNOVLXStore(MachineInstrBuilder &MIB,
const TargetRegisterInfo *TRI,
const MCInstrDesc &StoreDesc,
const MCInstrDesc &ExtractDesc,
unsigned SubIdx) {
unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
// Check if DestReg is XMM16-31 or YMM16-31.
if (TRI->getEncodingValue(SrcReg) < 16) {
// We can use a normal VEX encoded store.
MIB->setDesc(StoreDesc);
} else {
// Use a VEXTRACTF instruction.
MIB->setDesc(ExtractDesc);
// Change the destination to a 512-bit register.
SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
MIB.addImm(0x0); // Append immediate to extract from the lower bits.
}
return true;
}
bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
bool HasAVX = Subtarget.hasAVX();
MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
switch (MI.getOpcode()) {
case X86::MOV32r0:
return Expand2AddrUndef(MIB, get(X86::XOR32rr));
case X86::MOV32r1:
return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
case X86::MOV32r_1:
return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
case X86::MOV32ImmSExti8:
case X86::MOV64ImmSExti8:
return ExpandMOVImmSExti8(MIB, *this, Subtarget);
case X86::SETB_C8r:
return Expand2AddrUndef(MIB, get(X86::SBB8rr));
case X86::SETB_C16r:
return Expand2AddrUndef(MIB, get(X86::SBB16rr));
case X86::SETB_C32r:
return Expand2AddrUndef(MIB, get(X86::SBB32rr));
case X86::SETB_C64r:
return Expand2AddrUndef(MIB, get(X86::SBB64rr));
case X86::V_SET0:
case X86::FsFLD0SS:
case X86::FsFLD0SD:
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
case X86::AVX_SET0:
assert(HasAVX && "AVX not supported");
return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
case X86::AVX512_128_SET0:
case X86::AVX512_FsFLD0SS:
case X86::AVX512_FsFLD0SD: {
bool HasVLX = Subtarget.hasVLX();
unsigned SrcReg = MIB->getOperand(0).getReg();
const TargetRegisterInfo *TRI = &getRegisterInfo();
if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
return Expand2AddrUndef(MIB,
get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
// Extended register without VLX. Use a larger XOR.
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
MIB->getOperand(0).setReg(SrcReg);
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
}
case X86::AVX512_256_SET0: {
bool HasVLX = Subtarget.hasVLX();
unsigned SrcReg = MIB->getOperand(0).getReg();
const TargetRegisterInfo *TRI = &getRegisterInfo();
if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
return Expand2AddrUndef(MIB,
get(HasVLX ? X86::VPXORDZ256rr : X86::VXORPSYrr));
// Extended register without VLX. Use a larger XOR.
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
MIB->getOperand(0).setReg(SrcReg);
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
}
case X86::AVX512_512_SET0:
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
case X86::V_SETALLONES:
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
case X86::AVX2_SETALLONES:
return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
case X86::AVX512_512_SETALLONES: {
unsigned Reg = MIB->getOperand(0).getReg();
MIB->setDesc(get(X86::VPTERNLOGDZrri));
// VPTERNLOGD needs 3 register inputs and an immediate.
// 0xff will return 1s for any input.
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef).addImm(0xff);
return true;
}
case X86::AVX512_512_SEXT_MASK_32:
case X86::AVX512_512_SEXT_MASK_64: {
unsigned Reg = MIB->getOperand(0).getReg();
unsigned MaskReg = MIB->getOperand(1).getReg();
unsigned MaskState = getRegState(MIB->getOperand(1));
unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
MI.RemoveOperand(1);
MIB->setDesc(get(Opc));
// VPTERNLOG needs 3 register inputs and an immediate.
// 0xff will return 1s for any input.
MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
return true;
}
case X86::VMOVAPSZ128rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
case X86::VMOVUPSZ128rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
case X86::VMOVAPSZ256rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
case X86::VMOVUPSZ256rm_NOVLX:
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
case X86::VMOVAPSZ128mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
case X86::VMOVUPSZ128mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
case X86::VMOVAPSZ256mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
case X86::VMOVUPSZ256mr_NOVLX:
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
case X86::TEST8ri_NOREX:
MI.setDesc(get(X86::TEST8ri));
return true;
case X86::MOV32ri64:
MI.setDesc(get(X86::MOV32ri));
return true;
// KNL does not recognize dependency-breaking idioms for mask registers,
// so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
// Using %k0 as the undef input register is a performance heuristic based
// on the assumption that %k0 is used less frequently than the other mask
// registers, since it is not usable as a write mask.
// FIXME: A more advanced approach would be to choose the best input mask
// register based on context.
case X86::KSET0B:
case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
case X86::KSET1B:
case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
case TargetOpcode::LOAD_STACK_GUARD:
expandLoadStackGuard(MIB, *this);
return true;
}
return false;
}
static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
int PtrOffset = 0) {
unsigned NumAddrOps = MOs.size();
if (NumAddrOps < 4) {
// FrameIndex only - add an immediate offset (whether its zero or not).
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.add(MOs[i]);
addOffset(MIB, PtrOffset);
} else {
// General Memory Addressing - we need to add any offset to an existing
// offset.
assert(MOs.size() == 5 && "Unexpected memory operand list length");
for (unsigned i = 0; i != NumAddrOps; ++i) {
const MachineOperand &MO = MOs[i];
if (i == 3 && PtrOffset != 0) {
MIB.addDisp(MO, PtrOffset);
} else {
MIB.add(MO);
}
}
}
}
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
ArrayRef<MachineOperand> MOs,
MachineBasicBlock::iterator InsertPt,
MachineInstr &MI,
const TargetInstrInfo &TII) {
// Create the base instruction with the memory operand as the first part.
// Omit the implicit operands, something BuildMI can't do.
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
addOperands(MIB, MOs);
// Loop over the rest of the ri operands, converting them over.
unsigned NumOps = MI.getDesc().getNumOperands() - 2;
for (unsigned i = 0; i != NumOps; ++i) {
MachineOperand &MO = MI.getOperand(i + 2);
MIB.add(MO);
}
for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
MIB.add(MO);
}
MachineBasicBlock *MBB = InsertPt->getParent();
MBB->insert(InsertPt, NewMI);
return MIB;
}
static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
unsigned OpNo, ArrayRef<MachineOperand> MOs,
MachineBasicBlock::iterator InsertPt,
MachineInstr &MI, const TargetInstrInfo &TII,
int PtrOffset = 0) {
// Omit the implicit operands, something BuildMI can't do.
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (i == OpNo) {
assert(MO.isReg() && "Expected to fold into reg operand!");
addOperands(MIB, MOs, PtrOffset);
} else {
MIB.add(MO);
}
}
MachineBasicBlock *MBB = InsertPt->getParent();
MBB->insert(InsertPt, NewMI);
return MIB;
}
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
ArrayRef<MachineOperand> MOs,
MachineBasicBlock::iterator InsertPt,
MachineInstr &MI) {
MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
MI.getDebugLoc(), TII.get(Opcode));
addOperands(MIB, MOs);
return MIB.addImm(0);
}
MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
unsigned Size, unsigned Align) const {
switch (MI.getOpcode()) {
case X86::INSERTPSrr:
case X86::VINSERTPSrr:
case X86::VINSERTPSZrr:
// Attempt to convert the load of inserted vector into a fold load
// of a single float.
if (OpNum == 2) {
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
unsigned ZMask = Imm & 15;
unsigned DstIdx = (Imm >> 4) & 3;
unsigned SrcIdx = (Imm >> 6) & 3;
unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize();
if (Size <= RCSize && 4 <= Align) {
int PtrOffset = SrcIdx * 4;
unsigned NewImm = (DstIdx << 4) | ZMask;
unsigned NewOpCode =
(MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
(MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
X86::INSERTPSrm;
MachineInstr *NewMI =
FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
return NewMI;
}
}
break;
case X86::MOVHLPSrr:
case X86::VMOVHLPSrr:
case X86::VMOVHLPSZrr:
// Move the upper 64-bits of the second operand to the lower 64-bits.
// To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
// TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
if (OpNum == 2) {
unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize();
if (Size <= RCSize && 8 <= Align) {
unsigned NewOpCode =
(MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
(MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
X86::MOVLPSrm;
MachineInstr *NewMI =
FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
return NewMI;
}
}
break;
};
return nullptr;
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
unsigned Size, unsigned Align, bool AllowCommute) const {
const DenseMap<unsigned,
std::pair<uint16_t, uint16_t> > *OpcodeTablePtr = nullptr;
bool isCallRegIndirect = Subtarget.callRegIndirect();
bool isTwoAddrFold = false;
// For CPUs that favor the register form of a call or push,
// do not fold loads into calls or pushes, unless optimizing for size
// aggressively.
if (isCallRegIndirect && !MF.getFunction()->optForMinSize() &&
(MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
MI.getOpcode() == X86::PUSH64r))
return nullptr;
unsigned NumOps = MI.getDesc().getNumOperands();
bool isTwoAddr =
NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
// FIXME: AsmPrinter doesn't know how to handle
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
if (MI.getOpcode() == X86::ADD32ri &&
MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
return nullptr;
MachineInstr *NewMI = nullptr;
// Attempt to fold any custom cases we have.
if (MachineInstr *CustomMI =
foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
return CustomMI;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
MI.getOperand(1).isReg() &&
MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
isTwoAddrFold = true;
} else if (OpNum == 0) {
if (MI.getOpcode() == X86::MOV32r0) {
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
if (NewMI)
return NewMI;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
} else if (OpNum == 3) {
OpcodeTablePtr = &RegOp2MemOpTable3;
} else if (OpNum == 4) {
OpcodeTablePtr = &RegOp2MemOpTable4;
}
// If table selected...
if (OpcodeTablePtr) {
// Find the Opcode to fuse
auto I = OpcodeTablePtr->find(MI.getOpcode());
if (I != OpcodeTablePtr->end()) {
unsigned Opcode = I->second.first;
unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
if (Align < MinAlign)
return nullptr;
bool NarrowToMOV32rm = false;
if (Size) {
unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize();
if (Size < RCSize) {
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
return nullptr;
// If this is a 64-bit load, but the spill slot is 32, then we can do
// a 32-bit load which is implicitly zero-extended. This likely is
// due to live interval analysis remat'ing a load from stack slot.
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
return nullptr;
Opcode = X86::MOV32rm;
NarrowToMOV32rm = true;
}
}
if (isTwoAddrFold)
NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
else
NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
if (NarrowToMOV32rm) {
// If this is the special case where we use a MOV32rm to load a 32-bit
// value and zero-extend the top bits. Change the destination register
// to a 32-bit one.
unsigned DstReg = NewMI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
else
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
}
return NewMI;
}
}
// If the instruction and target operand are commutable, commute the
// instruction and try again.
if (AllowCommute) {
unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
bool HasDef = MI.getDesc().getNumDefs();
unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
bool Tied1 =
0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
bool Tied2 =
0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
// If either of the commutable operands are tied to the destination
// then we can not commute + fold.
if ((HasDef && Reg0 == Reg1 && Tied1) ||
(HasDef && Reg0 == Reg2 && Tied2))
return nullptr;
MachineInstr *CommutedMI =
commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
if (!CommutedMI) {
// Unable to commute.
return nullptr;
}
if (CommutedMI != &MI) {
// New instruction. We can't fold from this.
CommutedMI->eraseFromParent();
return nullptr;
}
// Attempt to fold with the commuted version of the instruction.
NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
Size, Align, /*AllowCommute=*/false);
if (NewMI)
return NewMI;
// Folding failed again - undo the commute before returning.
MachineInstr *UncommutedMI =
commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
if (!UncommutedMI) {
// Unable to commute.
return nullptr;
}
if (UncommutedMI != &MI) {
// New instruction. It doesn't need to be kept.
UncommutedMI->eraseFromParent();
return nullptr;
}
// Return here to prevent duplicate fuse failure report.
return nullptr;
}
}
// No fusion
if (PrintFailedFusing && !MI.isCopy())
dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
return nullptr;
}
/// Return true for all instructions that only update
/// the first 32 or 64-bits of the destination register and leave the rest
/// unmodified. This can be used to avoid folding loads if the instructions
/// only update part of the destination register, and the non-updated part is
/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
/// instructions breaks the partial register dependency and it can improve
/// performance. e.g.:
///
/// movss (%rdi), %xmm0
/// cvtss2sd %xmm0, %xmm0
///
/// Instead of
/// cvtss2sd (%rdi), %xmm0
///
/// FIXME: This should be turned into a TSFlags.
///
static bool hasPartialRegUpdate(unsigned Opcode) {
switch (Opcode) {
case X86::CVTSI2SSrr:
case X86::CVTSI2SSrm:
case X86::CVTSI2SS64rr:
case X86::CVTSI2SS64rm:
case X86::CVTSI2SDrr:
case X86::CVTSI2SDrm:
case X86::CVTSI2SD64rr:
case X86::CVTSI2SD64rm:
case X86::CVTSD2SSrr:
case X86::CVTSD2SSrm:
case X86::CVTSS2SDrr:
case X86::CVTSS2SDrm:
case X86::MOVHPDrm:
case X86::MOVHPSrm:
case X86::MOVLPDrm:
case X86::MOVLPSrm:
case X86::RCPSSr:
case X86::RCPSSm:
case X86::RCPSSr_Int:
case X86::RCPSSm_Int:
case X86::ROUNDSDr:
case X86::ROUNDSDm:
case X86::ROUNDSSr:
case X86::ROUNDSSm:
case X86::RSQRTSSr:
case X86::RSQRTSSm:
case X86::RSQRTSSr_Int:
case X86::RSQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSm:
case X86::SQRTSSr_Int:
case X86::SQRTSSm_Int:
case X86::SQRTSDr:
case X86::SQRTSDm:
case X86::SQRTSDr_Int:
case X86::SQRTSDm_Int:
return true;
}
return false;
}
/// Inform the ExeDepsFix pass how many idle
/// instructions we would like before a partial register update.
unsigned X86InstrInfo::getPartialRegUpdateClearance(
const MachineInstr &MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode()))
return 0;
// If MI is marked as reading Reg, the partial register update is wanted.
const MachineOperand &MO = MI.getOperand(0);
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (MO.readsReg() || MI.readsVirtualRegister(Reg))
return 0;
} else {
if (MI.readsRegister(Reg, TRI))
return 0;
}
// If any instructions in the clearance range are reading Reg, insert a
// dependency breaking instruction, which is inexpensive and is likely to
// be hidden in other instruction's cycles.
return PartialRegUpdateClearance;
}
// Return true for any instruction the copies the high bits of the first source
// operand into the unused high bits of the destination operand.
static bool hasUndefRegUpdate(unsigned Opcode) {
switch (Opcode) {
case X86::VCVTSI2SSrr:
case X86::VCVTSI2SSrm:
case X86::Int_VCVTSI2SSrr:
case X86::Int_VCVTSI2SSrm:
case X86::VCVTSI2SS64rr:
case X86::VCVTSI2SS64rm:
case X86::Int_VCVTSI2SS64rr:
case X86::Int_VCVTSI2SS64rm:
case X86::VCVTSI2SDrr:
case X86::VCVTSI2SDrm:
case X86::Int_VCVTSI2SDrr:
case X86::Int_VCVTSI2SDrm:
case X86::VCVTSI2SD64rr:
case X86::VCVTSI2SD64rm:
case X86::Int_VCVTSI2SD64rr:
case X86::Int_VCVTSI2SD64rm:
case X86::VCVTSD2SSrr:
case X86::VCVTSD2SSrm:
case X86::Int_VCVTSD2SSrr:
case X86::Int_VCVTSD2SSrm:
case X86::VCVTSS2SDrr:
case X86::VCVTSS2SDrm:
case X86::Int_VCVTSS2SDrr:
case X86::Int_VCVTSS2SDrm:
case X86::VRCPSSr:
case X86::VRCPSSr_Int:
case X86::VRCPSSm:
case X86::VRCPSSm_Int:
case X86::VROUNDSDr:
case X86::VROUNDSDm:
case X86::VROUNDSDr_Int:
case X86::VROUNDSDm_Int:
case X86::VROUNDSSr:
case X86::VROUNDSSm:
case X86::VROUNDSSr_Int:
case X86::VROUNDSSm_Int:
case X86::VRSQRTSSr:
case X86::VRSQRTSSr_Int:
case X86::VRSQRTSSm:
case X86::VRSQRTSSm_Int:
case X86::VSQRTSSr:
case X86::VSQRTSSr_Int:
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSDr:
case X86::VSQRTSDr_Int:
case X86::VSQRTSDm:
case X86::VSQRTSDm_Int:
// AVX-512
case X86::VCVTSI2SSZrr:
case X86::VCVTSI2SSZrm:
case X86::VCVTSI2SSZrr_Int:
case X86::VCVTSI2SSZrrb_Int:
case X86::VCVTSI2SSZrm_Int:
case X86::VCVTSI642SSZrr:
case X86::VCVTSI642SSZrm:
case X86::VCVTSI642SSZrr_Int:
case X86::VCVTSI642SSZrrb_Int:
case X86::VCVTSI642SSZrm_Int:
case X86::VCVTSI2SDZrr:
case X86::VCVTSI2SDZrm:
case X86::VCVTSI2SDZrr_Int:
case X86::VCVTSI2SDZrrb_Int:
case X86::VCVTSI2SDZrm_Int:
case X86::VCVTSI642SDZrr:
case X86::VCVTSI642SDZrm:
case X86::VCVTSI642SDZrr_Int:
case X86::VCVTSI642SDZrrb_Int:
case X86::VCVTSI642SDZrm_Int:
case X86::VCVTUSI2SSZrr:
case X86::VCVTUSI2SSZrm:
case X86::VCVTUSI2SSZrr_Int:
case X86::VCVTUSI2SSZrrb_Int:
case X86::VCVTUSI2SSZrm_Int:
case X86::VCVTUSI642SSZrr:
case X86::VCVTUSI642SSZrm:
case X86::VCVTUSI642SSZrr_Int:
case X86::VCVTUSI642SSZrrb_Int:
case X86::VCVTUSI642SSZrm_Int:
case X86::VCVTUSI2SDZrr:
case X86::VCVTUSI2SDZrm:
case X86::VCVTUSI2SDZrr_Int:
case X86::VCVTUSI2SDZrm_Int:
case X86::VCVTUSI642SDZrr:
case X86::VCVTUSI642SDZrm:
case X86::VCVTUSI642SDZrr_Int:
case X86::VCVTUSI642SDZrrb_Int:
case X86::VCVTUSI642SDZrm_Int:
case X86::VCVTSD2SSZrr:
case X86::VCVTSD2SSZrrb:
case X86::VCVTSD2SSZrm:
case X86::VCVTSS2SDZrr:
case X86::VCVTSS2SDZrrb:
case X86::VCVTSS2SDZrm:
case X86::VRNDSCALESDr:
case X86::VRNDSCALESDrb:
case X86::VRNDSCALESDm:
case X86::VRNDSCALESSr:
case X86::VRNDSCALESSrb:
case X86::VRNDSCALESSm:
case X86::VRCP14SSrr:
case X86::VRCP14SSrm:
case X86::VRSQRT14SSrr:
case X86::VRSQRT14SSrm:
case X86::VSQRTSSZr:
case X86::VSQRTSSZr_Int:
case X86::VSQRTSSZrb_Int:
case X86::VSQRTSSZm:
case X86::VSQRTSSZm_Int:
case X86::VSQRTSDZr:
case X86::VSQRTSDZr_Int:
case X86::VSQRTSDZrb_Int:
case X86::VSQRTSDZm:
case X86::VSQRTSDZm_Int:
return true;
}
return false;
}
/// Inform the ExeDepsFix pass how many idle instructions we would like before
/// certain undef register reads.
///
/// This catches the VCVTSI2SD family of instructions:
///
/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
///
/// We should to be careful *not* to catch VXOR idioms which are presumably
/// handled specially in the pipeline:
///
/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
///
/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
/// high bits that are passed-through are not live.
unsigned
X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
const TargetRegisterInfo *TRI) const {
if (!hasUndefRegUpdate(MI.getOpcode()))
return 0;
// Set the OpNum parameter to the first source operand.
OpNum = 1;
const MachineOperand &MO = MI.getOperand(OpNum);
if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
return UndefRegClearance;
}
return 0;
}
void X86InstrInfo::breakPartialRegDependency(
MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
unsigned Reg = MI.getOperand(OpNum).getReg();
// If MI kills this register, the false dependence is already broken.
if (MI.killsRegister(Reg, TRI))
return;
if (X86::VR128RegClass.contains(Reg)) {
// These instructions are all floating point domain, so xorps is the best
// choice.
unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
MI.addRegisterKilled(Reg, TRI, true);
} else if (X86::VR256RegClass.contains(Reg)) {
// Use vxorps to clear the full ymm register.
// It wants to read and write the xmm sub-register.
unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
.addReg(XReg, RegState::Undef)
.addReg(XReg, RegState::Undef)
.addReg(Reg, RegState::ImplicitDefine);
MI.addRegisterKilled(Reg, TRI, true);
}
}
MachineInstr *
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt,
int FrameIndex, LiveIntervals *LIS) const {
// Check switch flag
if (NoFusing)
return nullptr;
// Unless optimizing for size, don't fold to avoid partial
// register update stalls
if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode()))
return nullptr;
// Don't fold subreg spills, or reloads that use a high subreg.
for (auto Op : Ops) {
MachineOperand &MO = MI.getOperand(Op);
auto SubReg = MO.getSubReg();
if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
return nullptr;
}
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned Size = MFI.getObjectSize(FrameIndex);
unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
// If the function stack isn't realigned we don't want to fold instructions
// that need increased alignment.
if (!RI.needsStackRealignment(MF))
Alignment =
std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
unsigned RCSize = 0;
switch (MI.getOpcode()) {
default: return nullptr;
case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
}
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Size < RCSize)
return nullptr;
// Change to CMPXXri r, 0 first.
MI.setDesc(get(NewOpc));
MI.getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops[0],
MachineOperand::CreateFI(FrameIndex), InsertPt,
Size, Alignment, /*AllowCommute=*/true);
}
/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
/// because the latter uses contents that wouldn't be defined in the folded
/// version. For instance, this transformation isn't legal:
/// movss (%rdi), %xmm0
/// addps %xmm0, %xmm0
/// ->
/// addps (%rdi), %xmm0
///
/// But this one is:
/// movss (%rdi), %xmm0
/// addss %xmm0, %xmm0
/// ->
/// addss (%rdi), %xmm0
///
static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
const MachineInstr &UserMI,
const MachineFunction &MF) {
unsigned Opc = LoadMI.getOpcode();
unsigned UserOpc = UserMI.getOpcode();
unsigned RegSize =
MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) &&
RegSize > 4) {
// These instructions only load 32 bits, we can't fold them if the
// destination register is wider than 32 bits (4 bytes), and its user
// instruction isn't scalar (SS).
switch (UserOpc) {
case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
case X86::Int_CMPSSrr: case X86::Int_VCMPSSrr: case X86::VCMPSSZrr_Int:
case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
return false;
default:
return true;
}
}
if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) &&
RegSize > 8) {
// These instructions only load 64 bits, we can't fold them if the
// destination register is wider than 64 bits (8 bytes), and its user
// instruction isn't scalar (SD).
switch (UserOpc) {
case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
case X86::Int_CMPSDrr: case X86::Int_VCMPSDrr: case X86::VCMPSDZrr_Int:
case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
return false;
default:
return true;
}
}
return false;
}
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
LiveIntervals *LIS) const {
// TODO: Support the case where LoadMI loads a wide register, but MI
// only uses a subreg.
for (auto Op : Ops) {
if (MI.getOperand(Op).getSubReg())
return nullptr;
}
// If loading from a FrameIndex, fold directly from the FrameIndex.
unsigned NumOps = LoadMI.getDesc().getNumOperands();
int FrameIndex;
if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
}
// Check switch flag
if (NoFusing) return nullptr;
// Avoid partial register update stalls unless optimizing for size.
if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode()))
return nullptr;
// Determine the alignment of the load.
unsigned Alignment = 0;
if (LoadMI.hasOneMemOperand())
Alignment = (*LoadMI.memoperands_begin())->getAlignment();
else
switch (LoadMI.getOpcode()) {
case X86::AVX512_512_SET0:
case X86::AVX512_512_SETALLONES:
Alignment = 64;
break;
case X86::AVX2_SETALLONES:
case X86::AVX_SET0:
case X86::AVX512_256_SET0:
Alignment = 32;
break;
case X86::V_SET0:
case X86::V_SETALLONES:
case X86::AVX512_128_SET0:
Alignment = 16;
break;
case X86::FsFLD0SD:
case X86::AVX512_FsFLD0SD:
Alignment = 8;
break;
case X86::FsFLD0SS:
case X86::AVX512_FsFLD0SS:
Alignment = 4;
break;
default:
return nullptr;
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI.getOpcode()) {
default: return nullptr;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
}
// Change to CMPXXri r, 0 first.
MI.setDesc(get(NewOpc));
MI.getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return nullptr;
// Make sure the subregisters match.
// Otherwise we risk changing the size of the load.
if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
return nullptr;
SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
switch (LoadMI.getOpcode()) {
case X86::V_SET0:
case X86::V_SETALLONES:
case X86::AVX2_SETALLONES:
case X86::AVX_SET0:
case X86::AVX512_128_SET0:
case X86::AVX512_256_SET0:
case X86::AVX512_512_SET0:
case X86::AVX512_512_SETALLONES:
case X86::FsFLD0SD:
case X86::AVX512_FsFLD0SD:
case X86::FsFLD0SS:
case X86::AVX512_FsFLD0SS: {
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
// Medium and large mode can't fold loads this way.
if (MF.getTarget().getCodeModel() != CodeModel::Small &&
MF.getTarget().getCodeModel() != CodeModel::Kernel)
return nullptr;
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
if (MF.getTarget().isPositionIndependent()) {
if (Subtarget.is64Bit())
PICBase = X86::RIP;
else
// FIXME: PICBase = getGlobalBaseReg(&MF);
// This doesn't work for several reasons.
// 1. GlobalBaseReg may have been spilled.
// 2. It may not be live at MI.
return nullptr;
}
// Create a constant-pool entry.
MachineConstantPool &MCP = *MF.getConstantPool();
Type *Ty;
unsigned Opc = LoadMI.getOpcode();
if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
Ty = Type::getFloatTy(MF.getFunction()->getContext());
else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
Ty = Type::getDoubleTy(MF.getFunction()->getContext());
else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()),16);
else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
Opc == X86::AVX512_256_SET0)
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
else
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
Opc == X86::AVX512_512_SETALLONES);
const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
Constant::getNullValue(Ty);
unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
// Create operands to load from the constant pool entry.
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
MOs.push_back(MachineOperand::CreateImm(1));
MOs.push_back(MachineOperand::CreateReg(0, false));
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
MOs.push_back(MachineOperand::CreateReg(0, false));
break;
}
default: {
if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
return nullptr;
// Folding a normal load. Just copy the load's address operands.
MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
LoadMI.operands_begin() + NumOps);
break;
}
}
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
/*Size=*/0, Alignment, /*AllowCommute=*/true);
}
bool X86InstrInfo::unfoldMemoryOperand(
MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
auto I = MemOp2RegOpTable.find(MI.getOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & TB_INDEX_MASK;
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const MCInstrDesc &MCID = get(Opc);
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
// TODO: Check if 32-byte or greater accesses are slow too?
if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
Subtarget.isUnalignedMem16Slow())
// Without memoperands, loadRegFromAddr and storeRegToStackSlot will
// conservatively assume the address is unaligned. That's bad for
// performance.
return false;
SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI.getOperand(i);
if (i >= Index && i < Index + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (Op.isReg() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load instruction.
if (UnfoldLoad) {
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end());
loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isReg())
MO.setIsKill(false);
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, DataMI);
if (FoldedStore)
MIB.addReg(Reg, RegState::Define);
for (MachineOperand &BeforeOp : BeforeOps)
MIB.add(BeforeOp);
if (FoldedLoad)
MIB.addReg(Reg);
for (MachineOperand &AfterOp : AfterOps)
MIB.add(AfterOp);
for (MachineOperand &ImpOp : ImpOps) {
MIB.addReg(ImpOp.getReg(),
getDefRegState(ImpOp.isDef()) |
RegState::Implicit |
getKillRegState(ImpOp.isKill()) |
getDeadRegState(ImpOp.isDead()) |
getUndefRegState(ImpOp.isUndef()));
}
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri: {
MachineOperand &MO0 = DataMI->getOperand(0);
MachineOperand &MO1 = DataMI->getOperand(1);
if (MO1.getImm() == 0) {
unsigned NewOpc;
switch (DataMI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::CMP64ri8:
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
case X86::CMP32ri8:
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
case X86::CMP16ri8:
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
}
DataMI->setDesc(get(NewOpc));
MO1.ChangeToRegister(MO0.getReg(), false);
}
}
}
NewMIs.push_back(DataMI);
// Emit the store instruction.
if (UnfoldStore) {
const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end());
storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
}
return true;
}
bool
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isMachineOpcode())
return false;
auto I = MemOp2RegOpTable.find(N->getMachineOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & TB_INDEX_MASK;
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
const MCInstrDesc &MCID = get(Opc);
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
unsigned NumDefs = MCID.NumDefs;
std::vector<SDValue> AddrOps;
std::vector<SDValue> BeforeOps;
std::vector<SDValue> AfterOps;
SDLoc dl(N);
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDValue Op = N->getOperand(i);
if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (i < Index-NumDefs)
BeforeOps.push_back(Op);
else if (i > Index-NumDefs)
AfterOps.push_back(Op);
}
SDValue Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = nullptr;
if (FoldedLoad) {
EVT VT = *RC->vt_begin();
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
cast<MachineSDNode>(N)->memoperands_end());
if (!(*MMOs.first) &&
RC == &X86::VR128RegClass &&
Subtarget.isUnalignedMem16Slow())
// Do not introduce a slow unaligned load.
return false;
// FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
// memory access is slow above.
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned = (*MMOs.first) &&
(*MMOs.first)->getAlignment() >= Alignment;
Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
VT, MVT::Other, AddrOps);
NewNodes.push_back(Load);
// Preserve memory reference information.
cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
}
// Emit the data processing instruction.
std::vector<EVT> VTs;
const TargetRegisterClass *DstRC = nullptr;
if (MCID.getNumDefs() > 0) {
DstRC = getRegClass(MCID, 0, &RI, MF);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDValue(Load, 0));
BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDValue(NewNode, 0));
AddrOps.push_back(Chain);
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
cast<MachineSDNode>(N)->memoperands_end());
if (!(*MMOs.first) &&
RC == &X86::VR128RegClass &&
Subtarget.isUnalignedMem16Slow())
// Do not introduce a slow unaligned store.
return false;
// FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
// memory access is slow above.
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
bool isAligned = (*MMOs.first) &&
(*MMOs.first)->getAlignment() >= Alignment;
SDNode *Store =
DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
dl, MVT::Other, AddrOps);
NewNodes.push_back(Store);
// Preserve memory reference information.
cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
}
return true;
}
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex) const {
auto I = MemOp2RegOpTable.find(Opc);
if (I == MemOp2RegOpTable.end())
return 0;
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
if (LoadRegIndex)
*LoadRegIndex = I->second.second & TB_INDEX_MASK;
return I->second.first;
}
bool
X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
switch (Opc1) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
// AVX load instructions
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
// AVX512 load instructions
case X86::VMOVSSZrm:
case X86::VMOVSDZrm:
case X86::VMOVAPSZ128rm:
case X86::VMOVUPSZ128rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVAPDZ128rm:
case X86::VMOVUPDZ128rm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVAPDZ256rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVAPSZrm:
case X86::VMOVUPSZrm:
case X86::VMOVAPDZrm:
case X86::VMOVUPDZrm:
case X86::VMOVDQU8Zrm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU64Zrm:
case X86::KMOVBkm:
case X86::KMOVWkm:
case X86::KMOVDkm:
case X86::KMOVQkm:
break;
}
switch (Opc2) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVAPDrm:
case X86::MOVUPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
// AVX load instructions
case X86::VMOVSSrm:
case X86::VMOVSDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPSrm:
case X86::VMOVAPDrm:
case X86::VMOVUPDrm:
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPSYrm:
case X86::VMOVAPDYrm:
case X86::VMOVUPDYrm:
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
// AVX512 load instructions
case X86::VMOVSSZrm:
case X86::VMOVSDZrm:
case X86::VMOVAPSZ128rm:
case X86::VMOVUPSZ128rm:
case X86::VMOVAPSZ128rm_NOVLX:
case X86::VMOVUPSZ128rm_NOVLX:
case X86::VMOVAPDZ128rm:
case X86::VMOVUPDZ128rm:
case X86::VMOVDQU8Z128rm:
case X86::VMOVDQU16Z128rm:
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQU64Z128rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVUPSZ256rm:
case X86::VMOVAPSZ256rm_NOVLX:
case X86::VMOVUPSZ256rm_NOVLX:
case X86::VMOVAPDZ256rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVDQU8Z256rm:
case X86::VMOVDQU16Z256rm:
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU64Z256rm:
case X86::VMOVAPSZrm:
case X86::VMOVUPSZrm:
case X86::VMOVAPDZrm:
case X86::VMOVUPDZrm:
case X86::VMOVDQU8Zrm:
case X86::VMOVDQU16Zrm:
case X86::VMOVDQA32Zrm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU64Zrm:
case X86::KMOVBkm:
case X86::KMOVWkm:
case X86::KMOVDkm:
case X86::KMOVQkm:
break;
}
// Check if chain operands and base addresses match.
if (Load1->getOperand(0) != Load2->getOperand(0) ||
Load1->getOperand(5) != Load2->getOperand(5))
return false;
// Segment operands should match as well.
if (Load1->getOperand(4) != Load2->getOperand(4))
return false;
// Scale should be 1, Index should be Reg0.
if (Load1->getOperand(1) == Load2->getOperand(1) &&
Load1->getOperand(2) == Load2->getOperand(2)) {
if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
return false;
// Now let's examine the displacements.
if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
isa<ConstantSDNode>(Load2->getOperand(3))) {
Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
return true;
}
}
return false;
}
bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
assert(Offset2 > Offset1);
if ((Offset2 - Offset1) / 8 > 64)
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
if (Opc1 != Opc2)
return false; // FIXME: overly conservative?
switch (Opc1) {
default: break;
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
return false;
}
EVT VT = Load1->getValueType(0);
switch (VT.getSimpleVT().SimpleTy) {
default:
// XMM registers. In 64-bit mode we can be a bit more aggressive since we
// have 16 of them to play with.
if (Subtarget.is64Bit()) {
if (NumLoads >= 3)
return false;
} else if (NumLoads) {
return false;
}
break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
if (NumLoads)
return false;
break;
}
return true;
}
bool X86InstrInfo::shouldScheduleAdjacent(const MachineInstr &First,
const MachineInstr &Second) const {
// Check if this processor supports macro-fusion. Since this is a minor
// heuristic, we haven't specifically reserved a feature. hasAVX is a decent
// proxy for SandyBridge+.
if (!Subtarget.hasAVX())
return false;
enum {
FuseTest,
FuseCmp,
FuseInc
} FuseKind;
switch (Second.getOpcode()) {
default:
return false;
case X86::JE_1:
case X86::JNE_1:
case X86::JL_1:
case X86::JLE_1:
case X86::JG_1:
case X86::JGE_1:
FuseKind = FuseInc;
break;
case X86::JB_1:
case X86::JBE_1:
case X86::JA_1:
case X86::JAE_1:
FuseKind = FuseCmp;
break;
case X86::JS_1:
case X86::JNS_1:
case X86::JP_1:
case X86::JNP_1:
case X86::JO_1:
case X86::JNO_1:
FuseKind = FuseTest;
break;
}
switch (First.getOpcode()) {
default:
return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
case X86::TEST8ri:
case X86::TEST16ri:
case X86::TEST32ri:
case X86::TEST32i32:
case X86::TEST64i32:
case X86::TEST64ri32:
case X86::TEST8rm:
case X86::TEST16rm:
case X86::TEST32rm:
case X86::TEST64rm:
case X86::TEST8ri_NOREX:
case X86::AND16i16:
case X86::AND16ri:
case X86::AND16ri8:
case X86::AND16rm:
case X86::AND16rr:
case X86::AND32i32:
case X86::AND32ri:
case X86::AND32ri8:
case X86::AND32rm:
case X86::AND32rr:
case X86::AND64i32:
case X86::AND64ri32:
case X86::AND64ri8:
case X86::AND64rm:
case X86::AND64rr:
case X86::AND8i8:
case X86::AND8ri:
case X86::AND8rm:
case X86::AND8rr:
return true;
case X86::CMP16i16:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP16rm:
case X86::CMP16rr:
case X86::CMP32i32:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP32rm:
case X86::CMP32rr:
case X86::CMP64i32:
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP64rm:
case X86::CMP64rr:
case X86::CMP8i8:
case X86::CMP8ri:
case X86::CMP8rm:
case X86::CMP8rr:
case X86::ADD16i16:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri8_DB:
case X86::ADD16ri_DB:
case X86::ADD16rm:
case X86::ADD16rr:
case X86::ADD16rr_DB:
case X86::ADD32i32:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri8_DB:
case X86::ADD32ri_DB:
case X86::ADD32rm:
case X86::ADD32rr:
case X86::ADD32rr_DB:
case X86::ADD64i32:
case X86::ADD64ri32:
case X86::ADD64ri32_DB:
case X86::ADD64ri8:
case X86::ADD64ri8_DB:
case X86::ADD64rm:
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD8i8:
case X86::ADD8mi:
case X86::ADD8mr:
case X86::ADD8ri:
case X86::ADD8rm:
case X86::ADD8rr:
case X86::SUB16i16:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB16rm:
case X86::SUB16rr:
case X86::SUB32i32:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB32rm:
case X86::SUB32rr:
case X86::SUB64i32:
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB64rm:
case X86::SUB64rr:
case X86::SUB8i8:
case X86::SUB8ri:
case X86::SUB8rm:
case X86::SUB8rr:
return FuseKind == FuseCmp || FuseKind == FuseInc;
case X86::INC16r:
case X86::INC32r:
case X86::INC64r:
case X86::INC8r:
case X86::DEC16r:
case X86::DEC32r:
case X86::DEC64r:
case X86::DEC8r:
return FuseKind == FuseInc;
}
}
bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Cond[0].setImm(GetOppositeBranchCondition(CC));
return false;
}
bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// FIXME: Return false for x87 stack register classes for now. We can't
// allow any loads of these registers before FpGet_ST0_80.
return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
}
/// Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
///
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert(!Subtarget.is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Create the register. The code to initialize it is inserted
// later, by the CGBR pass (below).
MachineRegisterInfo &RegInfo = MF->getRegInfo();
GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}
// These are the replaceable SSE instructions. Some of these have Int variants
// that we don't include here. We don't want to replace instructions selected
// by intrinsics.
static const uint16_t ReplaceableInstrs[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
{ X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
{ X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
{ X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
{ X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
{ X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
{ X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
{ X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
{ X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
{ X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
{ X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
{ X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
{ X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
{ X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
{ X86::ORPSrm, X86::ORPDrm, X86::PORrm },
{ X86::ORPSrr, X86::ORPDrr, X86::PORrr },
{ X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
{ X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
// AVX 128-bit support
{ X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
{ X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
{ X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
{ X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
{ X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
{ X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
{ X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
{ X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
{ X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
{ X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
{ X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
{ X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
// AVX 256-bit support
{ X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
{ X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
{ X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
{ X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
{ X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
{ X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
// AVX512 support
{ X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
{ X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
{ X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
{ X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
{ X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
{ X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
{ X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
{ X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
{ X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
{ X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
{ X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
{ X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
{ X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr },
{ X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm },
{ X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
{ X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
{ X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr },
{ X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm },
};
static const uint16_t ReplaceableInstrsAVX2[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
{ X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
{ X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
{ X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
{ X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
{ X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
{ X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
{ X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
{ X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
{ X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
{ X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
{ X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
};
static const uint16_t ReplaceableInstrsAVX512[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble PackedInt PackedInt
{ X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
{ X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
{ X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
{ X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
{ X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
{ X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
{ X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
{ X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
{ X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
{ X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
{ X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
{ X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
{ X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
{ X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
{ X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
};
static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble PackedInt PackedInt
{ X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
{ X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
{ X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
{ X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
{ X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
{ X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
{ X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
{ X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
{ X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
{ X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
{ X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
{ X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
{ X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
{ X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
{ X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
{ X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
{ X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
{ X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
{ X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
{ X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
{ X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
{ X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
{ X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
{ X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
};
static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
// Two integer columns for 64-bit and 32-bit elements.
//PackedSingle PackedDouble
//PackedInt PackedInt
{ X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
{ X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
{ X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
{ X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
{ X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
{ X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
{ X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
{ X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
{ X86::VORPSZ128rmk, X86::VORPDZ128rmk,
X86::VPORQZ128rmk, X86::VPORDZ128rmk },
{ X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
{ X86::VORPSZ128rrk, X86::VORPDZ128rrk,
X86::VPORQZ128rrk, X86::VPORDZ128rrk },
{ X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
{ X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
{ X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
{ X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
{ X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
{ X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
{ X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
{ X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
{ X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
{ X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
{ X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
{ X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
{ X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
{ X86::VORPSZ256rmk, X86::VORPDZ256rmk,
X86::VPORQZ256rmk, X86::VPORDZ256rmk },
{ X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
{ X86::VORPSZ256rrk, X86::VORPDZ256rrk,
X86::VPORQZ256rrk, X86::VPORDZ256rrk },
{ X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
{ X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
{ X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
{ X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
{ X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
{ X86::VANDNPSZrmk, X86::VANDNPDZrmk,
X86::VPANDNQZrmk, X86::VPANDNDZrmk },
{ X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
{ X86::VANDNPSZrrk, X86::VANDNPDZrrk,
X86::VPANDNQZrrk, X86::VPANDNDZrrk },
{ X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
{ X86::VANDPSZrmk, X86::VANDPDZrmk,
X86::VPANDQZrmk, X86::VPANDDZrmk },
{ X86::VANDPSZrmkz, X86::VANDPDZrmkz,
X86::VPANDQZrmkz, X86::VPANDDZrmkz },
{ X86::VANDPSZrrk, X86::VANDPDZrrk,
X86::VPANDQZrrk, X86::VPANDDZrrk },
{ X86::VANDPSZrrkz, X86::VANDPDZrrkz,
X86::VPANDQZrrkz, X86::VPANDDZrrkz },
{ X86::VORPSZrmk, X86::VORPDZrmk,
X86::VPORQZrmk, X86::VPORDZrmk },
{ X86::VORPSZrmkz, X86::VORPDZrmkz,
X86::VPORQZrmkz, X86::VPORDZrmkz },
{ X86::VORPSZrrk, X86::VORPDZrrk,
X86::VPORQZrrk, X86::VPORDZrrk },
{ X86::VORPSZrrkz, X86::VORPDZrrkz,
X86::VPORQZrrkz, X86::VPORDZrrkz },
{ X86::VXORPSZrmk, X86::VXORPDZrmk,
X86::VPXORQZrmk, X86::VPXORDZrmk },
{ X86::VXORPSZrmkz, X86::VXORPDZrmkz,
X86::VPXORQZrmkz, X86::VPXORDZrmkz },
{ X86::VXORPSZrrk, X86::VXORPDZrrk,
X86::VPXORQZrrk, X86::VPXORDZrrk },
{ X86::VXORPSZrrkz, X86::VXORPDZrrkz,
X86::VPXORQZrrkz, X86::VPXORDZrrkz },
// Broadcast loads can be handled the same as masked operations to avoid
// changing element size.
{ X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
{ X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
{ X86::VORPSZ128rmb, X86::VORPDZ128rmb,
X86::VPORQZ128rmb, X86::VPORDZ128rmb },
{ X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
{ X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
{ X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
{ X86::VORPSZ256rmb, X86::VORPDZ256rmb,
X86::VPORQZ256rmb, X86::VPORDZ256rmb },
{ X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
{ X86::VANDNPSZrmb, X86::VANDNPDZrmb,
X86::VPANDNQZrmb, X86::VPANDNDZrmb },
{ X86::VANDPSZrmb, X86::VANDPDZrmb,
X86::VPANDQZrmb, X86::VPANDDZrmb },
{ X86::VANDPSZrmb, X86::VANDPDZrmb,
X86::VPANDQZrmb, X86::VPANDDZrmb },
{ X86::VORPSZrmb, X86::VORPDZrmb,
X86::VPORQZrmb, X86::VPORDZrmb },
{ X86::VXORPSZrmb, X86::VXORPDZrmb,
X86::VPXORQZrmb, X86::VPXORDZrmb },
{ X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
{ X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
{ X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
{ X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
{ X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
{ X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
{ X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
{ X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
{ X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
{ X86::VANDPSZrmbk, X86::VANDPDZrmbk,
X86::VPANDQZrmbk, X86::VPANDDZrmbk },
{ X86::VANDPSZrmbk, X86::VANDPDZrmbk,
X86::VPANDQZrmbk, X86::VPANDDZrmbk },
{ X86::VORPSZrmbk, X86::VORPDZrmbk,
X86::VPORQZrmbk, X86::VPORDZrmbk },
{ X86::VXORPSZrmbk, X86::VXORPDZrmbk,
X86::VPXORQZrmbk, X86::VPXORDZrmbk },
{ X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
{ X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
{ X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
{ X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
{ X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
{ X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
{ X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
{ X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
{ X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
{ X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
{ X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
{ X86::VORPSZrmbkz, X86::VORPDZrmbkz,
X86::VPORQZrmbkz, X86::VPORDZrmbkz },
{ X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
};
// FIXME: Some shuffle and unpack instructions have equivalents in different
// domains, but they require a bit more work than just switching opcodes.
static const uint16_t *lookup(unsigned opcode, unsigned domain,
ArrayRef<uint16_t[3]> Table) {
for (const uint16_t (&Row)[3] : Table)
if (Row[domain-1] == opcode)
return Row;
return nullptr;
}
static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
ArrayRef<uint16_t[4]> Table) {
// If this is the integer domain make sure to check both integer columns.
for (const uint16_t (&Row)[4] : Table)
if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
return Row;
return nullptr;
}
std::pair<uint16_t, uint16_t>
X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
unsigned opcode = MI.getOpcode();
uint16_t validDomains = 0;
if (domain) {
if (lookup(MI.getOpcode(), domain, ReplaceableInstrs)) {
validDomains = 0xe;
} else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
} else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
validDomains = 0xe;
} else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
validDomains = Subtarget.hasDQI() ? 0xe : 0x8;
} else if (const uint16_t *table = lookupAVX512(opcode, domain,
ReplaceableInstrsAVX512DQMasked)) {
if (domain == 1 || (domain == 3 && table[3] == opcode))
validDomains = Subtarget.hasDQI() ? 0xa : 0x8;
else
validDomains = Subtarget.hasDQI() ? 0xc : 0x8;
}
}
return std::make_pair(domain, validDomains);
}
void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
assert(Domain>0 && Domain<4 && "Invalid execution domain");
uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
assert(dom && "Not an SSE instruction");
const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
if (!table) { // try the other table
assert((Subtarget.hasAVX2() || Domain < 3) &&
"256-bit vector operations only available in AVX2");
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
}
if (!table) { // try the AVX512 table
assert(Subtarget.hasAVX512() && "Requires AVX-512");
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
// Don't change integer Q instructions to D instructions.
if (table && Domain == 3 && table[3] == MI.getOpcode())
Domain = 4;
}
if (!table) { // try the AVX512DQ table
assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
// Don't change integer Q instructions to D instructions and
// use D intructions if we started with a PS instruction.
if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
Domain = 4;
}
if (!table) { // try the AVX512DQMasked table
assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
Domain = 4;
}
assert(table && "Cannot change domain");
MI.setDesc(get(table[Domain - 1]));
}
/// Return the noop instruction to use for a noop.
void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(X86::NOOP);
}
bool X86InstrInfo::isHighLatencyDef(int opc) const {
switch (opc) {
default: return false;
case X86::DIVPDrm:
case X86::DIVPDrr:
case X86::DIVPSrm:
case X86::DIVPSrr:
case X86::DIVSDrm:
case X86::DIVSDrm_Int:
case X86::DIVSDrr:
case X86::DIVSDrr_Int:
case X86::DIVSSrm:
case X86::DIVSSrm_Int:
case X86::DIVSSrr:
case X86::DIVSSrr_Int:
case X86::SQRTPDm:
case X86::SQRTPDr:
case X86::SQRTPSm:
case X86::SQRTPSr:
case X86::SQRTSDm:
case X86::SQRTSDm_Int:
case X86::SQRTSDr:
case X86::SQRTSDr_Int:
case X86::SQRTSSm:
case X86::SQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSr_Int:
// AVX instructions with high latency
case X86::VDIVPDrm:
case X86::VDIVPDrr:
case X86::VDIVPDYrm:
case X86::VDIVPDYrr:
case X86::VDIVPSrm:
case X86::VDIVPSrr:
case X86::VDIVPSYrm:
case X86::VDIVPSYrr:
case X86::VDIVSDrm:
case X86::VDIVSDrm_Int:
case X86::VDIVSDrr:
case X86::VDIVSDrr_Int:
case X86::VDIVSSrm:
case X86::VDIVSSrm_Int:
case X86::VDIVSSrr:
case X86::VDIVSSrr_Int:
case X86::VSQRTPDm:
case X86::VSQRTPDr:
case X86::VSQRTPDYm:
case X86::VSQRTPDYr:
case X86::VSQRTPSm:
case X86::VSQRTPSr:
case X86::VSQRTPSYm:
case X86::VSQRTPSYr:
case X86::VSQRTSDm:
case X86::VSQRTSDm_Int:
case X86::VSQRTSDr:
case X86::VSQRTSDr_Int:
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSSr:
case X86::VSQRTSSr_Int:
// AVX512 instructions with high latency
case X86::VDIVPDZ128rm:
case X86::VDIVPDZ128rmb:
case X86::VDIVPDZ128rmbk:
case X86::VDIVPDZ128rmbkz:
case X86::VDIVPDZ128rmk:
case X86::VDIVPDZ128rmkz:
case X86::VDIVPDZ128rr:
case X86::VDIVPDZ128rrk:
case X86::VDIVPDZ128rrkz:
case X86::VDIVPDZ256rm:
case X86::VDIVPDZ256rmb:
case X86::VDIVPDZ256rmbk:
case X86::VDIVPDZ256rmbkz:
case X86::VDIVPDZ256rmk:
case X86::VDIVPDZ256rmkz:
case X86::VDIVPDZ256rr:
case X86::VDIVPDZ256rrk:
case X86::VDIVPDZ256rrkz:
case X86::VDIVPDZrb:
case X86::VDIVPDZrbk:
case X86::VDIVPDZrbkz:
case X86::VDIVPDZrm:
case X86::VDIVPDZrmb:
case X86::VDIVPDZrmbk:
case X86::VDIVPDZrmbkz:
case X86::VDIVPDZrmk:
case X86::VDIVPDZrmkz:
case X86::VDIVPDZrr:
case X86::VDIVPDZrrk:
case X86::VDIVPDZrrkz:
case X86::VDIVPSZ128rm:
case X86::VDIVPSZ128rmb:
case X86::VDIVPSZ128rmbk:
case X86::VDIVPSZ128rmbkz:
case X86::VDIVPSZ128rmk:
case X86::VDIVPSZ128rmkz:
case X86::VDIVPSZ128rr:
case X86::VDIVPSZ128rrk:
case X86::VDIVPSZ128rrkz:
case X86::VDIVPSZ256rm:
case X86::VDIVPSZ256rmb:
case X86::VDIVPSZ256rmbk:
case X86::VDIVPSZ256rmbkz:
case X86::VDIVPSZ256rmk:
case X86::VDIVPSZ256rmkz:
case X86::VDIVPSZ256rr:
case X86::VDIVPSZ256rrk:
case X86::VDIVPSZ256rrkz:
case X86::VDIVPSZrb:
case X86::VDIVPSZrbk:
case X86::VDIVPSZrbkz:
case X86::VDIVPSZrm:
case X86::VDIVPSZrmb:
case X86::VDIVPSZrmbk:
case X86::VDIVPSZrmbkz:
case X86::VDIVPSZrmk:
case X86::VDIVPSZrmkz:
case X86::VDIVPSZrr:
case X86::VDIVPSZrrk:
case X86::VDIVPSZrrkz:
case X86::VDIVSDZrm:
case X86::VDIVSDZrr:
case X86::VDIVSDZrm_Int:
case X86::VDIVSDZrm_Intk:
case X86::VDIVSDZrm_Intkz:
case X86::VDIVSDZrr_Int:
case X86::VDIVSDZrr_Intk:
case X86::VDIVSDZrr_Intkz:
case X86::VDIVSDZrrb:
case X86::VDIVSDZrrbk:
case X86::VDIVSDZrrbkz:
case X86::VDIVSSZrm:
case X86::VDIVSSZrr:
case X86::VDIVSSZrm_Int:
case X86::VDIVSSZrm_Intk:
case X86::VDIVSSZrm_Intkz:
case X86::VDIVSSZrr_Int:
case X86::VDIVSSZrr_Intk:
case X86::VDIVSSZrr_Intkz:
case X86::VDIVSSZrrb:
case X86::VDIVSSZrrbk:
case X86::VDIVSSZrrbkz:
case X86::VSQRTPDZ128m:
case X86::VSQRTPDZ128mb:
case X86::VSQRTPDZ128mbk:
case X86::VSQRTPDZ128mbkz:
case X86::VSQRTPDZ128mk:
case X86::VSQRTPDZ128mkz:
case X86::VSQRTPDZ128r:
case X86::VSQRTPDZ128rk:
case X86::VSQRTPDZ128rkz:
case X86::VSQRTPDZ256m:
case X86::VSQRTPDZ256mb:
case X86::VSQRTPDZ256mbk:
case X86::VSQRTPDZ256mbkz:
case X86::VSQRTPDZ256mk:
case X86::VSQRTPDZ256mkz:
case X86::VSQRTPDZ256r:
case X86::VSQRTPDZ256rk:
case X86::VSQRTPDZ256rkz:
case X86::VSQRTPDZm:
case X86::VSQRTPDZmb:
case X86::VSQRTPDZmbk:
case X86::VSQRTPDZmbkz:
case X86::VSQRTPDZmk:
case X86::VSQRTPDZmkz:
case X86::VSQRTPDZr:
case X86::VSQRTPDZrb:
case X86::VSQRTPDZrbk:
case X86::VSQRTPDZrbkz:
case X86::VSQRTPDZrk:
case X86::VSQRTPDZrkz:
case X86::VSQRTPSZ128m:
case X86::VSQRTPSZ128mb:
case X86::VSQRTPSZ128mbk:
case X86::VSQRTPSZ128mbkz:
case X86::VSQRTPSZ128mk:
case X86::VSQRTPSZ128mkz:
case X86::VSQRTPSZ128r:
case X86::VSQRTPSZ128rk:
case X86::VSQRTPSZ128rkz:
case X86::VSQRTPSZ256m:
case X86::VSQRTPSZ256mb:
case X86::VSQRTPSZ256mbk:
case X86::VSQRTPSZ256mbkz:
case X86::VSQRTPSZ256mk:
case X86::VSQRTPSZ256mkz:
case X86::VSQRTPSZ256r:
case X86::VSQRTPSZ256rk:
case X86::VSQRTPSZ256rkz:
case X86::VSQRTPSZm:
case X86::VSQRTPSZmb:
case X86::VSQRTPSZmbk:
case X86::VSQRTPSZmbkz:
case X86::VSQRTPSZmk:
case X86::VSQRTPSZmkz:
case X86::VSQRTPSZr:
case X86::VSQRTPSZrb:
case X86::VSQRTPSZrbk:
case X86::VSQRTPSZrbkz:
case X86::VSQRTPSZrk:
case X86::VSQRTPSZrkz:
case X86::VSQRTSDZm:
case X86::VSQRTSDZm_Int:
case X86::VSQRTSDZm_Intk:
case X86::VSQRTSDZm_Intkz:
case X86::VSQRTSDZr:
case X86::VSQRTSDZr_Int:
case X86::VSQRTSDZr_Intk:
case X86::VSQRTSDZr_Intkz:
case X86::VSQRTSDZrb_Int:
case X86::VSQRTSDZrb_Intk:
case X86::VSQRTSDZrb_Intkz:
case X86::VSQRTSSZm:
case X86::VSQRTSSZm_Int:
case X86::VSQRTSSZm_Intk:
case X86::VSQRTSSZm_Intkz:
case X86::VSQRTSSZr:
case X86::VSQRTSSZr_Int:
case X86::VSQRTSSZr_Intk:
case X86::VSQRTSSZr_Intkz:
case X86::VSQRTSSZrb_Int:
case X86::VSQRTSSZrb_Intk:
case X86::VSQRTSSZrb_Intkz:
case X86::VGATHERDPDYrm:
case X86::VGATHERDPDZ128rm:
case X86::VGATHERDPDZ256rm:
case X86::VGATHERDPDZrm:
case X86::VGATHERDPDrm:
case X86::VGATHERDPSYrm:
case X86::VGATHERDPSZ128rm:
case X86::VGATHERDPSZ256rm:
case X86::VGATHERDPSZrm:
case X86::VGATHERDPSrm:
case X86::VGATHERPF0DPDm:
case X86::VGATHERPF0DPSm:
case X86::VGATHERPF0QPDm:
case X86::VGATHERPF0QPSm:
case X86::VGATHERPF1DPDm:
case X86::VGATHERPF1DPSm:
case X86::VGATHERPF1QPDm:
case X86::VGATHERPF1QPSm:
case X86::VGATHERQPDYrm:
case X86::VGATHERQPDZ128rm:
case X86::VGATHERQPDZ256rm:
case X86::VGATHERQPDZrm:
case X86::VGATHERQPDrm:
case X86::VGATHERQPSYrm:
case X86::VGATHERQPSZ128rm:
case X86::VGATHERQPSZ256rm:
case X86::VGATHERQPSZrm:
case X86::VGATHERQPSrm:
case X86::VPGATHERDDYrm:
case X86::VPGATHERDDZ128rm:
case X86::VPGATHERDDZ256rm:
case X86::VPGATHERDDZrm:
case X86::VPGATHERDDrm:
case X86::VPGATHERDQYrm:
case X86::VPGATHERDQZ128rm:
case X86::VPGATHERDQZ256rm:
case X86::VPGATHERDQZrm:
case X86::VPGATHERDQrm:
case X86::VPGATHERQDYrm:
case X86::VPGATHERQDZ128rm:
case X86::VPGATHERQDZ256rm:
case X86::VPGATHERQDZrm:
case X86::VPGATHERQDrm:
case X86::VPGATHERQQYrm:
case X86::VPGATHERQQZ128rm:
case X86::VPGATHERQQZ256rm:
case X86::VPGATHERQQZrm:
case X86::VPGATHERQQrm:
case X86::VSCATTERDPDZ128mr:
case X86::VSCATTERDPDZ256mr:
case X86::VSCATTERDPDZmr:
case X86::VSCATTERDPSZ128mr:
case X86::VSCATTERDPSZ256mr:
case X86::VSCATTERDPSZmr:
case X86::VSCATTERPF0DPDm:
case X86::VSCATTERPF0DPSm:
case X86::VSCATTERPF0QPDm:
case X86::VSCATTERPF0QPSm:
case X86::VSCATTERPF1DPDm:
case X86::VSCATTERPF1DPSm:
case X86::VSCATTERPF1QPDm:
case X86::VSCATTERPF1QPSm:
case X86::VSCATTERQPDZ128mr:
case X86::VSCATTERQPDZ256mr:
case X86::VSCATTERQPDZmr:
case X86::VSCATTERQPSZ128mr:
case X86::VSCATTERQPSZ256mr:
case X86::VSCATTERQPSZmr:
case X86::VPSCATTERDDZ128mr:
case X86::VPSCATTERDDZ256mr:
case X86::VPSCATTERDDZmr:
case X86::VPSCATTERDQZ128mr:
case X86::VPSCATTERDQZ256mr:
case X86::VPSCATTERDQZmr:
case X86::VPSCATTERQDZ128mr:
case X86::VPSCATTERQDZ256mr:
case X86::VPSCATTERQDZmr:
case X86::VPSCATTERQQZ128mr:
case X86::VPSCATTERQQZ256mr:
case X86::VPSCATTERQQZmr:
return true;
}
}
bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
const MachineRegisterInfo *MRI,
const MachineInstr &DefMI,
unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const {
return isHighLatencyDef(DefMI.getOpcode());
}
bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
const MachineBasicBlock *MBB) const {
assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
"Reassociation needs binary operators");
// Integer binary math/logic instructions have a third source operand:
// the EFLAGS register. That operand must be both defined here and never
// used; ie, it must be dead. If the EFLAGS operand is live, then we can
// not change anything because rearranging the operands could affect other
// instructions that depend on the exact status flags (zero, sign, etc.)
// that are set by using these particular operands with this operation.
if (Inst.getNumOperands() == 4) {
assert(Inst.getOperand(3).isReg() &&
Inst.getOperand(3).getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction");
if (!Inst.getOperand(3).isDead())
return false;
}
return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
}
// TODO: There are many more machine instruction opcodes to match:
// 1. Other data types (integer, vectors)
// 2. Other math / logic operations (xor, or)
// 3. Other forms of the same operation (intrinsics and other variants)
bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
switch (Inst.getOpcode()) {
case X86::AND8rr:
case X86::AND16rr:
case X86::AND32rr:
case X86::AND64rr:
case X86::OR8rr:
case X86::OR16rr:
case X86::OR32rr:
case X86::OR64rr:
case X86::XOR8rr:
case X86::XOR16rr:
case X86::XOR32rr:
case X86::XOR64rr:
case X86::IMUL16rr:
case X86::IMUL32rr:
case X86::IMUL64rr:
case X86::PANDrr:
case X86::PORrr:
case X86::PXORrr:
case X86::ANDPDrr:
case X86::ANDPSrr:
case X86::ORPDrr:
case X86::ORPSrr:
case X86::XORPDrr:
case X86::XORPSrr:
case X86::PADDBrr:
case X86::PADDWrr:
case X86::PADDDrr:
case X86::PADDQrr:
case X86::VPANDrr:
case X86::VPANDYrr:
case X86::VPANDDZ128rr:
case X86::VPANDDZ256rr:
case X86::VPANDDZrr:
case X86::VPANDQZ128rr:
case X86::VPANDQZ256rr:
case X86::VPANDQZrr:
case X86::VPORrr:
case X86::VPORYrr:
case X86::VPORDZ128rr:
case X86::VPORDZ256rr:
case X86::VPORDZrr:
case X86::VPORQZ128rr:
case X86::VPORQZ256rr:
case X86::VPORQZrr:
case X86::VPXORrr:
case X86::VPXORYrr:
case X86::VPXORDZ128rr:
case X86::VPXORDZ256rr:
case X86::VPXORDZrr:
case X86::VPXORQZ128rr:
case X86::VPXORQZ256rr:
case X86::VPXORQZrr:
case X86::VANDPDrr:
case X86::VANDPSrr:
case X86::VANDPDYrr:
case X86::VANDPSYrr:
case X86::VANDPDZ128rr:
case X86::VANDPSZ128rr:
case X86::VANDPDZ256rr:
case X86::VANDPSZ256rr:
case X86::VANDPDZrr:
case X86::VANDPSZrr:
case X86::VORPDrr:
case X86::VORPSrr:
case X86::VORPDYrr:
case X86::VORPSYrr:
case X86::VORPDZ128rr:
case X86::VORPSZ128rr:
case X86::VORPDZ256rr:
case X86::VORPSZ256rr:
case X86::VORPDZrr:
case X86::VORPSZrr:
case X86::VXORPDrr:
case X86::VXORPSrr:
case X86::VXORPDYrr:
case X86::VXORPSYrr:
case X86::VXORPDZ128rr:
case X86::VXORPSZ128rr:
case X86::VXORPDZ256rr:
case X86::VXORPSZ256rr:
case X86::VXORPDZrr:
case X86::VXORPSZrr:
case X86::KADDBrr:
case X86::KADDWrr:
case X86::KADDDrr:
case X86::KADDQrr:
case X86::KANDBrr:
case X86::KANDWrr:
case X86::KANDDrr:
case X86::KANDQrr:
case X86::KORBrr:
case X86::KORWrr:
case X86::KORDrr:
case X86::KORQrr:
case X86::KXORBrr:
case X86::KXORWrr:
case X86::KXORDrr:
case X86::KXORQrr:
case X86::VPADDBrr:
case X86::VPADDWrr:
case X86::VPADDDrr:
case X86::VPADDQrr:
case X86::VPADDBYrr:
case X86::VPADDWYrr:
case X86::VPADDDYrr:
case X86::VPADDQYrr:
case X86::VPADDBZ128rr:
case X86::VPADDWZ128rr:
case X86::VPADDDZ128rr:
case X86::VPADDQZ128rr:
case X86::VPADDBZ256rr:
case X86::VPADDWZ256rr:
case X86::VPADDDZ256rr:
case X86::VPADDQZ256rr:
case X86::VPADDBZrr:
case X86::VPADDWZrr:
case X86::VPADDDZrr:
case X86::VPADDQZrr:
case X86::VPMULLWrr:
case X86::VPMULLWYrr:
case X86::VPMULLWZ128rr:
case X86::VPMULLWZ256rr:
case X86::VPMULLWZrr:
case X86::VPMULLDrr:
case X86::VPMULLDYrr:
case X86::VPMULLDZ128rr:
case X86::VPMULLDZ256rr:
case X86::VPMULLDZrr:
case X86::VPMULLQZ128rr:
case X86::VPMULLQZ256rr:
case X86::VPMULLQZrr:
// Normal min/max instructions are not commutative because of NaN and signed
// zero semantics, but these are. Thus, there's no need to check for global
// relaxed math; the instructions themselves have the properties we need.
case X86::MAXCPDrr:
case X86::MAXCPSrr:
case X86::MAXCSDrr:
case X86::MAXCSSrr:
case X86::MINCPDrr:
case X86::MINCPSrr:
case X86::MINCSDrr:
case X86::MINCSSrr:
case X86::VMAXCPDrr:
case X86::VMAXCPSrr:
case X86::VMAXCPDYrr:
case X86::VMAXCPSYrr:
case X86::VMAXCPDZ128rr:
case X86::VMAXCPSZ128rr:
case X86::VMAXCPDZ256rr:
case X86::VMAXCPSZ256rr:
case X86::VMAXCPDZrr:
case X86::VMAXCPSZrr:
case X86::VMAXCSDrr:
case X86::VMAXCSSrr:
case X86::VMAXCSDZrr:
case X86::VMAXCSSZrr:
case X86::VMINCPDrr:
case X86::VMINCPSrr:
case X86::VMINCPDYrr:
case X86::VMINCPSYrr:
case X86::VMINCPDZ128rr:
case X86::VMINCPSZ128rr:
case X86::VMINCPDZ256rr:
case X86::VMINCPSZ256rr:
case X86::VMINCPDZrr:
case X86::VMINCPSZrr:
case X86::VMINCSDrr:
case X86::VMINCSSrr:
case X86::VMINCSDZrr:
case X86::VMINCSSZrr:
return true;
case X86::ADDPDrr:
case X86::ADDPSrr:
case X86::ADDSDrr:
case X86::ADDSSrr:
case X86::MULPDrr:
case X86::MULPSrr:
case X86::MULSDrr:
case X86::MULSSrr:
case X86::VADDPDrr:
case X86::VADDPSrr:
case X86::VADDPDYrr:
case X86::VADDPSYrr:
case X86::VADDPDZ128rr:
case X86::VADDPSZ128rr:
case X86::VADDPDZ256rr:
case X86::VADDPSZ256rr:
case X86::VADDPDZrr:
case X86::VADDPSZrr:
case X86::VADDSDrr:
case X86::VADDSSrr:
case X86::VADDSDZrr:
case X86::VADDSSZrr:
case X86::VMULPDrr:
case X86::VMULPSrr:
case X86::VMULPDYrr:
case X86::VMULPSYrr:
case X86::VMULPDZ128rr:
case X86::VMULPSZ128rr:
case X86::VMULPDZ256rr:
case X86::VMULPSZ256rr:
case X86::VMULPDZrr:
case X86::VMULPSZrr:
case X86::VMULSDrr:
case X86::VMULSSrr:
case X86::VMULSDZrr:
case X86::VMULSSZrr:
return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
default:
return false;
}
}
/// This is an architecture-specific helper function of reassociateOps.
/// Set special operand attributes for new instructions after reassociation.
void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
MachineInstr &OldMI2,
MachineInstr &NewMI1,
MachineInstr &NewMI2) const {
// Integer instructions define an implicit EFLAGS source register operand as
// the third source (fourth total) operand.
if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
return;
assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
"Unexpected instruction type for reassociation");
MachineOperand &OldOp1 = OldMI1.getOperand(3);
MachineOperand &OldOp2 = OldMI2.getOperand(3);
MachineOperand &NewOp1 = NewMI1.getOperand(3);
MachineOperand &NewOp2 = NewMI2.getOperand(3);
assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
"Must have dead EFLAGS operand in reassociable instruction");
assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
"Must have dead EFLAGS operand in reassociable instruction");
(void)OldOp1;
(void)OldOp2;
assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction");
assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
"Unexpected operand in reassociable instruction");
// Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
// of this pass or other passes. The EFLAGS operands must be dead in these new
// instructions because the EFLAGS operands in the original instructions must
// be dead in order for reassociation to occur.
NewOp1.setIsDead();
NewOp2.setIsDead();
}
std::pair<unsigned, unsigned>
X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
return std::make_pair(TF, 0u);
}
ArrayRef<std::pair<unsigned, const char *>>
X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace X86II;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
{MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
{MO_GOT, "x86-got"},
{MO_GOTOFF, "x86-gotoff"},
{MO_GOTPCREL, "x86-gotpcrel"},
{MO_PLT, "x86-plt"},
{MO_TLSGD, "x86-tlsgd"},
{MO_TLSLD, "x86-tlsld"},
{MO_TLSLDM, "x86-tlsldm"},
{MO_GOTTPOFF, "x86-gottpoff"},
{MO_INDNTPOFF, "x86-indntpoff"},
{MO_TPOFF, "x86-tpoff"},
{MO_DTPOFF, "x86-dtpoff"},
{MO_NTPOFF, "x86-ntpoff"},
{MO_GOTNTPOFF, "x86-gotntpoff"},
{MO_DLLIMPORT, "x86-dllimport"},
{MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
{MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
{MO_TLVP, "x86-tlvp"},
{MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
{MO_SECREL, "x86-secrel"}};
return makeArrayRef(TargetFlags);
}
bool X86InstrInfo::isTailCall(const MachineInstr &Inst) const {
switch (Inst.getOpcode()) {
case X86::TCRETURNdi:
case X86::TCRETURNmi:
case X86::TCRETURNri:
case X86::TCRETURNdi64:
case X86::TCRETURNmi64:
case X86::TCRETURNri64:
case X86::TAILJMPd:
case X86::TAILJMPm:
case X86::TAILJMPr:
case X86::TAILJMPd64:
case X86::TAILJMPm64:
case X86::TAILJMPr64:
case X86::TAILJMPm64_REX:
case X86::TAILJMPr64_REX:
return true;
default:
return false;
}
}
namespace {
/// Create Global Base Reg pass. This initializes the PIC
/// global base register for x86-32.
struct CGBR : public MachineFunctionPass {
static char ID;
CGBR() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF.getTarget());
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
// Don't do anything if this is 64-bit as 64-bit PIC
// uses RIP relative addressing.
if (STI.is64Bit())
return false;
// Only emit a global base reg in PIC mode.
if (!TM->isPositionIndependent())
return false;
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
// If we didn't need a GlobalBaseReg, don't insert code.
if (GlobalBaseReg == 0)
return false;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF.front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
const X86InstrInfo *TII = STI.getInstrInfo();
unsigned PC;
if (STI.isPICStyleGOT())
PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
else
PC = GlobalBaseReg;
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (STI.isPICStyleGOT()) {
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
}
return true;
}
StringRef getPassName() const override {
return "X86 PIC Global Base Reg Initialization";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char CGBR::ID = 0;
FunctionPass*
llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
namespace {
struct LDTLSCleanup : public MachineFunctionPass {
static char ID;
LDTLSCleanup() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(*MF.getFunction()))
return false;
X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
// No point folding accesses if there isn't at least two.
return false;
}
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
return VisitNode(DT->getRootNode(), 0);
}
// Visit the dominator subtree rooted at Node in pre-order.
// If TLSBaseAddrReg is non-null, then use that to replace any
// TLS_base_addr instructions. Otherwise, create the register
// when the first such instruction is seen, and then use it
// as we encounter more instructions.
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
MachineBasicBlock *BB = Node->getBlock();
bool Changed = false;
// Traverse the current block.
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
switch (I->getOpcode()) {
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
if (TLSBaseAddrReg)
I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
else
I = SetRegister(*I, &TLSBaseAddrReg);
Changed = true;
break;
default:
break;
}
}
// Visit the children of this block in the dominator tree.
for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
I != E; ++I) {
Changed |= VisitNode(*I, TLSBaseAddrReg);
}
return Changed;
}
// Replace the TLS_base_addr instruction I with a copy from
// TLSBaseAddrReg, returning the new instruction.
MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
unsigned TLSBaseAddrReg) {
MachineFunction *MF = I.getParent()->getParent();
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
const bool is64Bit = STI.is64Bit();
const X86InstrInfo *TII = STI.getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to RAX/EAX.
MachineInstr *Copy =
BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
.addReg(TLSBaseAddrReg);
// Erase the TLS_base_addr instruction.
I.eraseFromParent();
return Copy;
}
// Create a virtal register in *TLSBaseAddrReg, and populate it by
// inserting a copy instruction after I. Returns the new instruction.
MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
MachineFunction *MF = I.getParent()->getParent();
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
const bool is64Bit = STI.is64Bit();
const X86InstrInfo *TII = STI.getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
*TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
? &X86::GR64RegClass
: &X86::GR32RegClass);
// Insert a copy from RAX/EAX to TLSBaseAddrReg.
MachineInstr *Next = I.getNextNode();
MachineInstr *Copy =
BuildMI(*I.getParent(), Next, I.getDebugLoc(),
TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
.addReg(is64Bit ? X86::RAX : X86::EAX);
return Copy;
}
StringRef getPassName() const override {
return "Local Dynamic TLS Access Clean-up";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char LDTLSCleanup::ID = 0;
FunctionPass*
llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }