llvm-project/llvm/tools/llvm-isel-fuzzer/llvm-isel-fuzzer.cpp

199 lines
6.2 KiB
C++

//===--- llvm-isel-fuzzer.cpp - Fuzzer for instruction selection ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Tool to fuzz instruction selection using libFuzzer.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/FuzzMutate/FuzzerCLI.h"
#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/FuzzMutate/Random.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include <random>
#define DEBUG_TYPE "isel-fuzzer"
using namespace llvm;
static cl::opt<char>
OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix,
cl::ZeroOrMore,
cl::init(' '));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
static std::unique_ptr<TargetMachine> TM;
static std::unique_ptr<IRMutator> Mutator;
static std::unique_ptr<Module> parseModule(const uint8_t *Data, size_t Size,
LLVMContext &Context) {
auto Buffer = MemoryBuffer::getMemBuffer(
StringRef(reinterpret_cast<const char *>(Data), Size), "Fuzzer input",
/*RequiresNullTerminator=*/false);
SMDiagnostic Err;
auto M = parseBitcodeFile(Buffer->getMemBufferRef(), Context);
if (Error E = M.takeError()) {
errs() << toString(std::move(E)) << "\n";
return nullptr;
}
return std::move(M.get());
}
static size_t writeModule(const Module &M, uint8_t *Dest, size_t MaxSize) {
std::string Buf;
{
raw_string_ostream OS(Buf);
WriteBitcodeToFile(&M, OS);
}
if (Buf.size() > MaxSize)
return 0;
memcpy(Dest, Buf.data(), Buf.size());
return Buf.size();
}
std::unique_ptr<IRMutator> createISelMutator() {
std::vector<TypeGetter> Types{
Type::getInt1Ty, Type::getInt8Ty, Type::getInt16Ty, Type::getInt32Ty,
Type::getInt64Ty, Type::getFloatTy, Type::getDoubleTy};
std::vector<std::unique_ptr<IRMutationStrategy>> Strategies;
Strategies.emplace_back(
new InjectorIRStrategy(InjectorIRStrategy::getDefaultOps()));
Strategies.emplace_back(new InstDeleterIRStrategy());
return llvm::make_unique<IRMutator>(std::move(Types), std::move(Strategies));
}
extern "C" LLVM_ATTRIBUTE_USED size_t LLVMFuzzerCustomMutator(
uint8_t *Data, size_t Size, size_t MaxSize, unsigned int Seed) {
LLVMContext Context;
std::unique_ptr<Module> M;
if (Size <= 1)
// We get bogus data given an empty corpus - just create a new module.
M.reset(new Module("M", Context));
else
M = parseModule(Data, Size, Context);
Mutator->mutateModule(*M, Seed, Size, MaxSize);
return writeModule(*M, Data, MaxSize);
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
if (Size <= 1)
// We get bogus data given an empty corpus - ignore it.
return 0;
LLVMContext Context;
auto M = parseModule(Data, Size, Context);
if (!M || verifyModule(*M, &errs())) {
errs() << "error: input module is broken!\n";
return 1;
}
// Set up the module to build for our target.
M->setTargetTriple(TM->getTargetTriple().normalize());
M->setDataLayout(TM->createDataLayout());
// Build up a PM to do instruction selection.
legacy::PassManager PM;
TargetLibraryInfoImpl TLII(TM->getTargetTriple());
PM.add(new TargetLibraryInfoWrapperPass(TLII));
raw_null_ostream OS;
TM->addPassesToEmitFile(PM, OS, TargetMachine::CGFT_Null);
PM.run(*M);
return 0;
}
static void handleLLVMFatalError(void *, const std::string &Message, bool) {
// TODO: Would it be better to call into the fuzzer internals directly?
dbgs() << "LLVM ERROR: " << Message << "\n"
<< "Aborting to trigger fuzzer exit handling.\n";
abort();
}
extern "C" LLVM_ATTRIBUTE_USED int LLVMFuzzerInitialize(int *argc,
char ***argv) {
EnableDebugBuffering = true;
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
parseFuzzerCLOpts(*argc, *argv);
if (TargetTriple.empty()) {
errs() << *argv[0] << ": -mtriple must be specified\n";
return 1;
}
Triple TheTriple = Triple(Triple::normalize(TargetTriple));
// Get the target specific parser.
std::string Error;
const Target *TheTarget =
TargetRegistry::lookupTarget(MArch, TheTriple, Error);
if (!TheTarget) {
errs() << argv[0] << ": " << Error;
return 1;
}
// Set up the pipeline like llc does.
std::string CPUStr = getCPUStr(), FeaturesStr = getFeaturesStr();
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {
default:
errs() << argv[0] << ": invalid optimization level.\n";
return 1;
case ' ': break;
case '0': OLvl = CodeGenOpt::None; break;
case '1': OLvl = CodeGenOpt::Less; break;
case '2': OLvl = CodeGenOpt::Default; break;
case '3': OLvl = CodeGenOpt::Aggressive; break;
}
TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
TM.reset(TheTarget->createTargetMachine(TheTriple.getTriple(), CPUStr,
FeaturesStr, Options, getRelocModel(),
getCodeModel(), OLvl));
assert(TM && "Could not allocate target machine!");
// Make sure we print the summary and the current unit when LLVM errors out.
install_fatal_error_handler(handleLLVMFatalError, nullptr);
// Finally, create our mutator.
Mutator = createISelMutator();
return 0;
}