llvm-project/llvm/lib/Transforms/AggressiveInstCombine/TruncInstCombine.cpp

418 lines
15 KiB
C++

//===- TruncInstCombine.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// TruncInstCombine - looks for expression dags post-dominated by TruncInst and
// for each eligible dag, it will create a reduced bit-width expression, replace
// the old expression with this new one and remove the old expression.
// Eligible expression dag is such that:
// 1. Contains only supported instructions.
// 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
// 3. Can be evaluated into type with reduced legal bit-width.
// 4. All instructions in the dag must not have users outside the dag.
// The only exception is for {ZExt, SExt}Inst with operand type equal to
// the new reduced type evaluated in (3).
//
// The motivation for this optimization is that evaluating and expression using
// smaller bit-width is preferable, especially for vectorization where we can
// fit more values in one vectorized instruction. In addition, this optimization
// may decrease the number of cast instructions, but will not increase it.
//
//===----------------------------------------------------------------------===//
#include "AggressiveInstCombineInternal.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
using namespace llvm;
#define DEBUG_TYPE "aggressive-instcombine"
/// Given an instruction and a container, it fills all the relevant operands of
/// that instruction, with respect to the Trunc expression dag optimizaton.
static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
// These CastInst are considered leaves of the evaluated expression, thus,
// their operands are not relevent.
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Ops.push_back(I->getOperand(0));
Ops.push_back(I->getOperand(1));
break;
default:
llvm_unreachable("Unreachable!");
}
}
bool TruncInstCombine::buildTruncExpressionDag() {
SmallVector<Value *, 8> Worklist;
SmallVector<Instruction *, 8> Stack;
// Clear old expression dag.
InstInfoMap.clear();
Worklist.push_back(CurrentTruncInst->getOperand(0));
while (!Worklist.empty()) {
Value *Curr = Worklist.back();
if (isa<Constant>(Curr)) {
Worklist.pop_back();
continue;
}
auto *I = dyn_cast<Instruction>(Curr);
if (!I)
return false;
if (!Stack.empty() && Stack.back() == I) {
// Already handled all instruction operands, can remove it from both the
// Worklist and the Stack, and add it to the instruction info map.
Worklist.pop_back();
Stack.pop_back();
// Insert I to the Info map.
InstInfoMap.insert(std::make_pair(I, Info()));
continue;
}
if (InstInfoMap.count(I)) {
Worklist.pop_back();
continue;
}
// Add the instruction to the stack before start handling its operands.
Stack.push_back(I);
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
// trunc(trunc(x)) -> trunc(x)
// trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
// trunc(ext(x)) -> trunc(x) if the source type is larger than the new
// dest
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
SmallVector<Value *, 2> Operands;
getRelevantOperands(I, Operands);
for (Value *Operand : Operands)
Worklist.push_back(Operand);
break;
}
default:
// TODO: Can handle more cases here:
// 1. select, shufflevector, extractelement, insertelement
// 2. udiv, urem
// 3. shl, lshr, ashr
// 4. phi node(and loop handling)
// ...
return false;
}
}
return true;
}
unsigned TruncInstCombine::getMinBitWidth() {
SmallVector<Value *, 8> Worklist;
SmallVector<Instruction *, 8> Stack;
Value *Src = CurrentTruncInst->getOperand(0);
Type *DstTy = CurrentTruncInst->getType();
unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
unsigned OrigBitWidth =
CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
if (isa<Constant>(Src))
return TruncBitWidth;
Worklist.push_back(Src);
InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
while (!Worklist.empty()) {
Value *Curr = Worklist.back();
if (isa<Constant>(Curr)) {
Worklist.pop_back();
continue;
}
// Otherwise, it must be an instruction.
auto *I = cast<Instruction>(Curr);
auto &Info = InstInfoMap[I];
SmallVector<Value *, 2> Operands;
getRelevantOperands(I, Operands);
if (!Stack.empty() && Stack.back() == I) {
// Already handled all instruction operands, can remove it from both, the
// Worklist and the Stack, and update MinBitWidth.
Worklist.pop_back();
Stack.pop_back();
for (auto *Operand : Operands)
if (auto *IOp = dyn_cast<Instruction>(Operand))
Info.MinBitWidth =
std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
continue;
}
// Add the instruction to the stack before start handling its operands.
Stack.push_back(I);
unsigned ValidBitWidth = Info.ValidBitWidth;
// Update minimum bit-width before handling its operands. This is required
// when the instruction is part of a loop.
Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
for (auto *Operand : Operands)
if (auto *IOp = dyn_cast<Instruction>(Operand)) {
// If we already calculated the minimum bit-width for this valid
// bit-width, or for a smaller valid bit-width, then just keep the
// answer we already calculated.
unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
if (IOpBitwidth >= ValidBitWidth)
continue;
InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
Worklist.push_back(IOp);
}
}
unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
assert(MinBitWidth >= TruncBitWidth);
if (MinBitWidth > TruncBitWidth) {
// In this case reducing expression with vector type might generate a new
// vector type, which is not preferable as it might result in generating
// sub-optimal code.
if (DstTy->isVectorTy())
return OrigBitWidth;
// Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
// Update minimum bit-width with the new destination type bit-width if
// succeeded to find such, otherwise, with original bit-width.
MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
} else { // MinBitWidth == TruncBitWidth
// In this case the expression can be evaluated with the trunc instruction
// destination type, and trunc instruction can be omitted. However, we
// should not perform the evaluation if the original type is a legal scalar
// type and the target type is illegal.
bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
return OrigBitWidth;
}
return MinBitWidth;
}
Type *TruncInstCombine::getBestTruncatedType() {
if (!buildTruncExpressionDag())
return nullptr;
// We don't want to duplicate instructions, which isn't profitable. Thus, we
// can't shrink something that has multiple users, unless all users are
// post-dominated by the trunc instruction, i.e., were visited during the
// expression evaluation.
unsigned DesiredBitWidth = 0;
for (auto Itr : InstInfoMap) {
Instruction *I = Itr.first;
if (I->hasOneUse())
continue;
bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
for (auto *U : I->users())
if (auto *UI = dyn_cast<Instruction>(U))
if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
if (!IsExtInst)
return nullptr;
// If this is an extension from the dest type, we can eliminate it,
// even if it has multiple users. Thus, update the DesiredBitWidth and
// validate all extension instructions agrees on same DesiredBitWidth.
unsigned ExtInstBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
return nullptr;
DesiredBitWidth = ExtInstBitWidth;
}
}
unsigned OrigBitWidth =
CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
// Calculate minimum allowed bit-width allowed for shrinking the currently
// visited truncate's operand.
unsigned MinBitWidth = getMinBitWidth();
// Check that we can shrink to smaller bit-width than original one and that
// it is similar to the DesiredBitWidth is such exists.
if (MinBitWidth >= OrigBitWidth ||
(DesiredBitWidth && DesiredBitWidth != MinBitWidth))
return nullptr;
return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
}
/// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
/// for \p V, according to its type, if it vector type, return the vector
/// version of \p Ty, otherwise return \p Ty.
static Type *getReducedType(Value *V, Type *Ty) {
assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
if (auto *VTy = dyn_cast<VectorType>(V->getType()))
return VectorType::get(Ty, VTy->getNumElements());
return Ty;
}
Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
Type *Ty = getReducedType(V, SclTy);
if (auto *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, false);
// If we got a constantexpr back, try to simplify it with DL info.
if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
C = FoldedC;
return C;
}
auto *I = cast<Instruction>(V);
Info Entry = InstInfoMap.lookup(I);
assert(Entry.NewValue);
return Entry.NewValue;
}
void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
for (auto &Itr : InstInfoMap) { // Forward
Instruction *I = Itr.first;
TruncInstCombine::Info &NodeInfo = Itr.second;
assert(!NodeInfo.NewValue && "Instruction has been evaluated");
IRBuilder<> Builder(I);
Value *Res = nullptr;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt: {
Type *Ty = getReducedType(I, SclTy);
// If the source type of the cast is the type we're trying for then we can
// just return the source. There's no need to insert it because it is not
// new.
if (I->getOperand(0)->getType() == Ty) {
assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
NodeInfo.NewValue = I->getOperand(0);
continue;
}
// Otherwise, must be the same type of cast, so just reinsert a new one.
// This also handles the case of zext(trunc(x)) -> zext(x).
Res = Builder.CreateIntCast(I->getOperand(0), Ty,
Opc == Instruction::SExt);
// Update Worklist entries with new value if needed.
// There are three possible changes to the Worklist:
// 1. Update Old-TruncInst -> New-TruncInst.
// 2. Remove Old-TruncInst (if New node is not TruncInst).
// 3. Add New-TruncInst (if Old node was not TruncInst).
auto Entry = find(Worklist, I);
if (Entry != Worklist.end()) {
if (auto *NewCI = dyn_cast<TruncInst>(Res))
*Entry = NewCI;
else
Worklist.erase(Entry);
} else if (auto *NewCI = dyn_cast<TruncInst>(Res))
Worklist.push_back(NewCI);
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
break;
}
default:
llvm_unreachable("Unhandled instruction");
}
NodeInfo.NewValue = Res;
if (auto *ResI = dyn_cast<Instruction>(Res))
ResI->takeName(I);
}
Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
Type *DstTy = CurrentTruncInst->getType();
if (Res->getType() != DstTy) {
IRBuilder<> Builder(CurrentTruncInst);
Res = Builder.CreateIntCast(Res, DstTy, false);
if (auto *ResI = dyn_cast<Instruction>(Res))
ResI->takeName(CurrentTruncInst);
}
CurrentTruncInst->replaceAllUsesWith(Res);
// Erase old expression dag, which was replaced by the reduced expression dag.
// We iterate backward, which means we visit the instruction before we visit
// any of its operands, this way, when we get to the operand, we already
// removed the instructions (from the expression dag) that uses it.
CurrentTruncInst->eraseFromParent();
for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
// We still need to check that the instruction has no users before we erase
// it, because {SExt, ZExt}Inst Instruction might have other users that was
// not reduced, in such case, we need to keep that instruction.
if (I->first->use_empty())
I->first->eraseFromParent();
}
}
bool TruncInstCombine::run(Function &F) {
bool MadeIRChange = false;
// Collect all TruncInst in the function into the Worklist for evaluating.
for (auto &BB : F) {
// Ignore unreachable basic block.
if (!DT.isReachableFromEntry(&BB))
continue;
for (auto &I : BB)
if (auto *CI = dyn_cast<TruncInst>(&I))
Worklist.push_back(CI);
}
// Process all TruncInst in the Worklist, for each instruction:
// 1. Check if it dominates an eligible expression dag to be reduced.
// 2. Create a reduced expression dag and replace the old one with it.
while (!Worklist.empty()) {
CurrentTruncInst = Worklist.pop_back_val();
if (Type *NewDstSclTy = getBestTruncatedType()) {
DEBUG(dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
"dominated by: "
<< CurrentTruncInst << '\n');
ReduceExpressionDag(NewDstSclTy);
MadeIRChange = true;
}
}
return MadeIRChange;
}