forked from OSchip/llvm-project
947 lines
36 KiB
C++
947 lines
36 KiB
C++
//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass turns chains of integer comparisons into memcmp (the memcmp is
|
|
// later typically inlined as a chain of efficient hardware comparisons). This
|
|
// typically benefits c++ member or nonmember operator==().
|
|
//
|
|
// The basic idea is to replace a longer chain of integer comparisons loaded
|
|
// from contiguous memory locations into a shorter chain of larger integer
|
|
// comparisons. Benefits are double:
|
|
// - There are less jumps, and therefore less opportunities for mispredictions
|
|
// and I-cache misses.
|
|
// - Code size is smaller, both because jumps are removed and because the
|
|
// encoding of a 2*n byte compare is smaller than that of two n-byte
|
|
// compares.
|
|
//
|
|
// Example:
|
|
//
|
|
// struct S {
|
|
// int a;
|
|
// char b;
|
|
// char c;
|
|
// uint16_t d;
|
|
// bool operator==(const S& o) const {
|
|
// return a == o.a && b == o.b && c == o.c && d == o.d;
|
|
// }
|
|
// };
|
|
//
|
|
// Is optimized as :
|
|
//
|
|
// bool S::operator==(const S& o) const {
|
|
// return memcmp(this, &o, 8) == 0;
|
|
// }
|
|
//
|
|
// Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/MergeICmps.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
#define DEBUG_TYPE "mergeicmps"
|
|
|
|
// Returns true if the instruction is a simple load or a simple store
|
|
static bool isSimpleLoadOrStore(const Instruction *I) {
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return LI->isSimple();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->isSimple();
|
|
return false;
|
|
}
|
|
|
|
// A BCE atom "Binary Compare Expression Atom" represents an integer load
|
|
// that is a constant offset from a base value, e.g. `a` or `o.c` in the example
|
|
// at the top.
|
|
struct BCEAtom {
|
|
BCEAtom() = default;
|
|
BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
|
|
: GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
|
|
|
|
BCEAtom(const BCEAtom &) = delete;
|
|
BCEAtom &operator=(const BCEAtom &) = delete;
|
|
|
|
BCEAtom(BCEAtom &&that) = default;
|
|
BCEAtom &operator=(BCEAtom &&that) {
|
|
if (this == &that)
|
|
return *this;
|
|
GEP = that.GEP;
|
|
LoadI = that.LoadI;
|
|
BaseId = that.BaseId;
|
|
Offset = std::move(that.Offset);
|
|
return *this;
|
|
}
|
|
|
|
// We want to order BCEAtoms by (Base, Offset). However we cannot use
|
|
// the pointer values for Base because these are non-deterministic.
|
|
// To make sure that the sort order is stable, we first assign to each atom
|
|
// base value an index based on its order of appearance in the chain of
|
|
// comparisons. We call this index `BaseOrdering`. For example, for:
|
|
// b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
|
|
// | block 1 | | block 2 | | block 3 |
|
|
// b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
|
|
// which is before block 2.
|
|
// We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
|
|
bool operator<(const BCEAtom &O) const {
|
|
return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
|
|
}
|
|
|
|
GetElementPtrInst *GEP = nullptr;
|
|
LoadInst *LoadI = nullptr;
|
|
unsigned BaseId = 0;
|
|
APInt Offset;
|
|
};
|
|
|
|
// A class that assigns increasing ids to values in the order in which they are
|
|
// seen. See comment in `BCEAtom::operator<()``.
|
|
class BaseIdentifier {
|
|
public:
|
|
// Returns the id for value `Base`, after assigning one if `Base` has not been
|
|
// seen before.
|
|
int getBaseId(const Value *Base) {
|
|
assert(Base && "invalid base");
|
|
const auto Insertion = BaseToIndex.try_emplace(Base, Order);
|
|
if (Insertion.second)
|
|
++Order;
|
|
return Insertion.first->second;
|
|
}
|
|
|
|
private:
|
|
unsigned Order = 1;
|
|
DenseMap<const Value*, int> BaseToIndex;
|
|
};
|
|
|
|
// If this value is a load from a constant offset w.r.t. a base address, and
|
|
// there are no other users of the load or address, returns the base address and
|
|
// the offset.
|
|
BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
|
|
auto *const LoadI = dyn_cast<LoadInst>(Val);
|
|
if (!LoadI)
|
|
return {};
|
|
LLVM_DEBUG(dbgs() << "load\n");
|
|
if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
|
|
LLVM_DEBUG(dbgs() << "used outside of block\n");
|
|
return {};
|
|
}
|
|
// Do not optimize atomic loads to non-atomic memcmp
|
|
if (!LoadI->isSimple()) {
|
|
LLVM_DEBUG(dbgs() << "volatile or atomic\n");
|
|
return {};
|
|
}
|
|
Value *const Addr = LoadI->getOperand(0);
|
|
auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
|
|
if (!GEP)
|
|
return {};
|
|
LLVM_DEBUG(dbgs() << "GEP\n");
|
|
if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
|
|
LLVM_DEBUG(dbgs() << "used outside of block\n");
|
|
return {};
|
|
}
|
|
const auto &DL = GEP->getModule()->getDataLayout();
|
|
if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
|
|
LLVM_DEBUG(dbgs() << "not dereferenceable\n");
|
|
// We need to make sure that we can do comparison in any order, so we
|
|
// require memory to be unconditionnally dereferencable.
|
|
return {};
|
|
}
|
|
APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
|
|
if (!GEP->accumulateConstantOffset(DL, Offset))
|
|
return {};
|
|
return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
|
|
Offset);
|
|
}
|
|
|
|
// A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
|
|
// example at the top.
|
|
// The block might do extra work besides the atom comparison, in which case
|
|
// doesOtherWork() returns true. Under some conditions, the block can be
|
|
// split into the atom comparison part and the "other work" part
|
|
// (see canSplit()).
|
|
// Note: the terminology is misleading: the comparison is symmetric, so there
|
|
// is no real {l/r}hs. What we want though is to have the same base on the
|
|
// left (resp. right), so that we can detect consecutive loads. To ensure this
|
|
// we put the smallest atom on the left.
|
|
class BCECmpBlock {
|
|
public:
|
|
BCECmpBlock() {}
|
|
|
|
BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
|
|
: Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) {
|
|
if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
|
|
}
|
|
|
|
bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }
|
|
|
|
// Assert the block is consistent: If valid, it should also have
|
|
// non-null members besides Lhs_ and Rhs_.
|
|
void AssertConsistent() const {
|
|
if (IsValid()) {
|
|
assert(BB);
|
|
assert(CmpI);
|
|
assert(BranchI);
|
|
}
|
|
}
|
|
|
|
const BCEAtom &Lhs() const { return Lhs_; }
|
|
const BCEAtom &Rhs() const { return Rhs_; }
|
|
int SizeBits() const { return SizeBits_; }
|
|
|
|
// Returns true if the block does other works besides comparison.
|
|
bool doesOtherWork() const;
|
|
|
|
// Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
|
|
// instructions in the block.
|
|
bool canSplit(AliasAnalysis &AA) const;
|
|
|
|
// Return true if this all the relevant instructions in the BCE-cmp-block can
|
|
// be sunk below this instruction. By doing this, we know we can separate the
|
|
// BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
|
|
// block.
|
|
bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
|
|
AliasAnalysis &AA) const;
|
|
|
|
// We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
|
|
// instructions. Split the old block and move all non-BCE-cmp-insts into the
|
|
// new parent block.
|
|
void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
|
|
|
|
// The basic block where this comparison happens.
|
|
BasicBlock *BB = nullptr;
|
|
// The ICMP for this comparison.
|
|
ICmpInst *CmpI = nullptr;
|
|
// The terminating branch.
|
|
BranchInst *BranchI = nullptr;
|
|
// The block requires splitting.
|
|
bool RequireSplit = false;
|
|
|
|
private:
|
|
BCEAtom Lhs_;
|
|
BCEAtom Rhs_;
|
|
int SizeBits_ = 0;
|
|
};
|
|
|
|
bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
|
|
DenseSet<Instruction *> &BlockInsts,
|
|
AliasAnalysis &AA) const {
|
|
// If this instruction has side effects and its in middle of the BCE cmp block
|
|
// instructions, then bail for now.
|
|
if (Inst->mayHaveSideEffects()) {
|
|
// Bail if this is not a simple load or store
|
|
if (!isSimpleLoadOrStore(Inst))
|
|
return false;
|
|
// Disallow stores that might alias the BCE operands
|
|
MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
|
|
MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
|
|
if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
|
|
isModSet(AA.getModRefInfo(Inst, RLoc)))
|
|
return false;
|
|
}
|
|
// Make sure this instruction does not use any of the BCE cmp block
|
|
// instructions as operand.
|
|
for (auto BI : BlockInsts) {
|
|
if (is_contained(Inst->operands(), BI))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
|
|
DenseSet<Instruction *> BlockInsts(
|
|
{Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
|
|
llvm::SmallVector<Instruction *, 4> OtherInsts;
|
|
for (Instruction &Inst : *BB) {
|
|
if (BlockInsts.count(&Inst))
|
|
continue;
|
|
assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
|
|
"Split unsplittable block");
|
|
// This is a non-BCE-cmp-block instruction. And it can be separated
|
|
// from the BCE-cmp-block instruction.
|
|
OtherInsts.push_back(&Inst);
|
|
}
|
|
|
|
// Do the actual spliting.
|
|
for (Instruction *Inst : reverse(OtherInsts)) {
|
|
Inst->moveBefore(&*NewParent->begin());
|
|
}
|
|
}
|
|
|
|
bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
|
|
DenseSet<Instruction *> BlockInsts(
|
|
{Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
|
|
for (Instruction &Inst : *BB) {
|
|
if (!BlockInsts.count(&Inst)) {
|
|
if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BCECmpBlock::doesOtherWork() const {
|
|
AssertConsistent();
|
|
// All the instructions we care about in the BCE cmp block.
|
|
DenseSet<Instruction *> BlockInsts(
|
|
{Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
|
|
// TODO(courbet): Can we allow some other things ? This is very conservative.
|
|
// We might be able to get away with anything does not have any side
|
|
// effects outside of the basic block.
|
|
// Note: The GEPs and/or loads are not necessarily in the same block.
|
|
for (const Instruction &Inst : *BB) {
|
|
if (!BlockInsts.count(&Inst))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Visit the given comparison. If this is a comparison between two valid
|
|
// BCE atoms, returns the comparison.
|
|
BCECmpBlock visitICmp(const ICmpInst *const CmpI,
|
|
const ICmpInst::Predicate ExpectedPredicate,
|
|
BaseIdentifier &BaseId) {
|
|
// The comparison can only be used once:
|
|
// - For intermediate blocks, as a branch condition.
|
|
// - For the final block, as an incoming value for the Phi.
|
|
// If there are any other uses of the comparison, we cannot merge it with
|
|
// other comparisons as we would create an orphan use of the value.
|
|
if (!CmpI->hasOneUse()) {
|
|
LLVM_DEBUG(dbgs() << "cmp has several uses\n");
|
|
return {};
|
|
}
|
|
if (CmpI->getPredicate() != ExpectedPredicate)
|
|
return {};
|
|
LLVM_DEBUG(dbgs() << "cmp "
|
|
<< (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
|
|
<< "\n");
|
|
auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
|
|
if (!Lhs.BaseId)
|
|
return {};
|
|
auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
|
|
if (!Rhs.BaseId)
|
|
return {};
|
|
const auto &DL = CmpI->getModule()->getDataLayout();
|
|
return BCECmpBlock(std::move(Lhs), std::move(Rhs),
|
|
DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
|
|
}
|
|
|
|
// Visit the given comparison block. If this is a comparison between two valid
|
|
// BCE atoms, returns the comparison.
|
|
BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
|
|
const BasicBlock *const PhiBlock,
|
|
BaseIdentifier &BaseId) {
|
|
if (Block->empty()) return {};
|
|
auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
|
|
if (!BranchI) return {};
|
|
LLVM_DEBUG(dbgs() << "branch\n");
|
|
if (BranchI->isUnconditional()) {
|
|
// In this case, we expect an incoming value which is the result of the
|
|
// comparison. This is the last link in the chain of comparisons (note
|
|
// that this does not mean that this is the last incoming value, blocks
|
|
// can be reordered).
|
|
auto *const CmpI = dyn_cast<ICmpInst>(Val);
|
|
if (!CmpI) return {};
|
|
LLVM_DEBUG(dbgs() << "icmp\n");
|
|
auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
|
|
Result.CmpI = CmpI;
|
|
Result.BranchI = BranchI;
|
|
return Result;
|
|
} else {
|
|
// In this case, we expect a constant incoming value (the comparison is
|
|
// chained).
|
|
const auto *const Const = dyn_cast<ConstantInt>(Val);
|
|
LLVM_DEBUG(dbgs() << "const\n");
|
|
if (!Const->isZero()) return {};
|
|
LLVM_DEBUG(dbgs() << "false\n");
|
|
auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
|
|
if (!CmpI) return {};
|
|
LLVM_DEBUG(dbgs() << "icmp\n");
|
|
assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
|
|
BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
|
|
auto Result = visitICmp(
|
|
CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
|
|
BaseId);
|
|
Result.CmpI = CmpI;
|
|
Result.BranchI = BranchI;
|
|
return Result;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
|
|
BCECmpBlock &&Comparison) {
|
|
LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
|
|
<< "': Found cmp of " << Comparison.SizeBits()
|
|
<< " bits between " << Comparison.Lhs().BaseId << " + "
|
|
<< Comparison.Lhs().Offset << " and "
|
|
<< Comparison.Rhs().BaseId << " + "
|
|
<< Comparison.Rhs().Offset << "\n");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
Comparisons.push_back(std::move(Comparison));
|
|
}
|
|
|
|
// A chain of comparisons.
|
|
class BCECmpChain {
|
|
public:
|
|
BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
|
|
AliasAnalysis &AA);
|
|
|
|
int size() const { return Comparisons_.size(); }
|
|
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
void dump() const;
|
|
#endif // MERGEICMPS_DOT_ON
|
|
|
|
bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
|
|
DomTreeUpdater &DTU);
|
|
|
|
private:
|
|
static bool IsContiguous(const BCECmpBlock &First,
|
|
const BCECmpBlock &Second) {
|
|
return First.Lhs().BaseId == Second.Lhs().BaseId &&
|
|
First.Rhs().BaseId == Second.Rhs().BaseId &&
|
|
First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
|
|
First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
|
|
}
|
|
|
|
PHINode &Phi_;
|
|
std::vector<BCECmpBlock> Comparisons_;
|
|
// The original entry block (before sorting);
|
|
BasicBlock *EntryBlock_;
|
|
};
|
|
|
|
BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
|
|
AliasAnalysis &AA)
|
|
: Phi_(Phi) {
|
|
assert(!Blocks.empty() && "a chain should have at least one block");
|
|
// Now look inside blocks to check for BCE comparisons.
|
|
std::vector<BCECmpBlock> Comparisons;
|
|
BaseIdentifier BaseId;
|
|
for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
|
|
BasicBlock *const Block = Blocks[BlockIdx];
|
|
assert(Block && "invalid block");
|
|
BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
|
|
Block, Phi.getParent(), BaseId);
|
|
Comparison.BB = Block;
|
|
if (!Comparison.IsValid()) {
|
|
LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
|
|
return;
|
|
}
|
|
if (Comparison.doesOtherWork()) {
|
|
LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
|
|
<< "' does extra work besides compare\n");
|
|
if (Comparisons.empty()) {
|
|
// This is the initial block in the chain, in case this block does other
|
|
// work, we can try to split the block and move the irrelevant
|
|
// instructions to the predecessor.
|
|
//
|
|
// If this is not the initial block in the chain, splitting it wont
|
|
// work.
|
|
//
|
|
// As once split, there will still be instructions before the BCE cmp
|
|
// instructions that do other work in program order, i.e. within the
|
|
// chain before sorting. Unless we can abort the chain at this point
|
|
// and start anew.
|
|
//
|
|
// NOTE: we only handle blocks a with single predecessor for now.
|
|
if (Comparison.canSplit(AA)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Split initial block '" << Comparison.BB->getName()
|
|
<< "' that does extra work besides compare\n");
|
|
Comparison.RequireSplit = true;
|
|
enqueueBlock(Comparisons, std::move(Comparison));
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "ignoring initial block '" << Comparison.BB->getName()
|
|
<< "' that does extra work besides compare\n");
|
|
}
|
|
continue;
|
|
}
|
|
// TODO(courbet): Right now we abort the whole chain. We could be
|
|
// merging only the blocks that don't do other work and resume the
|
|
// chain from there. For example:
|
|
// if (a[0] == b[0]) { // bb1
|
|
// if (a[1] == b[1]) { // bb2
|
|
// some_value = 3; //bb3
|
|
// if (a[2] == b[2]) { //bb3
|
|
// do a ton of stuff //bb4
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// This is:
|
|
//
|
|
// bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
|
|
// \ \ \ \
|
|
// ne ne ne \
|
|
// \ \ \ v
|
|
// +------------+-----------+----------> bb_phi
|
|
//
|
|
// We can only merge the first two comparisons, because bb3* does
|
|
// "other work" (setting some_value to 3).
|
|
// We could still merge bb1 and bb2 though.
|
|
return;
|
|
}
|
|
enqueueBlock(Comparisons, std::move(Comparison));
|
|
}
|
|
|
|
// It is possible we have no suitable comparison to merge.
|
|
if (Comparisons.empty()) {
|
|
LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
|
|
return;
|
|
}
|
|
EntryBlock_ = Comparisons[0].BB;
|
|
Comparisons_ = std::move(Comparisons);
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
errs() << "BEFORE REORDERING:\n\n";
|
|
dump();
|
|
#endif // MERGEICMPS_DOT_ON
|
|
// Reorder blocks by LHS. We can do that without changing the
|
|
// semantics because we are only accessing dereferencable memory.
|
|
llvm::sort(Comparisons_,
|
|
[](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
|
|
return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
|
|
std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
|
|
});
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
errs() << "AFTER REORDERING:\n\n";
|
|
dump();
|
|
#endif // MERGEICMPS_DOT_ON
|
|
}
|
|
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
void BCECmpChain::dump() const {
|
|
errs() << "digraph dag {\n";
|
|
errs() << " graph [bgcolor=transparent];\n";
|
|
errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
|
|
errs() << " edge [color=black];\n";
|
|
for (size_t I = 0; I < Comparisons_.size(); ++I) {
|
|
const auto &Comparison = Comparisons_[I];
|
|
errs() << " \"" << I << "\" [label=\"%"
|
|
<< Comparison.Lhs().Base()->getName() << " + "
|
|
<< Comparison.Lhs().Offset << " == %"
|
|
<< Comparison.Rhs().Base()->getName() << " + "
|
|
<< Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
|
|
<< " bytes)\"];\n";
|
|
const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
|
|
if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
|
|
errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
|
|
}
|
|
errs() << " \"Phi\" [label=\"Phi\"];\n";
|
|
errs() << "}\n\n";
|
|
}
|
|
#endif // MERGEICMPS_DOT_ON
|
|
|
|
namespace {
|
|
|
|
// A class to compute the name of a set of merged basic blocks.
|
|
// This is optimized for the common case of no block names.
|
|
class MergedBlockName {
|
|
// Storage for the uncommon case of several named blocks.
|
|
SmallString<16> Scratch;
|
|
|
|
public:
|
|
explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
|
|
: Name(makeName(Comparisons)) {}
|
|
const StringRef Name;
|
|
|
|
private:
|
|
StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
|
|
assert(!Comparisons.empty() && "no basic block");
|
|
// Fast path: only one block, or no names at all.
|
|
if (Comparisons.size() == 1)
|
|
return Comparisons[0].BB->getName();
|
|
const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
|
|
[](int i, const BCECmpBlock &Cmp) {
|
|
return i + Cmp.BB->getName().size();
|
|
});
|
|
if (size == 0)
|
|
return StringRef("", 0);
|
|
|
|
// Slow path: at least two blocks, at least one block with a name.
|
|
Scratch.clear();
|
|
// We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
|
|
// separators.
|
|
Scratch.reserve(size + Comparisons.size() - 1);
|
|
const auto append = [this](StringRef str) {
|
|
Scratch.append(str.begin(), str.end());
|
|
};
|
|
append(Comparisons[0].BB->getName());
|
|
for (int I = 1, E = Comparisons.size(); I < E; ++I) {
|
|
const BasicBlock *const BB = Comparisons[I].BB;
|
|
if (!BB->getName().empty()) {
|
|
append("+");
|
|
append(BB->getName());
|
|
}
|
|
}
|
|
return StringRef(Scratch);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Merges the given contiguous comparison blocks into one memcmp block.
|
|
static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
|
|
BasicBlock *const InsertBefore,
|
|
BasicBlock *const NextCmpBlock,
|
|
PHINode &Phi, const TargetLibraryInfo &TLI,
|
|
AliasAnalysis &AA, DomTreeUpdater &DTU) {
|
|
assert(!Comparisons.empty() && "merging zero comparisons");
|
|
LLVMContext &Context = NextCmpBlock->getContext();
|
|
const BCECmpBlock &FirstCmp = Comparisons[0];
|
|
|
|
// Create a new cmp block before next cmp block.
|
|
BasicBlock *const BB =
|
|
BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
|
|
NextCmpBlock->getParent(), InsertBefore);
|
|
IRBuilder<> Builder(BB);
|
|
// Add the GEPs from the first BCECmpBlock.
|
|
Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
|
|
Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
|
|
|
|
Value *IsEqual = nullptr;
|
|
LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
|
|
<< BB->getName() << "\n");
|
|
if (Comparisons.size() == 1) {
|
|
LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
|
|
Value *const LhsLoad =
|
|
Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
|
|
Value *const RhsLoad =
|
|
Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
|
|
// There are no blocks to merge, just do the comparison.
|
|
IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
|
|
} else {
|
|
// If there is one block that requires splitting, we do it now, i.e.
|
|
// just before we know we will collapse the chain. The instructions
|
|
// can be executed before any of the instructions in the chain.
|
|
const auto ToSplit =
|
|
std::find_if(Comparisons.begin(), Comparisons.end(),
|
|
[](const BCECmpBlock &B) { return B.RequireSplit; });
|
|
if (ToSplit != Comparisons.end()) {
|
|
LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
|
|
ToSplit->split(BB, AA);
|
|
}
|
|
|
|
const unsigned TotalSizeBits = std::accumulate(
|
|
Comparisons.begin(), Comparisons.end(), 0u,
|
|
[](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
|
|
|
|
// Create memcmp() == 0.
|
|
const auto &DL = Phi.getModule()->getDataLayout();
|
|
Value *const MemCmpCall = emitMemCmp(
|
|
Lhs, Rhs,
|
|
ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
|
|
DL, &TLI);
|
|
IsEqual = Builder.CreateICmpEQ(
|
|
MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
|
|
}
|
|
|
|
BasicBlock *const PhiBB = Phi.getParent();
|
|
// Add a branch to the next basic block in the chain.
|
|
if (NextCmpBlock == PhiBB) {
|
|
// Continue to phi, passing it the comparison result.
|
|
Builder.CreateBr(PhiBB);
|
|
Phi.addIncoming(IsEqual, BB);
|
|
DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
|
|
} else {
|
|
// Continue to next block if equal, exit to phi else.
|
|
Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
|
|
Phi.addIncoming(ConstantInt::getFalse(Context), BB);
|
|
DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
|
|
{DominatorTree::Insert, BB, PhiBB}});
|
|
}
|
|
return BB;
|
|
}
|
|
|
|
bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
|
|
DomTreeUpdater &DTU) {
|
|
assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
|
|
// First pass to check if there is at least one merge. If not, we don't do
|
|
// anything and we keep analysis passes intact.
|
|
const auto AtLeastOneMerged = [this]() {
|
|
for (size_t I = 1; I < Comparisons_.size(); ++I) {
|
|
if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
if (!AtLeastOneMerged())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
|
|
<< EntryBlock_->getName() << "\n");
|
|
|
|
// Effectively merge blocks. We go in the reverse direction from the phi block
|
|
// so that the next block is always available to branch to.
|
|
const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
|
|
BasicBlock *InsertBefore,
|
|
BasicBlock *Next) {
|
|
return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
|
|
InsertBefore, Next, Phi_, TLI, AA, DTU);
|
|
};
|
|
int NumMerged = 1;
|
|
BasicBlock *NextCmpBlock = Phi_.getParent();
|
|
for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
|
|
if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
|
|
LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
|
|
<< " into " << Comparisons_[I + 1].BB->getName()
|
|
<< "\n");
|
|
++NumMerged;
|
|
} else {
|
|
NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
|
|
NumMerged = 1;
|
|
}
|
|
}
|
|
// Insert the entry block for the new chain before the old entry block.
|
|
// If the old entry block was the function entry, this ensures that the new
|
|
// entry can become the function entry.
|
|
NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
|
|
|
|
// Replace the original cmp chain with the new cmp chain by pointing all
|
|
// predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
|
|
// blocks in the old chain unreachable.
|
|
while (!pred_empty(EntryBlock_)) {
|
|
BasicBlock* const Pred = *pred_begin(EntryBlock_);
|
|
LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
|
|
<< "\n");
|
|
Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
|
|
DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
|
|
{DominatorTree::Insert, Pred, NextCmpBlock}});
|
|
}
|
|
|
|
// If the old cmp chain was the function entry, we need to update the function
|
|
// entry.
|
|
const bool ChainEntryIsFnEntry =
|
|
(EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock());
|
|
if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
|
|
LLVM_DEBUG(dbgs() << "Changing function entry from "
|
|
<< EntryBlock_->getName() << " to "
|
|
<< NextCmpBlock->getName() << "\n");
|
|
DTU.getDomTree().setNewRoot(NextCmpBlock);
|
|
DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
|
|
}
|
|
EntryBlock_ = nullptr;
|
|
|
|
// Delete merged blocks. This also removes incoming values in phi.
|
|
SmallVector<BasicBlock *, 16> DeadBlocks;
|
|
for (auto &Cmp : Comparisons_) {
|
|
LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
|
|
DeadBlocks.push_back(Cmp.BB);
|
|
}
|
|
DeleteDeadBlocks(DeadBlocks, &DTU);
|
|
|
|
Comparisons_.clear();
|
|
return true;
|
|
}
|
|
|
|
std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
|
|
BasicBlock *const LastBlock,
|
|
int NumBlocks) {
|
|
// Walk up from the last block to find other blocks.
|
|
std::vector<BasicBlock *> Blocks(NumBlocks);
|
|
assert(LastBlock && "invalid last block");
|
|
BasicBlock *CurBlock = LastBlock;
|
|
for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
|
|
if (CurBlock->hasAddressTaken()) {
|
|
// Somebody is jumping to the block through an address, all bets are
|
|
// off.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " has its address taken\n");
|
|
return {};
|
|
}
|
|
Blocks[BlockIndex] = CurBlock;
|
|
auto *SinglePredecessor = CurBlock->getSinglePredecessor();
|
|
if (!SinglePredecessor) {
|
|
// The block has two or more predecessors.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " has two or more predecessors\n");
|
|
return {};
|
|
}
|
|
if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
|
|
// The block does not link back to the phi.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " does not link back to the phi\n");
|
|
return {};
|
|
}
|
|
CurBlock = SinglePredecessor;
|
|
}
|
|
Blocks[0] = CurBlock;
|
|
return Blocks;
|
|
}
|
|
|
|
bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
|
|
DomTreeUpdater &DTU) {
|
|
LLVM_DEBUG(dbgs() << "processPhi()\n");
|
|
if (Phi.getNumIncomingValues() <= 1) {
|
|
LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
|
|
return false;
|
|
}
|
|
// We are looking for something that has the following structure:
|
|
// bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
|
|
// \ \ \ \
|
|
// ne ne ne \
|
|
// \ \ \ v
|
|
// +------------+-----------+----------> bb_phi
|
|
//
|
|
// - The last basic block (bb4 here) must branch unconditionally to bb_phi.
|
|
// It's the only block that contributes a non-constant value to the Phi.
|
|
// - All other blocks (b1, b2, b3) must have exactly two successors, one of
|
|
// them being the phi block.
|
|
// - All intermediate blocks (bb2, bb3) must have only one predecessor.
|
|
// - Blocks cannot do other work besides the comparison, see doesOtherWork()
|
|
|
|
// The blocks are not necessarily ordered in the phi, so we start from the
|
|
// last block and reconstruct the order.
|
|
BasicBlock *LastBlock = nullptr;
|
|
for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
|
|
if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
|
|
if (LastBlock) {
|
|
// There are several non-constant values.
|
|
LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
|
|
return false;
|
|
}
|
|
if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
|
|
cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
|
|
Phi.getIncomingBlock(I)) {
|
|
// Non-constant incoming value is not from a cmp instruction or not
|
|
// produced by the last block. We could end up processing the value
|
|
// producing block more than once.
|
|
//
|
|
// This is an uncommon case, so we bail.
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "skip: non-constant value not from cmp or not from last block.\n");
|
|
return false;
|
|
}
|
|
LastBlock = Phi.getIncomingBlock(I);
|
|
}
|
|
if (!LastBlock) {
|
|
// There is no non-constant block.
|
|
LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
|
|
return false;
|
|
}
|
|
if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
|
|
LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
|
|
return false;
|
|
}
|
|
|
|
const auto Blocks =
|
|
getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
|
|
if (Blocks.empty()) return false;
|
|
BCECmpChain CmpChain(Blocks, Phi, AA);
|
|
|
|
if (CmpChain.size() < 2) {
|
|
LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
|
|
return false;
|
|
}
|
|
|
|
return CmpChain.simplify(TLI, AA, DTU);
|
|
}
|
|
|
|
static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
|
|
const TargetTransformInfo &TTI, AliasAnalysis &AA,
|
|
DominatorTree *DT) {
|
|
LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
|
|
|
|
// We only try merging comparisons if the target wants to expand memcmp later.
|
|
// The rationale is to avoid turning small chains into memcmp calls.
|
|
if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
|
|
return false;
|
|
|
|
// If we don't have memcmp avaiable we can't emit calls to it.
|
|
if (!TLI.has(LibFunc_memcmp))
|
|
return false;
|
|
|
|
DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
|
|
DomTreeUpdater::UpdateStrategy::Eager);
|
|
|
|
bool MadeChange = false;
|
|
|
|
for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
|
|
// A Phi operation is always first in a basic block.
|
|
if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
|
|
MadeChange |= processPhi(*Phi, TLI, AA, DTU);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
class MergeICmpsLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
MergeICmpsLegacyPass() : FunctionPass(ID) {
|
|
initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F)) return false;
|
|
const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
// MergeICmps does not need the DominatorTree, but we update it if it's
|
|
// already available.
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char MergeICmpsLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
|
|
"Merge contiguous icmps into a memcmp", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
|
|
"Merge contiguous icmps into a memcmp", false, false)
|
|
|
|
Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
|
|
|
|
PreservedAnalyses MergeICmpsPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto &AA = AM.getResult<AAManager>(F);
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
|
|
if (!MadeChanges)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|