llvm-project/llvm/test/Transforms/LoopVectorize/X86/vect.omp.force.ll

94 lines
3.1 KiB
LLVM

; RUN: opt < %s -loop-vectorize -mtriple=x86_64-apple-macosx10.8.0 -mcpu=corei7-avx -debug-only=loop-vectorize -stats -S 2>&1 | FileCheck %s
; REQUIRES: asserts
; CHECK: LV: Loop hints: force=enabled
; CHECK: LV: Loop hints: force=?
; No more loops in the module
; CHECK-NOT: LV: Loop hints: force=
; CHECK: 2 loop-vectorize - Number of loops analyzed for vectorization
; CHECK: 1 loop-vectorize - Number of loops vectorized
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.8.0"
;
; The source code for the test:
;
; #include <math.h>
; void foo(float* restrict A, float * restrict B, int size)
; {
; for (int i = 0; i < size; ++i) A[i] = sinf(B[i]);
; }
;
;
; This loop will be vectorized, although the scalar cost is lower than any of vector costs, but vectorization is explicitly forced in metadata.
;
define void @vectorized(float* noalias nocapture %A, float* noalias nocapture %B, i32 %size) {
entry:
%cmp6 = icmp sgt i32 %size, 0
br i1 %cmp6, label %for.body.preheader, label %for.end
for.body.preheader:
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds float* %B, i64 %indvars.iv
%0 = load float* %arrayidx, align 4, !llvm.mem.parallel_loop_access !1
%call = tail call float @llvm.sin.f32(float %0)
%arrayidx2 = getelementptr inbounds float* %A, i64 %indvars.iv
store float %call, float* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !1
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %size
br i1 %exitcond, label %for.end.loopexit, label %for.body, !llvm.loop !1
for.end.loopexit:
br label %for.end
for.end:
ret void
}
!1 = !{!1, !2}
!2 = !{!"llvm.loop.vectorize.enable", i1 true}
;
; This method will not be vectorized, as scalar cost is lower than any of vector costs.
;
define void @not_vectorized(float* noalias nocapture %A, float* noalias nocapture %B, i32 %size) {
entry:
%cmp6 = icmp sgt i32 %size, 0
br i1 %cmp6, label %for.body.preheader, label %for.end
for.body.preheader:
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds float* %B, i64 %indvars.iv
%0 = load float* %arrayidx, align 4, !llvm.mem.parallel_loop_access !3
%call = tail call float @llvm.sin.f32(float %0)
%arrayidx2 = getelementptr inbounds float* %A, i64 %indvars.iv
store float %call, float* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !3
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %size
br i1 %exitcond, label %for.end.loopexit, label %for.body, !llvm.loop !3
for.end.loopexit:
br label %for.end
for.end:
ret void
}
declare float @llvm.sin.f32(float) nounwind readnone
; Dummy metadata
!3 = !{!3}