forked from OSchip/llvm-project
286 lines
11 KiB
C++
286 lines
11 KiB
C++
//===--------- X86InterleavedAccess.cpp ----------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===--------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file contains the X86 implementation of the interleaved accesses
|
|
/// optimization generating X86-specific instructions/intrinsics for
|
|
/// interleaved access groups.
|
|
///
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
#include "X86ISelLowering.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// \brief This class holds necessary information to represent an interleaved
|
|
/// access group and supports utilities to lower the group into
|
|
/// X86-specific instructions/intrinsics.
|
|
/// E.g. A group of interleaving access loads (Factor = 2; accessing every
|
|
/// other element)
|
|
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
|
|
/// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
|
|
/// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
|
|
class X86InterleavedAccessGroup {
|
|
/// \brief Reference to the wide-load instruction of an interleaved access
|
|
/// group.
|
|
Instruction *const Inst;
|
|
|
|
/// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
|
|
ArrayRef<ShuffleVectorInst *> Shuffles;
|
|
|
|
/// \brief Reference to the starting index of each user-shuffle.
|
|
ArrayRef<unsigned> Indices;
|
|
|
|
/// \brief Reference to the interleaving stride in terms of elements.
|
|
const unsigned Factor;
|
|
|
|
/// \brief Reference to the underlying target.
|
|
const X86Subtarget &Subtarget;
|
|
|
|
const DataLayout &DL;
|
|
|
|
IRBuilder<> &Builder;
|
|
|
|
/// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
|
|
/// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
|
|
void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
|
|
SmallVectorImpl<Instruction *> &DecomposedVectors);
|
|
|
|
/// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and
|
|
/// returns the transposed-vectors in \p TransposedVectors.
|
|
/// E.g.
|
|
/// InputVectors:
|
|
/// In-V0 = p1, p2, p3, p4
|
|
/// In-V1 = q1, q2, q3, q4
|
|
/// In-V2 = r1, r2, r3, r4
|
|
/// In-V3 = s1, s2, s3, s4
|
|
/// OutputVectors:
|
|
/// Out-V0 = p1, q1, r1, s1
|
|
/// Out-V1 = p2, q2, r2, s2
|
|
/// Out-V2 = p3, q3, r3, s3
|
|
/// Out-V3 = P4, q4, r4, s4
|
|
void transpose_4x4(ArrayRef<Instruction *> InputVectors,
|
|
SmallVectorImpl<Value *> &TrasposedVectors);
|
|
|
|
public:
|
|
/// In order to form an interleaved access group X86InterleavedAccessGroup
|
|
/// requires a wide-load instruction \p 'I', a group of interleaved-vectors
|
|
/// \p Shuffs, reference to the first indices of each interleaved-vector
|
|
/// \p 'Ind' and the interleaving stride factor \p F. In order to generate
|
|
/// X86-specific instructions/intrinsics it also requires the underlying
|
|
/// target information \p STarget.
|
|
explicit X86InterleavedAccessGroup(Instruction *I,
|
|
ArrayRef<ShuffleVectorInst *> Shuffs,
|
|
ArrayRef<unsigned> Ind, const unsigned F,
|
|
const X86Subtarget &STarget,
|
|
IRBuilder<> &B)
|
|
: Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
|
|
DL(Inst->getModule()->getDataLayout()), Builder(B) {}
|
|
|
|
/// \brief Returns true if this interleaved access group can be lowered into
|
|
/// x86-specific instructions/intrinsics, false otherwise.
|
|
bool isSupported() const;
|
|
|
|
/// \brief Lowers this interleaved access group into X86-specific
|
|
/// instructions/intrinsics.
|
|
bool lowerIntoOptimizedSequence();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool X86InterleavedAccessGroup::isSupported() const {
|
|
VectorType *ShuffleVecTy = Shuffles[0]->getType();
|
|
uint64_t ShuffleVecSize = DL.getTypeSizeInBits(ShuffleVecTy);
|
|
Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
|
|
|
|
// Currently, lowering is supported for 4-element vectors of 64 bits on AVX.
|
|
uint64_t ExpectedShuffleVecSize;
|
|
if (isa<LoadInst>(Inst))
|
|
ExpectedShuffleVecSize = 256;
|
|
else
|
|
ExpectedShuffleVecSize = 1024;
|
|
|
|
if (!Subtarget.hasAVX() || ShuffleVecSize != ExpectedShuffleVecSize ||
|
|
DL.getTypeSizeInBits(ShuffleEltTy) != 64 || Factor != 4)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void X86InterleavedAccessGroup::decompose(
|
|
Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
|
|
SmallVectorImpl<Instruction *> &DecomposedVectors) {
|
|
|
|
assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
|
|
"Expected Load or Shuffle");
|
|
|
|
Type *VecTy = VecInst->getType();
|
|
(void)VecTy;
|
|
assert(VecTy->isVectorTy() &&
|
|
DL.getTypeSizeInBits(VecTy) >=
|
|
DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
|
|
"Invalid Inst-size!!!");
|
|
|
|
if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
|
|
Value *Op0 = SVI->getOperand(0);
|
|
Value *Op1 = SVI->getOperand(1);
|
|
|
|
// Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
|
|
for (unsigned i = 0; i < NumSubVectors; ++i)
|
|
DecomposedVectors.push_back(
|
|
cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
|
|
Op0, Op1, createSequentialMask(Builder, Indices[i],
|
|
SubVecTy->getVectorNumElements(), 0))));
|
|
return;
|
|
}
|
|
|
|
// Decompose the load instruction.
|
|
LoadInst *LI = cast<LoadInst>(VecInst);
|
|
Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
|
|
Value *VecBasePtr =
|
|
Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
|
|
|
|
// Generate N loads of T type.
|
|
for (unsigned i = 0; i < NumSubVectors; i++) {
|
|
// TODO: Support inbounds GEP.
|
|
Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
|
|
Instruction *NewLoad =
|
|
Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
|
|
DecomposedVectors.push_back(NewLoad);
|
|
}
|
|
}
|
|
|
|
void X86InterleavedAccessGroup::transpose_4x4(
|
|
ArrayRef<Instruction *> Matrix,
|
|
SmallVectorImpl<Value *> &TransposedMatrix) {
|
|
assert(Matrix.size() == 4 && "Invalid matrix size");
|
|
TransposedMatrix.resize(4);
|
|
|
|
// dst = src1[0,1],src2[0,1]
|
|
uint32_t IntMask1[] = {0, 1, 4, 5};
|
|
ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
|
|
Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
|
|
Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
|
|
|
|
// dst = src1[2,3],src2[2,3]
|
|
uint32_t IntMask2[] = {2, 3, 6, 7};
|
|
Mask = makeArrayRef(IntMask2, 4);
|
|
Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
|
|
Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
|
|
|
|
// dst = src1[0],src2[0],src1[2],src2[2]
|
|
uint32_t IntMask3[] = {0, 4, 2, 6};
|
|
Mask = makeArrayRef(IntMask3, 4);
|
|
TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
|
|
TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
|
|
|
|
// dst = src1[1],src2[1],src1[3],src2[3]
|
|
uint32_t IntMask4[] = {1, 5, 3, 7};
|
|
Mask = makeArrayRef(IntMask4, 4);
|
|
TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
|
|
TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
|
|
}
|
|
|
|
// Lowers this interleaved access group into X86-specific
|
|
// instructions/intrinsics.
|
|
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
|
|
SmallVector<Instruction *, 4> DecomposedVectors;
|
|
SmallVector<Value *, 4> TransposedVectors;
|
|
VectorType *ShuffleTy = Shuffles[0]->getType();
|
|
|
|
if (isa<LoadInst>(Inst)) {
|
|
// Try to generate target-sized register(/instruction).
|
|
decompose(Inst, Factor, ShuffleTy, DecomposedVectors);
|
|
|
|
// Perform matrix-transposition in order to compute interleaved
|
|
// results by generating some sort of (optimized) target-specific
|
|
// instructions.
|
|
transpose_4x4(DecomposedVectors, TransposedVectors);
|
|
|
|
// Now replace the unoptimized-interleaved-vectors with the
|
|
// transposed-interleaved vectors.
|
|
for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
|
|
Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);
|
|
|
|
return true;
|
|
}
|
|
|
|
Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
|
|
unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;
|
|
|
|
// Lower the interleaved stores:
|
|
// 1. Decompose the interleaved wide shuffle into individual shuffle
|
|
// vectors.
|
|
decompose(Shuffles[0], Factor,
|
|
VectorType::get(ShuffleEltTy, NumSubVecElems), DecomposedVectors);
|
|
|
|
// 2. Transpose the interleaved-vectors into vectors of contiguous
|
|
// elements.
|
|
transpose_4x4(DecomposedVectors, TransposedVectors);
|
|
|
|
// 3. Concatenate the contiguous-vectors back into a wide vector.
|
|
Value *WideVec = concatenateVectors(Builder, TransposedVectors);
|
|
|
|
// 4. Generate a store instruction for wide-vec.
|
|
StoreInst *SI = cast<StoreInst>(Inst);
|
|
Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
|
|
SI->getAlignment());
|
|
|
|
return true;
|
|
}
|
|
|
|
// Lower interleaved load(s) into target specific instructions/
|
|
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
|
|
// number of shuffles and ISA.
|
|
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
|
|
bool X86TargetLowering::lowerInterleavedLoad(
|
|
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
|
|
ArrayRef<unsigned> Indices, unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
assert(!Shuffles.empty() && "Empty shufflevector input");
|
|
assert(Shuffles.size() == Indices.size() &&
|
|
"Unmatched number of shufflevectors and indices");
|
|
|
|
// Create an interleaved access group.
|
|
IRBuilder<> Builder(LI);
|
|
X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
|
|
Builder);
|
|
|
|
return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
|
|
}
|
|
|
|
bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
|
|
ShuffleVectorInst *SVI,
|
|
unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
|
|
assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
|
|
"Invalid interleaved store");
|
|
|
|
// Holds the indices of SVI that correspond to the starting index of each
|
|
// interleaved shuffle.
|
|
SmallVector<unsigned, 4> Indices;
|
|
auto Mask = SVI->getShuffleMask();
|
|
for (unsigned i = 0; i < Factor; i++)
|
|
Indices.push_back(Mask[i]);
|
|
|
|
ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);
|
|
|
|
// Create an interleaved access group.
|
|
IRBuilder<> Builder(SI);
|
|
X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
|
|
Builder);
|
|
|
|
return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
|
|
}
|