forked from OSchip/llvm-project
242 lines
9.6 KiB
C++
242 lines
9.6 KiB
C++
//===-- sanitizer_coverage_fuchsia.cc -------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version.
|
|
//
|
|
// This Fuchsia-specific implementation uses the same basic scheme and the
|
|
// same simple '.sancov' file format as the generic implementation. The
|
|
// difference is that we just produce a single blob of output for the whole
|
|
// program, not a separate one per DSO. We do not sort the PC table and do
|
|
// not prune the zeros, so the resulting file is always as large as it
|
|
// would be to report 100% coverage. Implicit tracing information about
|
|
// the address ranges of DSOs allows offline tools to split the one big
|
|
// blob into separate files that the 'sancov' tool can understand.
|
|
//
|
|
// Unlike the traditional implementation that uses an atexit hook to write
|
|
// out data files at the end, the results on Fuchsia do not go into a file
|
|
// per se. The 'coverage_dir' option is ignored. Instead, they are stored
|
|
// directly into a shared memory object (a Zircon VMO). At exit, that VMO
|
|
// is handed over to a system service that's responsible for getting the
|
|
// data out to somewhere that it can be fed into the sancov tool (where and
|
|
// how is not our problem).
|
|
|
|
#include "sanitizer_platform.h"
|
|
#if SANITIZER_FUCHSIA
|
|
#include "sanitizer_atomic.h"
|
|
#include "sanitizer_common.h"
|
|
#include "sanitizer_internal_defs.h"
|
|
#include "sanitizer_symbolizer_fuchsia.h"
|
|
|
|
#include <zircon/process.h>
|
|
#include <zircon/sanitizer.h>
|
|
#include <zircon/syscalls.h>
|
|
|
|
using namespace __sanitizer; // NOLINT
|
|
|
|
namespace __sancov {
|
|
namespace {
|
|
|
|
// TODO(mcgrathr): Move the constant into a header shared with other impls.
|
|
constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL;
|
|
static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64");
|
|
|
|
constexpr const char kSancovSinkName[] = "sancov";
|
|
|
|
// Collects trace-pc guard coverage.
|
|
// This class relies on zero-initialization.
|
|
class TracePcGuardController final {
|
|
public:
|
|
// For each PC location being tracked, there is a u32 reserved in global
|
|
// data called the "guard". At startup, we assign each guard slot a
|
|
// unique index into the big results array. Later during runtime, the
|
|
// first call to TracePcGuard (below) will store the corresponding PC at
|
|
// that index in the array. (Each later call with the same guard slot is
|
|
// presumed to be from the same PC.) Then it clears the guard slot back
|
|
// to zero, which tells the compiler not to bother calling in again. At
|
|
// the end of the run, we have a big array where each element is either
|
|
// zero or is a tracked PC location that was hit in the trace.
|
|
|
|
// This is called from global constructors. Each translation unit has a
|
|
// contiguous array of guard slots, and a constructor that calls here
|
|
// with the bounds of its array. Those constructors are allowed to call
|
|
// here more than once for the same array. Usually all of these
|
|
// constructors run in the initial thread, but it's possible that a
|
|
// dlopen call on a secondary thread will run constructors that get here.
|
|
void InitTracePcGuard(u32 *start, u32 *end) {
|
|
if (end > start && *start == 0 && common_flags()->coverage) {
|
|
// Complete the setup before filling in any guards with indices.
|
|
// This avoids the possibility of code called from Setup reentering
|
|
// TracePcGuard.
|
|
u32 idx = Setup(end - start);
|
|
for (u32 *p = start; p < end; ++p) {
|
|
*p = idx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TracePcGuard(u32 *guard, uptr pc) {
|
|
atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard);
|
|
u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed);
|
|
if (idx > 0) array_[idx] = pc;
|
|
}
|
|
|
|
void Dump() {
|
|
BlockingMutexLock locked(&setup_lock_);
|
|
if (array_) {
|
|
CHECK_NE(vmo_, ZX_HANDLE_INVALID);
|
|
|
|
// Publish the VMO to the system, where it can be collected and
|
|
// analyzed after this process exits. This always consumes the VMO
|
|
// handle. Any failure is just logged and not indicated to us.
|
|
__sanitizer_publish_data(kSancovSinkName, vmo_);
|
|
vmo_ = ZX_HANDLE_INVALID;
|
|
|
|
// This will route to __sanitizer_log_write, which will ensure that
|
|
// information about shared libraries is written out. This message
|
|
// uses the `dumpfile` symbolizer markup element to highlight the
|
|
// dump. See the explanation for this in:
|
|
// https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md
|
|
Printf("SanitizerCoverage: " FORMAT_DUMPFILE " with up to %u PCs\n",
|
|
kSancovSinkName, vmo_name_, next_index_ - 1);
|
|
}
|
|
}
|
|
|
|
private:
|
|
// We map in the largest possible view into the VMO: one word
|
|
// for every possible 32-bit index value. This avoids the need
|
|
// to change the mapping when increasing the size of the VMO.
|
|
// We can always spare the 32G of address space.
|
|
static constexpr size_t MappingSize = sizeof(uptr) << 32;
|
|
|
|
BlockingMutex setup_lock_ = BlockingMutex(LINKER_INITIALIZED);
|
|
uptr *array_ = nullptr;
|
|
u32 next_index_ = 0;
|
|
zx_handle_t vmo_ = {};
|
|
char vmo_name_[ZX_MAX_NAME_LEN] = {};
|
|
|
|
size_t DataSize() const { return next_index_ * sizeof(uintptr_t); }
|
|
|
|
u32 Setup(u32 num_guards) {
|
|
BlockingMutexLock locked(&setup_lock_);
|
|
DCHECK(common_flags()->coverage);
|
|
|
|
if (next_index_ == 0) {
|
|
CHECK_EQ(vmo_, ZX_HANDLE_INVALID);
|
|
CHECK_EQ(array_, nullptr);
|
|
|
|
// The first sample goes at [1] to reserve [0] for the magic number.
|
|
next_index_ = 1 + num_guards;
|
|
|
|
zx_status_t status = _zx_vmo_create(DataSize(), 0, &vmo_);
|
|
CHECK_EQ(status, ZX_OK);
|
|
|
|
// Give the VMO a name including our process KOID so it's easy to spot.
|
|
internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName,
|
|
internal_getpid());
|
|
_zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_,
|
|
internal_strlen(vmo_name_));
|
|
|
|
// Map the largest possible view we might need into the VMO. Later
|
|
// we might need to increase the VMO's size before we can use larger
|
|
// indices, but we'll never move the mapping address so we don't have
|
|
// any multi-thread synchronization issues with that.
|
|
uintptr_t mapping;
|
|
status =
|
|
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
|
|
0, vmo_, 0, MappingSize, &mapping);
|
|
CHECK_EQ(status, ZX_OK);
|
|
|
|
// Hereafter other threads are free to start storing into
|
|
// elements [1, next_index_) of the big array.
|
|
array_ = reinterpret_cast<uptr *>(mapping);
|
|
|
|
// Store the magic number.
|
|
// Hereafter, the VMO serves as the contents of the '.sancov' file.
|
|
array_[0] = Magic64;
|
|
|
|
return 1;
|
|
} else {
|
|
// The VMO is already mapped in, but it's not big enough to use the
|
|
// new indices. So increase the size to cover the new maximum index.
|
|
|
|
CHECK_NE(vmo_, ZX_HANDLE_INVALID);
|
|
CHECK_NE(array_, nullptr);
|
|
|
|
uint32_t first_index = next_index_;
|
|
next_index_ += num_guards;
|
|
|
|
zx_status_t status = _zx_vmo_set_size(vmo_, DataSize());
|
|
CHECK_EQ(status, ZX_OK);
|
|
|
|
return first_index;
|
|
}
|
|
}
|
|
};
|
|
|
|
static TracePcGuardController pc_guard_controller;
|
|
|
|
} // namespace
|
|
} // namespace __sancov
|
|
|
|
namespace __sanitizer {
|
|
void InitializeCoverage(bool enabled, const char *dir) {
|
|
CHECK_EQ(enabled, common_flags()->coverage);
|
|
CHECK_EQ(dir, common_flags()->coverage_dir);
|
|
|
|
static bool coverage_enabled = false;
|
|
if (!coverage_enabled) {
|
|
coverage_enabled = enabled;
|
|
Atexit(__sanitizer_cov_dump);
|
|
AddDieCallback(__sanitizer_cov_dump);
|
|
}
|
|
}
|
|
} // namespace __sanitizer
|
|
|
|
extern "C" {
|
|
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage( // NOLINT
|
|
const uptr *pcs, uptr len) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) {
|
|
if (!*guard) return;
|
|
__sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1);
|
|
}
|
|
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init,
|
|
u32 *start, u32 *end) {
|
|
if (start == end || *start) return;
|
|
__sancov::pc_guard_controller.InitTracePcGuard(start, end);
|
|
}
|
|
|
|
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() {
|
|
__sancov::pc_guard_controller.Dump();
|
|
}
|
|
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
|
|
__sanitizer_dump_trace_pc_guard_coverage();
|
|
}
|
|
// Default empty implementations (weak). Users should redefine them.
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {}
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {}
|
|
} // extern "C"
|
|
|
|
#endif // !SANITIZER_FUCHSIA
|