llvm-project/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp

242 lines
8.2 KiB
C++

//===-- llvm/CodeGen/GlobalISel/Legalizer.cpp -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LegalizerHelper class to legalize individual
/// instructions and the LegalizePass wrapper pass for the primary
/// legalization.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <iterator>
#define DEBUG_TYPE "legalizer"
using namespace llvm;
char Legalizer::ID = 0;
INITIALIZE_PASS_BEGIN(Legalizer, DEBUG_TYPE,
"Legalize the Machine IR a function's Machine IR", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(Legalizer, DEBUG_TYPE,
"Legalize the Machine IR a function's Machine IR", false,
false)
Legalizer::Legalizer() : MachineFunctionPass(ID) {
initializeLegalizerPass(*PassRegistry::getPassRegistry());
}
void Legalizer::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void Legalizer::init(MachineFunction &MF) {
}
bool Legalizer::combineExtracts(MachineInstr &MI, MachineRegisterInfo &MRI,
const TargetInstrInfo &TII) {
bool Changed = false;
if (MI.getOpcode() != TargetOpcode::G_EXTRACT)
return Changed;
unsigned NumDefs = (MI.getNumOperands() - 1) / 2;
unsigned SrcReg = MI.getOperand(NumDefs).getReg();
MachineInstr &SeqI = *MRI.def_instr_begin(SrcReg);
if (SeqI.getOpcode() != TargetOpcode::G_SEQUENCE)
return Changed;
unsigned NumSeqSrcs = (SeqI.getNumOperands() - 1) / 2;
bool AllDefsReplaced = true;
// Try to match each register extracted with a corresponding insertion formed
// by the G_SEQUENCE.
for (unsigned Idx = 0, SeqIdx = 0; Idx < NumDefs; ++Idx) {
MachineOperand &ExtractMO = MI.getOperand(Idx);
assert(ExtractMO.isReg() && ExtractMO.isDef() &&
"unexpected extract operand");
unsigned ExtractReg = ExtractMO.getReg();
unsigned ExtractPos = MI.getOperand(NumDefs + Idx + 1).getImm();
while (SeqIdx < NumSeqSrcs &&
SeqI.getOperand(2 * SeqIdx + 2).getImm() < ExtractPos)
++SeqIdx;
if (SeqIdx == NumSeqSrcs) {
AllDefsReplaced = false;
continue;
}
unsigned OrigReg = SeqI.getOperand(2 * SeqIdx + 1).getReg();
if (SeqI.getOperand(2 * SeqIdx + 2).getImm() != ExtractPos ||
MRI.getType(OrigReg) != MRI.getType(ExtractReg)) {
AllDefsReplaced = false;
continue;
}
assert(!TargetRegisterInfo::isPhysicalRegister(OrigReg) &&
"unexpected physical register in G_SEQUENCE");
// Finally we can replace the uses.
MRI.replaceRegWith(ExtractReg, OrigReg);
}
if (AllDefsReplaced) {
// If SeqI was the next instruction in the BB and we removed it, we'd break
// the outer iteration.
assert(std::next(MachineBasicBlock::iterator(MI)) != SeqI &&
"G_SEQUENCE does not dominate G_EXTRACT");
MI.eraseFromParent();
if (MRI.use_empty(SrcReg))
SeqI.eraseFromParent();
Changed = true;
}
return Changed;
}
bool Legalizer::combineMerges(MachineInstr &MI, MachineRegisterInfo &MRI,
const TargetInstrInfo &TII) {
if (MI.getOpcode() != TargetOpcode::G_UNMERGE_VALUES)
return false;
unsigned NumDefs = MI.getNumOperands() - 1;
unsigned SrcReg = MI.getOperand(NumDefs).getReg();
MachineInstr &MergeI = *MRI.def_instr_begin(SrcReg);
if (MergeI.getOpcode() != TargetOpcode::G_MERGE_VALUES)
return false;
if (MergeI.getNumOperands() - 1 != NumDefs)
return false;
// FIXME: is a COPY appropriate if the types mismatch? We know both registers
// are allocatable by now.
if (MRI.getType(MI.getOperand(0).getReg()) !=
MRI.getType(MergeI.getOperand(1).getReg()))
return false;
for (unsigned Idx = 0; Idx < NumDefs; ++Idx)
MRI.replaceRegWith(MI.getOperand(Idx).getReg(),
MergeI.getOperand(Idx + 1).getReg());
MI.eraseFromParent();
if (MRI.use_empty(MergeI.getOperand(0).getReg()))
MergeI.eraseFromParent();
return true;
}
bool Legalizer::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
DEBUG(dbgs() << "Legalize Machine IR for: " << MF.getName() << '\n');
init(MF);
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
LegalizerHelper Helper(MF);
// FIXME: an instruction may need more than one pass before it is legal. For
// example on most architectures <3 x i3> is doubly-illegal. It would
// typically proceed along a path like: <3 x i3> -> <3 x i8> -> <8 x i8>. We
// probably want a worklist of instructions rather than naive iterate until
// convergence for performance reasons.
bool Changed = false;
MachineBasicBlock::iterator NextMI;
for (auto &MBB : MF) {
for (auto MI = MBB.begin(); MI != MBB.end(); MI = NextMI) {
// Get the next Instruction before we try to legalize, because there's a
// good chance MI will be deleted.
NextMI = std::next(MI);
// Only legalize pre-isel generic instructions: others don't have types
// and are assumed to be legal.
if (!isPreISelGenericOpcode(MI->getOpcode()))
continue;
unsigned NumNewInsns = 0;
SmallVector<MachineInstr *, 4> WorkList;
Helper.MIRBuilder.recordInsertions([&](MachineInstr *MI) {
// Only legalize pre-isel generic instructions.
// Legalization process could generate Target specific pseudo
// instructions with generic types. Don't record them
if (isPreISelGenericOpcode(MI->getOpcode())) {
++NumNewInsns;
WorkList.push_back(MI);
}
});
WorkList.push_back(&*MI);
bool Changed = false;
LegalizerHelper::LegalizeResult Res;
unsigned Idx = 0;
do {
Res = Helper.legalizeInstrStep(*WorkList[Idx]);
// Error out if we couldn't legalize this instruction. We may want to
// fall back to DAG ISel instead in the future.
if (Res == LegalizerHelper::UnableToLegalize) {
Helper.MIRBuilder.stopRecordingInsertions();
if (Res == LegalizerHelper::UnableToLegalize) {
reportGISelFailure(MF, TPC, MORE, "gisel-legalize",
"unable to legalize instruction",
*WorkList[Idx]);
return false;
}
}
Changed |= Res == LegalizerHelper::Legalized;
++Idx;
#ifndef NDEBUG
if (NumNewInsns) {
DEBUG(dbgs() << ".. .. Emitted " << NumNewInsns << " insns\n");
for (auto I = WorkList.end() - NumNewInsns, E = WorkList.end();
I != E; ++I)
DEBUG(dbgs() << ".. .. New MI: "; (*I)->print(dbgs()));
NumNewInsns = 0;
}
#endif
} while (Idx < WorkList.size());
Helper.MIRBuilder.stopRecordingInsertions();
}
}
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
for (auto &MBB : MF) {
for (auto MI = MBB.begin(); MI != MBB.end(); MI = NextMI) {
// Get the next Instruction before we try to legalize, because there's a
// good chance MI will be deleted.
NextMI = std::next(MI);
// combineExtracts erases MI.
if (combineExtracts(*MI, MRI, TII)) {
Changed = true;
continue;
}
Changed |= combineMerges(*MI, MRI, TII);
}
}
return Changed;
}