forked from OSchip/llvm-project
1959 lines
80 KiB
C++
1959 lines
80 KiB
C++
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for Objective C declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ExternalSemaSource.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
|
|
using namespace clang;
|
|
|
|
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
|
|
/// and user declared, in the method definition's AST.
|
|
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
|
|
assert(getCurMethodDecl() == 0 && "Method parsing confused");
|
|
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
|
|
|
|
// If we don't have a valid method decl, simply return.
|
|
if (!MDecl)
|
|
return;
|
|
|
|
// Allow the rest of sema to find private method decl implementations.
|
|
if (MDecl->isInstanceMethod())
|
|
AddInstanceMethodToGlobalPool(MDecl, true);
|
|
else
|
|
AddFactoryMethodToGlobalPool(MDecl, true);
|
|
|
|
// Allow all of Sema to see that we are entering a method definition.
|
|
PushDeclContext(FnBodyScope, MDecl);
|
|
PushFunctionScope();
|
|
|
|
// Create Decl objects for each parameter, entrring them in the scope for
|
|
// binding to their use.
|
|
|
|
// Insert the invisible arguments, self and _cmd!
|
|
MDecl->createImplicitParams(Context, MDecl->getClassInterface());
|
|
|
|
PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
|
|
PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
|
|
|
|
// Introduce all of the other parameters into this scope.
|
|
for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
|
|
E = MDecl->param_end(); PI != E; ++PI) {
|
|
ParmVarDecl *Param = (*PI);
|
|
if (!Param->isInvalidDecl() &&
|
|
RequireCompleteType(Param->getLocation(), Param->getType(),
|
|
diag::err_typecheck_decl_incomplete_type))
|
|
Param->setInvalidDecl();
|
|
if ((*PI)->getIdentifier())
|
|
PushOnScopeChains(*PI, FnBodyScope);
|
|
}
|
|
}
|
|
|
|
Decl *Sema::
|
|
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
|
|
IdentifierInfo *ClassName, SourceLocation ClassLoc,
|
|
IdentifierInfo *SuperName, SourceLocation SuperLoc,
|
|
Decl * const *ProtoRefs, unsigned NumProtoRefs,
|
|
const SourceLocation *ProtoLocs,
|
|
SourceLocation EndProtoLoc, AttributeList *AttrList) {
|
|
assert(ClassName && "Missing class identifier");
|
|
|
|
// Check for another declaration kind with the same name.
|
|
NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
|
|
LookupOrdinaryName, ForRedeclaration);
|
|
|
|
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
|
|
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
}
|
|
|
|
ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
|
|
if (IDecl) {
|
|
// Class already seen. Is it a forward declaration?
|
|
if (!IDecl->isForwardDecl()) {
|
|
IDecl->setInvalidDecl();
|
|
Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
|
|
Diag(IDecl->getLocation(), diag::note_previous_definition);
|
|
|
|
// Return the previous class interface.
|
|
// FIXME: don't leak the objects passed in!
|
|
return IDecl;
|
|
} else {
|
|
IDecl->setLocation(AtInterfaceLoc);
|
|
IDecl->setForwardDecl(false);
|
|
IDecl->setClassLoc(ClassLoc);
|
|
// If the forward decl was in a PCH, we need to write it again in a
|
|
// dependent AST file.
|
|
IDecl->setChangedSinceDeserialization(true);
|
|
|
|
// Since this ObjCInterfaceDecl was created by a forward declaration,
|
|
// we now add it to the DeclContext since it wasn't added before
|
|
// (see ActOnForwardClassDeclaration).
|
|
IDecl->setLexicalDeclContext(CurContext);
|
|
CurContext->addDecl(IDecl);
|
|
|
|
if (AttrList)
|
|
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
|
|
}
|
|
} else {
|
|
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
|
|
ClassName, ClassLoc);
|
|
if (AttrList)
|
|
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
|
|
|
|
PushOnScopeChains(IDecl, TUScope);
|
|
}
|
|
|
|
if (SuperName) {
|
|
// Check if a different kind of symbol declared in this scope.
|
|
PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
|
|
LookupOrdinaryName);
|
|
|
|
if (!PrevDecl) {
|
|
// Try to correct for a typo in the superclass name.
|
|
LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
|
|
if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
|
|
(PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
|
|
Diag(SuperLoc, diag::err_undef_superclass_suggest)
|
|
<< SuperName << ClassName << PrevDecl->getDeclName();
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_decl)
|
|
<< PrevDecl->getDeclName();
|
|
}
|
|
}
|
|
|
|
if (PrevDecl == IDecl) {
|
|
Diag(SuperLoc, diag::err_recursive_superclass)
|
|
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
|
|
IDecl->setLocEnd(ClassLoc);
|
|
} else {
|
|
ObjCInterfaceDecl *SuperClassDecl =
|
|
dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
|
|
|
|
// Diagnose classes that inherit from deprecated classes.
|
|
if (SuperClassDecl)
|
|
(void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
|
|
|
|
if (PrevDecl && SuperClassDecl == 0) {
|
|
// The previous declaration was not a class decl. Check if we have a
|
|
// typedef. If we do, get the underlying class type.
|
|
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
|
|
QualType T = TDecl->getUnderlyingType();
|
|
if (T->isObjCObjectType()) {
|
|
if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
|
|
SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
|
|
}
|
|
}
|
|
|
|
// This handles the following case:
|
|
//
|
|
// typedef int SuperClass;
|
|
// @interface MyClass : SuperClass {} @end
|
|
//
|
|
if (!SuperClassDecl) {
|
|
Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
}
|
|
}
|
|
|
|
if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
|
|
if (!SuperClassDecl)
|
|
Diag(SuperLoc, diag::err_undef_superclass)
|
|
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
|
|
else if (SuperClassDecl->isForwardDecl())
|
|
Diag(SuperLoc, diag::err_undef_superclass)
|
|
<< SuperClassDecl->getDeclName() << ClassName
|
|
<< SourceRange(AtInterfaceLoc, ClassLoc);
|
|
}
|
|
IDecl->setSuperClass(SuperClassDecl);
|
|
IDecl->setSuperClassLoc(SuperLoc);
|
|
IDecl->setLocEnd(SuperLoc);
|
|
}
|
|
} else { // we have a root class.
|
|
IDecl->setLocEnd(ClassLoc);
|
|
}
|
|
|
|
// Check then save referenced protocols.
|
|
if (NumProtoRefs) {
|
|
IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
|
|
ProtoLocs, Context);
|
|
IDecl->setLocEnd(EndProtoLoc);
|
|
}
|
|
|
|
CheckObjCDeclScope(IDecl);
|
|
return IDecl;
|
|
}
|
|
|
|
/// ActOnCompatiblityAlias - this action is called after complete parsing of
|
|
/// @compatibility_alias declaration. It sets up the alias relationships.
|
|
Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
|
|
IdentifierInfo *AliasName,
|
|
SourceLocation AliasLocation,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassLocation) {
|
|
// Look for previous declaration of alias name
|
|
NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
|
|
LookupOrdinaryName, ForRedeclaration);
|
|
if (ADecl) {
|
|
if (isa<ObjCCompatibleAliasDecl>(ADecl))
|
|
Diag(AliasLocation, diag::warn_previous_alias_decl);
|
|
else
|
|
Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
|
|
Diag(ADecl->getLocation(), diag::note_previous_declaration);
|
|
return 0;
|
|
}
|
|
// Check for class declaration
|
|
NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
|
|
LookupOrdinaryName, ForRedeclaration);
|
|
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
|
|
QualType T = TDecl->getUnderlyingType();
|
|
if (T->isObjCObjectType()) {
|
|
if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
|
|
ClassName = IDecl->getIdentifier();
|
|
CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
|
|
LookupOrdinaryName, ForRedeclaration);
|
|
}
|
|
}
|
|
}
|
|
ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
|
|
if (CDecl == 0) {
|
|
Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
|
|
if (CDeclU)
|
|
Diag(CDeclU->getLocation(), diag::note_previous_declaration);
|
|
return 0;
|
|
}
|
|
|
|
// Everything checked out, instantiate a new alias declaration AST.
|
|
ObjCCompatibleAliasDecl *AliasDecl =
|
|
ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
|
|
|
|
if (!CheckObjCDeclScope(AliasDecl))
|
|
PushOnScopeChains(AliasDecl, TUScope);
|
|
|
|
return AliasDecl;
|
|
}
|
|
|
|
void Sema::CheckForwardProtocolDeclarationForCircularDependency(
|
|
IdentifierInfo *PName,
|
|
SourceLocation &Ploc, SourceLocation PrevLoc,
|
|
const ObjCList<ObjCProtocolDecl> &PList) {
|
|
for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
|
|
E = PList.end(); I != E; ++I) {
|
|
|
|
if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
|
|
Ploc)) {
|
|
if (PDecl->getIdentifier() == PName) {
|
|
Diag(Ploc, diag::err_protocol_has_circular_dependency);
|
|
Diag(PrevLoc, diag::note_previous_definition);
|
|
}
|
|
CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
|
|
PDecl->getLocation(), PDecl->getReferencedProtocols());
|
|
}
|
|
}
|
|
}
|
|
|
|
Decl *
|
|
Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
|
|
IdentifierInfo *ProtocolName,
|
|
SourceLocation ProtocolLoc,
|
|
Decl * const *ProtoRefs,
|
|
unsigned NumProtoRefs,
|
|
const SourceLocation *ProtoLocs,
|
|
SourceLocation EndProtoLoc,
|
|
AttributeList *AttrList) {
|
|
// FIXME: Deal with AttrList.
|
|
assert(ProtocolName && "Missing protocol identifier");
|
|
ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
|
|
if (PDecl) {
|
|
// Protocol already seen. Better be a forward protocol declaration
|
|
if (!PDecl->isForwardDecl()) {
|
|
Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
|
|
Diag(PDecl->getLocation(), diag::note_previous_definition);
|
|
// Just return the protocol we already had.
|
|
// FIXME: don't leak the objects passed in!
|
|
return PDecl;
|
|
}
|
|
ObjCList<ObjCProtocolDecl> PList;
|
|
PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
|
|
CheckForwardProtocolDeclarationForCircularDependency(
|
|
ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
|
|
|
|
// Make sure the cached decl gets a valid start location.
|
|
PDecl->setLocation(AtProtoInterfaceLoc);
|
|
PDecl->setForwardDecl(false);
|
|
CurContext->addDecl(PDecl);
|
|
// Repeat in dependent AST files.
|
|
PDecl->setChangedSinceDeserialization(true);
|
|
} else {
|
|
PDecl = ObjCProtocolDecl::Create(Context, CurContext,
|
|
AtProtoInterfaceLoc,ProtocolName);
|
|
PushOnScopeChains(PDecl, TUScope);
|
|
PDecl->setForwardDecl(false);
|
|
}
|
|
if (AttrList)
|
|
ProcessDeclAttributeList(TUScope, PDecl, AttrList);
|
|
if (NumProtoRefs) {
|
|
/// Check then save referenced protocols.
|
|
PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
|
|
ProtoLocs, Context);
|
|
PDecl->setLocEnd(EndProtoLoc);
|
|
}
|
|
|
|
CheckObjCDeclScope(PDecl);
|
|
return PDecl;
|
|
}
|
|
|
|
/// FindProtocolDeclaration - This routine looks up protocols and
|
|
/// issues an error if they are not declared. It returns list of
|
|
/// protocol declarations in its 'Protocols' argument.
|
|
void
|
|
Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
|
|
const IdentifierLocPair *ProtocolId,
|
|
unsigned NumProtocols,
|
|
llvm::SmallVectorImpl<Decl *> &Protocols) {
|
|
for (unsigned i = 0; i != NumProtocols; ++i) {
|
|
ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
|
|
ProtocolId[i].second);
|
|
if (!PDecl) {
|
|
LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
|
|
LookupObjCProtocolName);
|
|
if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
|
|
(PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
|
|
Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
|
|
<< ProtocolId[i].first << R.getLookupName();
|
|
Diag(PDecl->getLocation(), diag::note_previous_decl)
|
|
<< PDecl->getDeclName();
|
|
}
|
|
}
|
|
|
|
if (!PDecl) {
|
|
Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
|
|
<< ProtocolId[i].first;
|
|
continue;
|
|
}
|
|
|
|
(void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
|
|
|
|
// If this is a forward declaration and we are supposed to warn in this
|
|
// case, do it.
|
|
if (WarnOnDeclarations && PDecl->isForwardDecl())
|
|
Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
|
|
<< ProtocolId[i].first;
|
|
Protocols.push_back(PDecl);
|
|
}
|
|
}
|
|
|
|
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
|
|
/// a class method in its extension.
|
|
///
|
|
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
|
|
ObjCInterfaceDecl *ID) {
|
|
if (!ID)
|
|
return; // Possibly due to previous error
|
|
|
|
llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
|
|
for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
|
|
e = ID->meth_end(); i != e; ++i) {
|
|
ObjCMethodDecl *MD = *i;
|
|
MethodMap[MD->getSelector()] = MD;
|
|
}
|
|
|
|
if (MethodMap.empty())
|
|
return;
|
|
for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
|
|
e = CAT->meth_end(); i != e; ++i) {
|
|
ObjCMethodDecl *Method = *i;
|
|
const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
|
|
if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
|
|
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
|
|
<< Method->getDeclName();
|
|
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
|
|
Decl *
|
|
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
|
|
const IdentifierLocPair *IdentList,
|
|
unsigned NumElts,
|
|
AttributeList *attrList) {
|
|
llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
|
|
llvm::SmallVector<SourceLocation, 8> ProtoLocs;
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
IdentifierInfo *Ident = IdentList[i].first;
|
|
ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
|
|
bool isNew = false;
|
|
if (PDecl == 0) { // Not already seen?
|
|
PDecl = ObjCProtocolDecl::Create(Context, CurContext,
|
|
IdentList[i].second, Ident);
|
|
PushOnScopeChains(PDecl, TUScope, false);
|
|
isNew = true;
|
|
}
|
|
if (attrList) {
|
|
ProcessDeclAttributeList(TUScope, PDecl, attrList);
|
|
if (!isNew)
|
|
PDecl->setChangedSinceDeserialization(true);
|
|
}
|
|
Protocols.push_back(PDecl);
|
|
ProtoLocs.push_back(IdentList[i].second);
|
|
}
|
|
|
|
ObjCForwardProtocolDecl *PDecl =
|
|
ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
|
|
Protocols.data(), Protocols.size(),
|
|
ProtoLocs.data());
|
|
CurContext->addDecl(PDecl);
|
|
CheckObjCDeclScope(PDecl);
|
|
return PDecl;
|
|
}
|
|
|
|
Decl *Sema::
|
|
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
|
|
IdentifierInfo *ClassName, SourceLocation ClassLoc,
|
|
IdentifierInfo *CategoryName,
|
|
SourceLocation CategoryLoc,
|
|
Decl * const *ProtoRefs,
|
|
unsigned NumProtoRefs,
|
|
const SourceLocation *ProtoLocs,
|
|
SourceLocation EndProtoLoc) {
|
|
ObjCCategoryDecl *CDecl;
|
|
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
|
|
|
|
/// Check that class of this category is already completely declared.
|
|
if (!IDecl || IDecl->isForwardDecl()) {
|
|
// Create an invalid ObjCCategoryDecl to serve as context for
|
|
// the enclosing method declarations. We mark the decl invalid
|
|
// to make it clear that this isn't a valid AST.
|
|
CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
|
|
ClassLoc, CategoryLoc, CategoryName);
|
|
CDecl->setInvalidDecl();
|
|
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
|
|
return CDecl;
|
|
}
|
|
|
|
if (!CategoryName && IDecl->getImplementation()) {
|
|
Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
|
|
Diag(IDecl->getImplementation()->getLocation(),
|
|
diag::note_implementation_declared);
|
|
}
|
|
|
|
CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
|
|
ClassLoc, CategoryLoc, CategoryName);
|
|
// FIXME: PushOnScopeChains?
|
|
CurContext->addDecl(CDecl);
|
|
|
|
CDecl->setClassInterface(IDecl);
|
|
// Insert class extension to the list of class's categories.
|
|
if (!CategoryName)
|
|
CDecl->insertNextClassCategory();
|
|
|
|
// If the interface is deprecated, warn about it.
|
|
(void)DiagnoseUseOfDecl(IDecl, ClassLoc);
|
|
|
|
if (CategoryName) {
|
|
/// Check for duplicate interface declaration for this category
|
|
ObjCCategoryDecl *CDeclChain;
|
|
for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
|
|
CDeclChain = CDeclChain->getNextClassCategory()) {
|
|
if (CDeclChain->getIdentifier() == CategoryName) {
|
|
// Class extensions can be declared multiple times.
|
|
Diag(CategoryLoc, diag::warn_dup_category_def)
|
|
<< ClassName << CategoryName;
|
|
Diag(CDeclChain->getLocation(), diag::note_previous_definition);
|
|
break;
|
|
}
|
|
}
|
|
if (!CDeclChain)
|
|
CDecl->insertNextClassCategory();
|
|
}
|
|
|
|
if (NumProtoRefs) {
|
|
CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
|
|
ProtoLocs, Context);
|
|
// Protocols in the class extension belong to the class.
|
|
if (CDecl->IsClassExtension())
|
|
IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
|
|
NumProtoRefs, Context);
|
|
}
|
|
|
|
CheckObjCDeclScope(CDecl);
|
|
return CDecl;
|
|
}
|
|
|
|
/// ActOnStartCategoryImplementation - Perform semantic checks on the
|
|
/// category implementation declaration and build an ObjCCategoryImplDecl
|
|
/// object.
|
|
Decl *Sema::ActOnStartCategoryImplementation(
|
|
SourceLocation AtCatImplLoc,
|
|
IdentifierInfo *ClassName, SourceLocation ClassLoc,
|
|
IdentifierInfo *CatName, SourceLocation CatLoc) {
|
|
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
|
|
ObjCCategoryDecl *CatIDecl = 0;
|
|
if (IDecl) {
|
|
CatIDecl = IDecl->FindCategoryDeclaration(CatName);
|
|
if (!CatIDecl) {
|
|
// Category @implementation with no corresponding @interface.
|
|
// Create and install one.
|
|
CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
|
|
SourceLocation(), SourceLocation(),
|
|
CatName);
|
|
CatIDecl->setClassInterface(IDecl);
|
|
CatIDecl->insertNextClassCategory();
|
|
}
|
|
}
|
|
|
|
ObjCCategoryImplDecl *CDecl =
|
|
ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
|
|
IDecl);
|
|
/// Check that class of this category is already completely declared.
|
|
if (!IDecl || IDecl->isForwardDecl())
|
|
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
|
|
|
|
// FIXME: PushOnScopeChains?
|
|
CurContext->addDecl(CDecl);
|
|
|
|
/// Check that CatName, category name, is not used in another implementation.
|
|
if (CatIDecl) {
|
|
if (CatIDecl->getImplementation()) {
|
|
Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
|
|
<< CatName;
|
|
Diag(CatIDecl->getImplementation()->getLocation(),
|
|
diag::note_previous_definition);
|
|
} else
|
|
CatIDecl->setImplementation(CDecl);
|
|
}
|
|
|
|
CheckObjCDeclScope(CDecl);
|
|
return CDecl;
|
|
}
|
|
|
|
Decl *Sema::ActOnStartClassImplementation(
|
|
SourceLocation AtClassImplLoc,
|
|
IdentifierInfo *ClassName, SourceLocation ClassLoc,
|
|
IdentifierInfo *SuperClassname,
|
|
SourceLocation SuperClassLoc) {
|
|
ObjCInterfaceDecl* IDecl = 0;
|
|
// Check for another declaration kind with the same name.
|
|
NamedDecl *PrevDecl
|
|
= LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
|
|
ForRedeclaration);
|
|
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
|
|
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
} else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
|
|
// If this is a forward declaration of an interface, warn.
|
|
if (IDecl->isForwardDecl()) {
|
|
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
|
|
IDecl = 0;
|
|
}
|
|
} else {
|
|
// We did not find anything with the name ClassName; try to correct for
|
|
// typos in the class name.
|
|
LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
|
|
if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
|
|
(IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
|
|
// Suggest the (potentially) correct interface name. However, put the
|
|
// fix-it hint itself in a separate note, since changing the name in
|
|
// the warning would make the fix-it change semantics.However, don't
|
|
// provide a code-modification hint or use the typo name for recovery,
|
|
// because this is just a warning. The program may actually be correct.
|
|
Diag(ClassLoc, diag::warn_undef_interface_suggest)
|
|
<< ClassName << R.getLookupName();
|
|
Diag(IDecl->getLocation(), diag::note_previous_decl)
|
|
<< R.getLookupName()
|
|
<< FixItHint::CreateReplacement(ClassLoc,
|
|
R.getLookupName().getAsString());
|
|
IDecl = 0;
|
|
} else {
|
|
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
|
|
}
|
|
}
|
|
|
|
// Check that super class name is valid class name
|
|
ObjCInterfaceDecl* SDecl = 0;
|
|
if (SuperClassname) {
|
|
// Check if a different kind of symbol declared in this scope.
|
|
PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
|
|
LookupOrdinaryName);
|
|
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
|
|
Diag(SuperClassLoc, diag::err_redefinition_different_kind)
|
|
<< SuperClassname;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
} else {
|
|
SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
|
|
if (!SDecl)
|
|
Diag(SuperClassLoc, diag::err_undef_superclass)
|
|
<< SuperClassname << ClassName;
|
|
else if (IDecl && IDecl->getSuperClass() != SDecl) {
|
|
// This implementation and its interface do not have the same
|
|
// super class.
|
|
Diag(SuperClassLoc, diag::err_conflicting_super_class)
|
|
<< SDecl->getDeclName();
|
|
Diag(SDecl->getLocation(), diag::note_previous_definition);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!IDecl) {
|
|
// Legacy case of @implementation with no corresponding @interface.
|
|
// Build, chain & install the interface decl into the identifier.
|
|
|
|
// FIXME: Do we support attributes on the @implementation? If so we should
|
|
// copy them over.
|
|
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
|
|
ClassName, ClassLoc, false, true);
|
|
IDecl->setSuperClass(SDecl);
|
|
IDecl->setLocEnd(ClassLoc);
|
|
|
|
PushOnScopeChains(IDecl, TUScope);
|
|
} else {
|
|
// Mark the interface as being completed, even if it was just as
|
|
// @class ....;
|
|
// declaration; the user cannot reopen it.
|
|
IDecl->setForwardDecl(false);
|
|
}
|
|
|
|
ObjCImplementationDecl* IMPDecl =
|
|
ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
|
|
IDecl, SDecl);
|
|
|
|
if (CheckObjCDeclScope(IMPDecl))
|
|
return IMPDecl;
|
|
|
|
// Check that there is no duplicate implementation of this class.
|
|
if (IDecl->getImplementation()) {
|
|
// FIXME: Don't leak everything!
|
|
Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
|
|
Diag(IDecl->getImplementation()->getLocation(),
|
|
diag::note_previous_definition);
|
|
} else { // add it to the list.
|
|
IDecl->setImplementation(IMPDecl);
|
|
PushOnScopeChains(IMPDecl, TUScope);
|
|
}
|
|
return IMPDecl;
|
|
}
|
|
|
|
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
|
|
ObjCIvarDecl **ivars, unsigned numIvars,
|
|
SourceLocation RBrace) {
|
|
assert(ImpDecl && "missing implementation decl");
|
|
ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
|
|
if (!IDecl)
|
|
return;
|
|
/// Check case of non-existing @interface decl.
|
|
/// (legacy objective-c @implementation decl without an @interface decl).
|
|
/// Add implementations's ivar to the synthesize class's ivar list.
|
|
if (IDecl->isImplicitInterfaceDecl()) {
|
|
IDecl->setLocEnd(RBrace);
|
|
// Add ivar's to class's DeclContext.
|
|
for (unsigned i = 0, e = numIvars; i != e; ++i) {
|
|
ivars[i]->setLexicalDeclContext(ImpDecl);
|
|
IDecl->makeDeclVisibleInContext(ivars[i], false);
|
|
ImpDecl->addDecl(ivars[i]);
|
|
}
|
|
|
|
return;
|
|
}
|
|
// If implementation has empty ivar list, just return.
|
|
if (numIvars == 0)
|
|
return;
|
|
|
|
assert(ivars && "missing @implementation ivars");
|
|
if (LangOpts.ObjCNonFragileABI2) {
|
|
if (ImpDecl->getSuperClass())
|
|
Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
|
|
for (unsigned i = 0; i < numIvars; i++) {
|
|
ObjCIvarDecl* ImplIvar = ivars[i];
|
|
if (const ObjCIvarDecl *ClsIvar =
|
|
IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
|
|
Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
|
|
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
|
|
continue;
|
|
}
|
|
// Instance ivar to Implementation's DeclContext.
|
|
ImplIvar->setLexicalDeclContext(ImpDecl);
|
|
IDecl->makeDeclVisibleInContext(ImplIvar, false);
|
|
ImpDecl->addDecl(ImplIvar);
|
|
}
|
|
return;
|
|
}
|
|
// Check interface's Ivar list against those in the implementation.
|
|
// names and types must match.
|
|
//
|
|
unsigned j = 0;
|
|
ObjCInterfaceDecl::ivar_iterator
|
|
IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
|
|
for (; numIvars > 0 && IVI != IVE; ++IVI) {
|
|
ObjCIvarDecl* ImplIvar = ivars[j++];
|
|
ObjCIvarDecl* ClsIvar = *IVI;
|
|
assert (ImplIvar && "missing implementation ivar");
|
|
assert (ClsIvar && "missing class ivar");
|
|
|
|
// First, make sure the types match.
|
|
if (Context.getCanonicalType(ImplIvar->getType()) !=
|
|
Context.getCanonicalType(ClsIvar->getType())) {
|
|
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
|
|
<< ImplIvar->getIdentifier()
|
|
<< ImplIvar->getType() << ClsIvar->getType();
|
|
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
|
|
} else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
|
|
Expr *ImplBitWidth = ImplIvar->getBitWidth();
|
|
Expr *ClsBitWidth = ClsIvar->getBitWidth();
|
|
if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
|
|
ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
|
|
Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
|
|
<< ImplIvar->getIdentifier();
|
|
Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
|
|
}
|
|
}
|
|
// Make sure the names are identical.
|
|
if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
|
|
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
|
|
<< ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
|
|
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
|
|
}
|
|
--numIvars;
|
|
}
|
|
|
|
if (numIvars > 0)
|
|
Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
|
|
else if (IVI != IVE)
|
|
Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
|
|
}
|
|
|
|
void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
|
|
bool &IncompleteImpl, unsigned DiagID) {
|
|
if (!IncompleteImpl) {
|
|
Diag(ImpLoc, diag::warn_incomplete_impl);
|
|
IncompleteImpl = true;
|
|
}
|
|
if (DiagID == diag::warn_unimplemented_protocol_method)
|
|
Diag(ImpLoc, DiagID) << method->getDeclName();
|
|
else
|
|
Diag(method->getLocation(), DiagID) << method->getDeclName();
|
|
}
|
|
|
|
/// Determines if type B can be substituted for type A. Returns true if we can
|
|
/// guarantee that anything that the user will do to an object of type A can
|
|
/// also be done to an object of type B. This is trivially true if the two
|
|
/// types are the same, or if B is a subclass of A. It becomes more complex
|
|
/// in cases where protocols are involved.
|
|
///
|
|
/// Object types in Objective-C describe the minimum requirements for an
|
|
/// object, rather than providing a complete description of a type. For
|
|
/// example, if A is a subclass of B, then B* may refer to an instance of A.
|
|
/// The principle of substitutability means that we may use an instance of A
|
|
/// anywhere that we may use an instance of B - it will implement all of the
|
|
/// ivars of B and all of the methods of B.
|
|
///
|
|
/// This substitutability is important when type checking methods, because
|
|
/// the implementation may have stricter type definitions than the interface.
|
|
/// The interface specifies minimum requirements, but the implementation may
|
|
/// have more accurate ones. For example, a method may privately accept
|
|
/// instances of B, but only publish that it accepts instances of A. Any
|
|
/// object passed to it will be type checked against B, and so will implicitly
|
|
/// by a valid A*. Similarly, a method may return a subclass of the class that
|
|
/// it is declared as returning.
|
|
///
|
|
/// This is most important when considering subclassing. A method in a
|
|
/// subclass must accept any object as an argument that its superclass's
|
|
/// implementation accepts. It may, however, accept a more general type
|
|
/// without breaking substitutability (i.e. you can still use the subclass
|
|
/// anywhere that you can use the superclass, but not vice versa). The
|
|
/// converse requirement applies to return types: the return type for a
|
|
/// subclass method must be a valid object of the kind that the superclass
|
|
/// advertises, but it may be specified more accurately. This avoids the need
|
|
/// for explicit down-casting by callers.
|
|
///
|
|
/// Note: This is a stricter requirement than for assignment.
|
|
static bool isObjCTypeSubstitutable(ASTContext &Context,
|
|
const ObjCObjectPointerType *A,
|
|
const ObjCObjectPointerType *B,
|
|
bool rejectId) {
|
|
// Reject a protocol-unqualified id.
|
|
if (rejectId && B->isObjCIdType()) return false;
|
|
|
|
// If B is a qualified id, then A must also be a qualified id and it must
|
|
// implement all of the protocols in B. It may not be a qualified class.
|
|
// For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
|
|
// stricter definition so it is not substitutable for id<A>.
|
|
if (B->isObjCQualifiedIdType()) {
|
|
return A->isObjCQualifiedIdType() &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
|
|
QualType(B,0),
|
|
false);
|
|
}
|
|
|
|
/*
|
|
// id is a special type that bypasses type checking completely. We want a
|
|
// warning when it is used in one place but not another.
|
|
if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
|
|
|
|
|
|
// If B is a qualified id, then A must also be a qualified id (which it isn't
|
|
// if we've got this far)
|
|
if (B->isObjCQualifiedIdType()) return false;
|
|
*/
|
|
|
|
// Now we know that A and B are (potentially-qualified) class types. The
|
|
// normal rules for assignment apply.
|
|
return Context.canAssignObjCInterfaces(A, B);
|
|
}
|
|
|
|
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
|
|
return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
|
|
}
|
|
|
|
static void CheckMethodOverrideReturn(Sema &S,
|
|
ObjCMethodDecl *MethodImpl,
|
|
ObjCMethodDecl *MethodIface) {
|
|
if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
|
|
MethodIface->getResultType()))
|
|
return;
|
|
|
|
unsigned DiagID = diag::warn_conflicting_ret_types;
|
|
|
|
// Mismatches between ObjC pointers go into a different warning
|
|
// category, and sometimes they're even completely whitelisted.
|
|
if (const ObjCObjectPointerType *ImplPtrTy =
|
|
MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *IfacePtrTy =
|
|
MethodIface->getResultType()->getAs<ObjCObjectPointerType>()) {
|
|
// Allow non-matching return types as long as they don't violate
|
|
// the principle of substitutability. Specifically, we permit
|
|
// return types that are subclasses of the declared return type,
|
|
// or that are more-qualified versions of the declared type.
|
|
if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
|
|
return;
|
|
|
|
DiagID = diag::warn_non_covariant_ret_types;
|
|
}
|
|
}
|
|
|
|
S.Diag(MethodImpl->getLocation(), DiagID)
|
|
<< MethodImpl->getDeclName()
|
|
<< MethodIface->getResultType()
|
|
<< MethodImpl->getResultType()
|
|
<< getTypeRange(MethodImpl->getResultTypeSourceInfo());
|
|
S.Diag(MethodIface->getLocation(), diag::note_previous_definition)
|
|
<< getTypeRange(MethodIface->getResultTypeSourceInfo());
|
|
}
|
|
|
|
static void CheckMethodOverrideParam(Sema &S,
|
|
ObjCMethodDecl *MethodImpl,
|
|
ObjCMethodDecl *MethodIface,
|
|
ParmVarDecl *ImplVar,
|
|
ParmVarDecl *IfaceVar) {
|
|
QualType ImplTy = ImplVar->getType();
|
|
QualType IfaceTy = IfaceVar->getType();
|
|
if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
|
|
return;
|
|
|
|
unsigned DiagID = diag::warn_conflicting_param_types;
|
|
|
|
// Mismatches between ObjC pointers go into a different warning
|
|
// category, and sometimes they're even completely whitelisted.
|
|
if (const ObjCObjectPointerType *ImplPtrTy =
|
|
ImplTy->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *IfacePtrTy =
|
|
IfaceTy->getAs<ObjCObjectPointerType>()) {
|
|
// Allow non-matching argument types as long as they don't
|
|
// violate the principle of substitutability. Specifically, the
|
|
// implementation must accept any objects that the superclass
|
|
// accepts, however it may also accept others.
|
|
if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
|
|
return;
|
|
|
|
DiagID = diag::warn_non_contravariant_param_types;
|
|
}
|
|
}
|
|
|
|
S.Diag(ImplVar->getLocation(), DiagID)
|
|
<< getTypeRange(ImplVar->getTypeSourceInfo())
|
|
<< MethodImpl->getDeclName() << IfaceTy << ImplTy;
|
|
S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
|
|
<< getTypeRange(IfaceVar->getTypeSourceInfo());
|
|
}
|
|
|
|
|
|
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
|
|
ObjCMethodDecl *IntfMethodDecl) {
|
|
CheckMethodOverrideReturn(*this, ImpMethodDecl, IntfMethodDecl);
|
|
|
|
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
|
|
IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
|
|
IM != EM; ++IM, ++IF)
|
|
CheckMethodOverrideParam(*this, ImpMethodDecl, IntfMethodDecl, *IM, *IF);
|
|
|
|
if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) {
|
|
Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
|
|
Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
}
|
|
|
|
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
|
|
/// improve the efficiency of selector lookups and type checking by associating
|
|
/// with each protocol / interface / category the flattened instance tables. If
|
|
/// we used an immutable set to keep the table then it wouldn't add significant
|
|
/// memory cost and it would be handy for lookups.
|
|
|
|
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
|
|
/// Declared in protocol, and those referenced by it.
|
|
void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
|
|
ObjCProtocolDecl *PDecl,
|
|
bool& IncompleteImpl,
|
|
const llvm::DenseSet<Selector> &InsMap,
|
|
const llvm::DenseSet<Selector> &ClsMap,
|
|
ObjCContainerDecl *CDecl) {
|
|
ObjCInterfaceDecl *IDecl;
|
|
if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
|
|
IDecl = C->getClassInterface();
|
|
else
|
|
IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
|
|
assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
|
|
|
|
ObjCInterfaceDecl *Super = IDecl->getSuperClass();
|
|
ObjCInterfaceDecl *NSIDecl = 0;
|
|
if (getLangOptions().NeXTRuntime) {
|
|
// check to see if class implements forwardInvocation method and objects
|
|
// of this class are derived from 'NSProxy' so that to forward requests
|
|
// from one object to another.
|
|
// Under such conditions, which means that every method possible is
|
|
// implemented in the class, we should not issue "Method definition not
|
|
// found" warnings.
|
|
// FIXME: Use a general GetUnarySelector method for this.
|
|
IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
|
|
Selector fISelector = Context.Selectors.getSelector(1, &II);
|
|
if (InsMap.count(fISelector))
|
|
// Is IDecl derived from 'NSProxy'? If so, no instance methods
|
|
// need be implemented in the implementation.
|
|
NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
|
|
}
|
|
|
|
// If a method lookup fails locally we still need to look and see if
|
|
// the method was implemented by a base class or an inherited
|
|
// protocol. This lookup is slow, but occurs rarely in correct code
|
|
// and otherwise would terminate in a warning.
|
|
|
|
// check unimplemented instance methods.
|
|
if (!NSIDecl)
|
|
for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
|
|
E = PDecl->instmeth_end(); I != E; ++I) {
|
|
ObjCMethodDecl *method = *I;
|
|
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
|
|
!method->isSynthesized() && !InsMap.count(method->getSelector()) &&
|
|
(!Super ||
|
|
!Super->lookupInstanceMethod(method->getSelector()))) {
|
|
// Ugly, but necessary. Method declared in protcol might have
|
|
// have been synthesized due to a property declared in the class which
|
|
// uses the protocol.
|
|
ObjCMethodDecl *MethodInClass =
|
|
IDecl->lookupInstanceMethod(method->getSelector());
|
|
if (!MethodInClass || !MethodInClass->isSynthesized()) {
|
|
unsigned DIAG = diag::warn_unimplemented_protocol_method;
|
|
if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
|
|
WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
|
|
Diag(method->getLocation(), diag::note_method_declared_at);
|
|
Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
|
|
<< PDecl->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// check unimplemented class methods
|
|
for (ObjCProtocolDecl::classmeth_iterator
|
|
I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
|
|
I != E; ++I) {
|
|
ObjCMethodDecl *method = *I;
|
|
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
|
|
!ClsMap.count(method->getSelector()) &&
|
|
(!Super || !Super->lookupClassMethod(method->getSelector()))) {
|
|
unsigned DIAG = diag::warn_unimplemented_protocol_method;
|
|
if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
|
|
WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
|
|
Diag(method->getLocation(), diag::note_method_declared_at);
|
|
Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
|
|
PDecl->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
// Check on this protocols's referenced protocols, recursively.
|
|
for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
|
|
E = PDecl->protocol_end(); PI != E; ++PI)
|
|
CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
|
|
}
|
|
|
|
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
|
|
/// or protocol against those declared in their implementations.
|
|
///
|
|
void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
|
|
const llvm::DenseSet<Selector> &ClsMap,
|
|
llvm::DenseSet<Selector> &InsMapSeen,
|
|
llvm::DenseSet<Selector> &ClsMapSeen,
|
|
ObjCImplDecl* IMPDecl,
|
|
ObjCContainerDecl* CDecl,
|
|
bool &IncompleteImpl,
|
|
bool ImmediateClass) {
|
|
// Check and see if instance methods in class interface have been
|
|
// implemented in the implementation class. If so, their types match.
|
|
for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
|
|
E = CDecl->instmeth_end(); I != E; ++I) {
|
|
if (InsMapSeen.count((*I)->getSelector()))
|
|
continue;
|
|
InsMapSeen.insert((*I)->getSelector());
|
|
if (!(*I)->isSynthesized() &&
|
|
!InsMap.count((*I)->getSelector())) {
|
|
if (ImmediateClass)
|
|
WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
|
|
diag::note_undef_method_impl);
|
|
continue;
|
|
} else {
|
|
ObjCMethodDecl *ImpMethodDecl =
|
|
IMPDecl->getInstanceMethod((*I)->getSelector());
|
|
ObjCMethodDecl *IntfMethodDecl =
|
|
CDecl->getInstanceMethod((*I)->getSelector());
|
|
assert(IntfMethodDecl &&
|
|
"IntfMethodDecl is null in ImplMethodsVsClassMethods");
|
|
// ImpMethodDecl may be null as in a @dynamic property.
|
|
if (ImpMethodDecl)
|
|
WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
|
|
}
|
|
}
|
|
|
|
// Check and see if class methods in class interface have been
|
|
// implemented in the implementation class. If so, their types match.
|
|
for (ObjCInterfaceDecl::classmeth_iterator
|
|
I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
|
|
if (ClsMapSeen.count((*I)->getSelector()))
|
|
continue;
|
|
ClsMapSeen.insert((*I)->getSelector());
|
|
if (!ClsMap.count((*I)->getSelector())) {
|
|
if (ImmediateClass)
|
|
WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
|
|
diag::note_undef_method_impl);
|
|
} else {
|
|
ObjCMethodDecl *ImpMethodDecl =
|
|
IMPDecl->getClassMethod((*I)->getSelector());
|
|
ObjCMethodDecl *IntfMethodDecl =
|
|
CDecl->getClassMethod((*I)->getSelector());
|
|
WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
|
|
}
|
|
}
|
|
|
|
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
|
|
// Also methods in class extensions need be looked at next.
|
|
for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
|
|
ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
|
|
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
|
|
IMPDecl,
|
|
const_cast<ObjCCategoryDecl *>(ClsExtDecl),
|
|
IncompleteImpl, false);
|
|
|
|
// Check for any implementation of a methods declared in protocol.
|
|
for (ObjCInterfaceDecl::all_protocol_iterator
|
|
PI = I->all_referenced_protocol_begin(),
|
|
E = I->all_referenced_protocol_end(); PI != E; ++PI)
|
|
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
|
|
IMPDecl,
|
|
(*PI), IncompleteImpl, false);
|
|
if (I->getSuperClass())
|
|
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
|
|
IMPDecl,
|
|
I->getSuperClass(), IncompleteImpl, false);
|
|
}
|
|
}
|
|
|
|
void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
|
|
ObjCContainerDecl* CDecl,
|
|
bool IncompleteImpl) {
|
|
llvm::DenseSet<Selector> InsMap;
|
|
// Check and see if instance methods in class interface have been
|
|
// implemented in the implementation class.
|
|
for (ObjCImplementationDecl::instmeth_iterator
|
|
I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
|
|
InsMap.insert((*I)->getSelector());
|
|
|
|
// Check and see if properties declared in the interface have either 1)
|
|
// an implementation or 2) there is a @synthesize/@dynamic implementation
|
|
// of the property in the @implementation.
|
|
if (isa<ObjCInterfaceDecl>(CDecl) && !LangOpts.ObjCNonFragileABI2)
|
|
DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
|
|
|
|
llvm::DenseSet<Selector> ClsMap;
|
|
for (ObjCImplementationDecl::classmeth_iterator
|
|
I = IMPDecl->classmeth_begin(),
|
|
E = IMPDecl->classmeth_end(); I != E; ++I)
|
|
ClsMap.insert((*I)->getSelector());
|
|
|
|
// Check for type conflict of methods declared in a class/protocol and
|
|
// its implementation; if any.
|
|
llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
|
|
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
|
|
IMPDecl, CDecl,
|
|
IncompleteImpl, true);
|
|
|
|
// Check the protocol list for unimplemented methods in the @implementation
|
|
// class.
|
|
// Check and see if class methods in class interface have been
|
|
// implemented in the implementation class.
|
|
|
|
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
|
|
for (ObjCInterfaceDecl::all_protocol_iterator
|
|
PI = I->all_referenced_protocol_begin(),
|
|
E = I->all_referenced_protocol_end(); PI != E; ++PI)
|
|
CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
|
|
InsMap, ClsMap, I);
|
|
// Check class extensions (unnamed categories)
|
|
for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
|
|
Categories; Categories = Categories->getNextClassExtension())
|
|
ImplMethodsVsClassMethods(S, IMPDecl,
|
|
const_cast<ObjCCategoryDecl*>(Categories),
|
|
IncompleteImpl);
|
|
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
|
|
// For extended class, unimplemented methods in its protocols will
|
|
// be reported in the primary class.
|
|
if (!C->IsClassExtension()) {
|
|
for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
|
|
E = C->protocol_end(); PI != E; ++PI)
|
|
CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
|
|
InsMap, ClsMap, CDecl);
|
|
// Report unimplemented properties in the category as well.
|
|
// When reporting on missing setter/getters, do not report when
|
|
// setter/getter is implemented in category's primary class
|
|
// implementation.
|
|
if (ObjCInterfaceDecl *ID = C->getClassInterface())
|
|
if (ObjCImplDecl *IMP = ID->getImplementation()) {
|
|
for (ObjCImplementationDecl::instmeth_iterator
|
|
I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
|
|
InsMap.insert((*I)->getSelector());
|
|
}
|
|
DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
|
|
}
|
|
} else
|
|
assert(false && "invalid ObjCContainerDecl type.");
|
|
}
|
|
|
|
/// ActOnForwardClassDeclaration -
|
|
Decl *
|
|
Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
|
|
IdentifierInfo **IdentList,
|
|
SourceLocation *IdentLocs,
|
|
unsigned NumElts) {
|
|
llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// Check for another declaration kind with the same name.
|
|
NamedDecl *PrevDecl
|
|
= LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
|
|
LookupOrdinaryName, ForRedeclaration);
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = 0;
|
|
}
|
|
|
|
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
|
|
// GCC apparently allows the following idiom:
|
|
//
|
|
// typedef NSObject < XCElementTogglerP > XCElementToggler;
|
|
// @class XCElementToggler;
|
|
//
|
|
// FIXME: Make an extension?
|
|
TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
|
|
if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
|
|
Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
} else {
|
|
// a forward class declaration matching a typedef name of a class refers
|
|
// to the underlying class.
|
|
if (const ObjCObjectType *OI =
|
|
TDD->getUnderlyingType()->getAs<ObjCObjectType>())
|
|
PrevDecl = OI->getInterface();
|
|
}
|
|
}
|
|
ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
|
|
if (!IDecl) { // Not already seen? Make a forward decl.
|
|
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
|
|
IdentList[i], IdentLocs[i], true);
|
|
|
|
// Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
|
|
// the current DeclContext. This prevents clients that walk DeclContext
|
|
// from seeing the imaginary ObjCInterfaceDecl until it is actually
|
|
// declared later (if at all). We also take care to explicitly make
|
|
// sure this declaration is visible for name lookup.
|
|
PushOnScopeChains(IDecl, TUScope, false);
|
|
CurContext->makeDeclVisibleInContext(IDecl, true);
|
|
}
|
|
|
|
Interfaces.push_back(IDecl);
|
|
}
|
|
|
|
assert(Interfaces.size() == NumElts);
|
|
ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
|
|
Interfaces.data(), IdentLocs,
|
|
Interfaces.size());
|
|
CurContext->addDecl(CDecl);
|
|
CheckObjCDeclScope(CDecl);
|
|
return CDecl;
|
|
}
|
|
|
|
|
|
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
|
|
/// returns true, or false, accordingly.
|
|
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
|
|
bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
|
|
const ObjCMethodDecl *PrevMethod,
|
|
bool matchBasedOnSizeAndAlignment,
|
|
bool matchBasedOnStrictEqulity) {
|
|
QualType T1 = Context.getCanonicalType(Method->getResultType());
|
|
QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
|
|
|
|
if (T1 != T2) {
|
|
// The result types are different.
|
|
if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
|
|
return false;
|
|
// Incomplete types don't have a size and alignment.
|
|
if (T1->isIncompleteType() || T2->isIncompleteType())
|
|
return false;
|
|
// Check is based on size and alignment.
|
|
if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
|
|
return false;
|
|
}
|
|
|
|
ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
|
|
E = Method->param_end();
|
|
ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
|
|
|
|
for (; ParamI != E; ++ParamI, ++PrevI) {
|
|
assert(PrevI != PrevMethod->param_end() && "Param mismatch");
|
|
T1 = Context.getCanonicalType((*ParamI)->getType());
|
|
T2 = Context.getCanonicalType((*PrevI)->getType());
|
|
if (T1 != T2) {
|
|
// The result types are different.
|
|
if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
|
|
return false;
|
|
// Incomplete types don't have a size and alignment.
|
|
if (T1->isIncompleteType() || T2->isIncompleteType())
|
|
return false;
|
|
// Check is based on size and alignment.
|
|
if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Read the contents of the method pool for a given selector from
|
|
/// external storage.
|
|
///
|
|
/// This routine should only be called once, when the method pool has no entry
|
|
/// for this selector.
|
|
Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
|
|
assert(ExternalSource && "We need an external AST source");
|
|
assert(MethodPool.find(Sel) == MethodPool.end() &&
|
|
"Selector data already loaded into the method pool");
|
|
|
|
// Read the method list from the external source.
|
|
GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
|
|
|
|
return MethodPool.insert(std::make_pair(Sel, Methods)).first;
|
|
}
|
|
|
|
void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
|
|
bool instance) {
|
|
GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
|
|
if (Pos == MethodPool.end()) {
|
|
if (ExternalSource)
|
|
Pos = ReadMethodPool(Method->getSelector());
|
|
else
|
|
Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
|
|
GlobalMethods())).first;
|
|
}
|
|
Method->setDefined(impl);
|
|
ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
|
|
if (Entry.Method == 0) {
|
|
// Haven't seen a method with this selector name yet - add it.
|
|
Entry.Method = Method;
|
|
Entry.Next = 0;
|
|
return;
|
|
}
|
|
|
|
// We've seen a method with this name, see if we have already seen this type
|
|
// signature.
|
|
for (ObjCMethodList *List = &Entry; List; List = List->Next)
|
|
if (MatchTwoMethodDeclarations(Method, List->Method)) {
|
|
List->Method->setDefined(impl);
|
|
return;
|
|
}
|
|
|
|
// We have a new signature for an existing method - add it.
|
|
// This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
|
|
ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
|
|
Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
|
|
}
|
|
|
|
ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
|
|
bool receiverIdOrClass,
|
|
bool warn, bool instance) {
|
|
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
|
|
if (Pos == MethodPool.end()) {
|
|
if (ExternalSource)
|
|
Pos = ReadMethodPool(Sel);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
|
|
|
|
bool strictSelectorMatch = receiverIdOrClass && warn &&
|
|
(Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl) !=
|
|
Diagnostic::Ignored);
|
|
if (warn && MethList.Method && MethList.Next) {
|
|
bool issueWarning = false;
|
|
if (strictSelectorMatch)
|
|
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
|
|
// This checks if the methods differ in type mismatch.
|
|
if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
|
|
issueWarning = true;
|
|
}
|
|
|
|
if (!issueWarning)
|
|
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
|
|
// This checks if the methods differ by size & alignment.
|
|
if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
|
|
issueWarning = true;
|
|
}
|
|
|
|
if (issueWarning) {
|
|
if (strictSelectorMatch)
|
|
Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
|
|
else
|
|
Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
|
|
Diag(MethList.Method->getLocStart(), diag::note_using)
|
|
<< MethList.Method->getSourceRange();
|
|
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
|
|
Diag(Next->Method->getLocStart(), diag::note_also_found)
|
|
<< Next->Method->getSourceRange();
|
|
}
|
|
}
|
|
return MethList.Method;
|
|
}
|
|
|
|
ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
|
|
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
|
|
if (Pos == MethodPool.end())
|
|
return 0;
|
|
|
|
GlobalMethods &Methods = Pos->second;
|
|
|
|
if (Methods.first.Method && Methods.first.Method->isDefined())
|
|
return Methods.first.Method;
|
|
if (Methods.second.Method && Methods.second.Method->isDefined())
|
|
return Methods.second.Method;
|
|
return 0;
|
|
}
|
|
|
|
/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
|
|
/// identical selector names in current and its super classes and issues
|
|
/// a warning if any of their argument types are incompatible.
|
|
void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
|
|
ObjCMethodDecl *Method,
|
|
bool IsInstance) {
|
|
ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
|
|
if (ID == 0) return;
|
|
|
|
while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
|
|
ObjCMethodDecl *SuperMethodDecl =
|
|
SD->lookupMethod(Method->getSelector(), IsInstance);
|
|
if (SuperMethodDecl == 0) {
|
|
ID = SD;
|
|
continue;
|
|
}
|
|
ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
|
|
E = Method->param_end();
|
|
ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
|
|
for (; ParamI != E; ++ParamI, ++PrevI) {
|
|
// Number of parameters are the same and is guaranteed by selector match.
|
|
assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
|
|
QualType T1 = Context.getCanonicalType((*ParamI)->getType());
|
|
QualType T2 = Context.getCanonicalType((*PrevI)->getType());
|
|
// If type of arguement of method in this class does not match its
|
|
// respective argument type in the super class method, issue warning;
|
|
if (!Context.typesAreCompatible(T1, T2)) {
|
|
Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
|
|
<< T1 << T2;
|
|
Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
|
|
return;
|
|
}
|
|
}
|
|
ID = SD;
|
|
}
|
|
}
|
|
|
|
/// DiagnoseDuplicateIvars -
|
|
/// Check for duplicate ivars in the entire class at the start of
|
|
/// @implementation. This becomes necesssary because class extension can
|
|
/// add ivars to a class in random order which will not be known until
|
|
/// class's @implementation is seen.
|
|
void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
|
|
ObjCInterfaceDecl *SID) {
|
|
for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
|
|
IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
|
|
ObjCIvarDecl* Ivar = (*IVI);
|
|
if (Ivar->isInvalidDecl())
|
|
continue;
|
|
if (IdentifierInfo *II = Ivar->getIdentifier()) {
|
|
ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
|
|
if (prevIvar) {
|
|
Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
|
|
Diag(prevIvar->getLocation(), diag::note_previous_declaration);
|
|
Ivar->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note: For class/category implemenations, allMethods/allProperties is
|
|
// always null.
|
|
void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
|
|
Decl *ClassDecl,
|
|
Decl **allMethods, unsigned allNum,
|
|
Decl **allProperties, unsigned pNum,
|
|
DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
|
|
// FIXME: If we don't have a ClassDecl, we have an error. We should consider
|
|
// always passing in a decl. If the decl has an error, isInvalidDecl()
|
|
// should be true.
|
|
if (!ClassDecl)
|
|
return;
|
|
|
|
bool isInterfaceDeclKind =
|
|
isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
|
|
|| isa<ObjCProtocolDecl>(ClassDecl);
|
|
bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
|
|
|
|
if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
|
|
// FIXME: This is wrong. We shouldn't be pretending that there is
|
|
// an '@end' in the declaration.
|
|
SourceLocation L = ClassDecl->getLocation();
|
|
AtEnd.setBegin(L);
|
|
AtEnd.setEnd(L);
|
|
Diag(L, diag::warn_missing_atend);
|
|
}
|
|
|
|
DeclContext *DC = dyn_cast<DeclContext>(ClassDecl);
|
|
|
|
// FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
|
|
llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
|
|
llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
|
|
|
|
for (unsigned i = 0; i < allNum; i++ ) {
|
|
ObjCMethodDecl *Method =
|
|
cast_or_null<ObjCMethodDecl>(allMethods[i]);
|
|
|
|
if (!Method) continue; // Already issued a diagnostic.
|
|
if (Method->isInstanceMethod()) {
|
|
/// Check for instance method of the same name with incompatible types
|
|
const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
|
|
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
|
|
: false;
|
|
if ((isInterfaceDeclKind && PrevMethod && !match)
|
|
|| (checkIdenticalMethods && match)) {
|
|
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
|
|
<< Method->getDeclName();
|
|
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
|
|
} else {
|
|
DC->addDecl(Method);
|
|
InsMap[Method->getSelector()] = Method;
|
|
/// The following allows us to typecheck messages to "id".
|
|
AddInstanceMethodToGlobalPool(Method);
|
|
// verify that the instance method conforms to the same definition of
|
|
// parent methods if it shadows one.
|
|
CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
|
|
}
|
|
} else {
|
|
/// Check for class method of the same name with incompatible types
|
|
const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
|
|
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
|
|
: false;
|
|
if ((isInterfaceDeclKind && PrevMethod && !match)
|
|
|| (checkIdenticalMethods && match)) {
|
|
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
|
|
<< Method->getDeclName();
|
|
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
|
|
} else {
|
|
DC->addDecl(Method);
|
|
ClsMap[Method->getSelector()] = Method;
|
|
/// The following allows us to typecheck messages to "Class".
|
|
AddFactoryMethodToGlobalPool(Method);
|
|
// verify that the class method conforms to the same definition of
|
|
// parent methods if it shadows one.
|
|
CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
|
|
}
|
|
}
|
|
}
|
|
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
|
|
// Compares properties declared in this class to those of its
|
|
// super class.
|
|
ComparePropertiesInBaseAndSuper(I);
|
|
CompareProperties(I, I);
|
|
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
|
|
// Categories are used to extend the class by declaring new methods.
|
|
// By the same token, they are also used to add new properties. No
|
|
// need to compare the added property to those in the class.
|
|
|
|
// Compare protocol properties with those in category
|
|
CompareProperties(C, C);
|
|
if (C->IsClassExtension())
|
|
DiagnoseClassExtensionDupMethods(C, C->getClassInterface());
|
|
}
|
|
if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
|
|
if (CDecl->getIdentifier())
|
|
// ProcessPropertyDecl is responsible for diagnosing conflicts with any
|
|
// user-defined setter/getter. It also synthesizes setter/getter methods
|
|
// and adds them to the DeclContext and global method pools.
|
|
for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
|
|
E = CDecl->prop_end();
|
|
I != E; ++I)
|
|
ProcessPropertyDecl(*I, CDecl);
|
|
CDecl->setAtEndRange(AtEnd);
|
|
}
|
|
if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
|
|
IC->setAtEndRange(AtEnd);
|
|
if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
|
|
if (LangOpts.ObjCNonFragileABI2)
|
|
DefaultSynthesizeProperties(S, IC, IDecl);
|
|
ImplMethodsVsClassMethods(S, IC, IDecl);
|
|
AtomicPropertySetterGetterRules(IC, IDecl);
|
|
|
|
if (LangOpts.ObjCNonFragileABI2)
|
|
while (IDecl->getSuperClass()) {
|
|
DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
|
|
IDecl = IDecl->getSuperClass();
|
|
}
|
|
}
|
|
SetIvarInitializers(IC);
|
|
} else if (ObjCCategoryImplDecl* CatImplClass =
|
|
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
|
|
CatImplClass->setAtEndRange(AtEnd);
|
|
|
|
// Find category interface decl and then check that all methods declared
|
|
// in this interface are implemented in the category @implementation.
|
|
if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
|
|
for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
|
|
Categories; Categories = Categories->getNextClassCategory()) {
|
|
if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
|
|
ImplMethodsVsClassMethods(S, CatImplClass, Categories);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (isInterfaceDeclKind) {
|
|
// Reject invalid vardecls.
|
|
for (unsigned i = 0; i != tuvNum; i++) {
|
|
DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
|
|
for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
|
|
if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
|
|
if (!VDecl->hasExternalStorage())
|
|
Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
|
|
/// objective-c's type qualifier from the parser version of the same info.
|
|
static Decl::ObjCDeclQualifier
|
|
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
|
|
Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
|
|
if (PQTVal & ObjCDeclSpec::DQ_In)
|
|
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
|
|
if (PQTVal & ObjCDeclSpec::DQ_Inout)
|
|
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
|
|
if (PQTVal & ObjCDeclSpec::DQ_Out)
|
|
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
|
|
if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
|
|
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
|
|
if (PQTVal & ObjCDeclSpec::DQ_Byref)
|
|
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
|
|
if (PQTVal & ObjCDeclSpec::DQ_Oneway)
|
|
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline
|
|
bool containsInvalidMethodImplAttribute(const AttrVec &A) {
|
|
// The 'ibaction' attribute is allowed on method definitions because of
|
|
// how the IBAction macro is used on both method declarations and definitions.
|
|
// If the method definitions contains any other attributes, return true.
|
|
for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
|
|
if ((*i)->getKind() != attr::IBAction)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
Decl *Sema::ActOnMethodDeclaration(
|
|
SourceLocation MethodLoc, SourceLocation EndLoc,
|
|
tok::TokenKind MethodType, Decl *ClassDecl,
|
|
ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
|
|
Selector Sel,
|
|
// optional arguments. The number of types/arguments is obtained
|
|
// from the Sel.getNumArgs().
|
|
ObjCArgInfo *ArgInfo,
|
|
DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
|
|
AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
|
|
bool isVariadic) {
|
|
// Make sure we can establish a context for the method.
|
|
if (!ClassDecl) {
|
|
Diag(MethodLoc, diag::error_missing_method_context);
|
|
getCurFunction()->LabelMap.clear();
|
|
return 0;
|
|
}
|
|
QualType resultDeclType;
|
|
|
|
TypeSourceInfo *ResultTInfo = 0;
|
|
if (ReturnType) {
|
|
resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
|
|
|
|
// Methods cannot return interface types. All ObjC objects are
|
|
// passed by reference.
|
|
if (resultDeclType->isObjCObjectType()) {
|
|
Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
|
|
<< 0 << resultDeclType;
|
|
return 0;
|
|
}
|
|
} else // get the type for "id".
|
|
resultDeclType = Context.getObjCIdType();
|
|
|
|
ObjCMethodDecl* ObjCMethod =
|
|
ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
|
|
ResultTInfo,
|
|
cast<DeclContext>(ClassDecl),
|
|
MethodType == tok::minus, isVariadic,
|
|
false, false,
|
|
MethodDeclKind == tok::objc_optional ?
|
|
ObjCMethodDecl::Optional :
|
|
ObjCMethodDecl::Required);
|
|
|
|
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
|
|
|
for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
|
|
QualType ArgType;
|
|
TypeSourceInfo *DI;
|
|
|
|
if (ArgInfo[i].Type == 0) {
|
|
ArgType = Context.getObjCIdType();
|
|
DI = 0;
|
|
} else {
|
|
ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
|
|
// Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
|
|
ArgType = adjustParameterType(ArgType);
|
|
}
|
|
|
|
ParmVarDecl* Param
|
|
= ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
|
|
ArgInfo[i].Name, ArgType, DI,
|
|
SC_None, SC_None, 0);
|
|
|
|
if (ArgType->isObjCObjectType()) {
|
|
Diag(ArgInfo[i].NameLoc,
|
|
diag::err_object_cannot_be_passed_returned_by_value)
|
|
<< 1 << ArgType;
|
|
Param->setInvalidDecl();
|
|
}
|
|
|
|
Param->setObjCDeclQualifier(
|
|
CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
|
|
|
|
// Apply the attributes to the parameter.
|
|
ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
|
|
|
|
Params.push_back(Param);
|
|
}
|
|
|
|
for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
|
|
QualType ArgType = Param->getType();
|
|
if (ArgType.isNull())
|
|
ArgType = Context.getObjCIdType();
|
|
else
|
|
// Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
|
|
ArgType = adjustParameterType(ArgType);
|
|
if (ArgType->isObjCObjectType()) {
|
|
Diag(Param->getLocation(),
|
|
diag::err_object_cannot_be_passed_returned_by_value)
|
|
<< 1 << ArgType;
|
|
Param->setInvalidDecl();
|
|
}
|
|
Param->setDeclContext(ObjCMethod);
|
|
if (Param->getDeclName())
|
|
IdResolver.RemoveDecl(Param);
|
|
Params.push_back(Param);
|
|
}
|
|
|
|
ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
|
|
Sel.getNumArgs());
|
|
ObjCMethod->setObjCDeclQualifier(
|
|
CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
|
|
const ObjCMethodDecl *PrevMethod = 0;
|
|
|
|
if (AttrList)
|
|
ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
|
|
|
|
const ObjCMethodDecl *InterfaceMD = 0;
|
|
|
|
// For implementations (which can be very "coarse grain"), we add the
|
|
// method now. This allows the AST to implement lookup methods that work
|
|
// incrementally (without waiting until we parse the @end). It also allows
|
|
// us to flag multiple declaration errors as they occur.
|
|
if (ObjCImplementationDecl *ImpDecl =
|
|
dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
|
|
if (MethodType == tok::minus) {
|
|
PrevMethod = ImpDecl->getInstanceMethod(Sel);
|
|
ImpDecl->addInstanceMethod(ObjCMethod);
|
|
} else {
|
|
PrevMethod = ImpDecl->getClassMethod(Sel);
|
|
ImpDecl->addClassMethod(ObjCMethod);
|
|
}
|
|
InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
|
|
MethodType == tok::minus);
|
|
if (ObjCMethod->hasAttrs() &&
|
|
containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
|
|
Diag(EndLoc, diag::warn_attribute_method_def);
|
|
} else if (ObjCCategoryImplDecl *CatImpDecl =
|
|
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
|
|
if (MethodType == tok::minus) {
|
|
PrevMethod = CatImpDecl->getInstanceMethod(Sel);
|
|
CatImpDecl->addInstanceMethod(ObjCMethod);
|
|
} else {
|
|
PrevMethod = CatImpDecl->getClassMethod(Sel);
|
|
CatImpDecl->addClassMethod(ObjCMethod);
|
|
}
|
|
if (ObjCMethod->hasAttrs() &&
|
|
containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
|
|
Diag(EndLoc, diag::warn_attribute_method_def);
|
|
}
|
|
if (PrevMethod) {
|
|
// You can never have two method definitions with the same name.
|
|
Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
|
|
<< ObjCMethod->getDeclName();
|
|
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
|
|
// If the interface declared this method, and it was deprecated there,
|
|
// mark it deprecated here.
|
|
if (InterfaceMD)
|
|
if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) {
|
|
StringLiteral *SE = StringLiteral::CreateEmpty(Context, 1);
|
|
ObjCMethod->addAttr(::new (Context)
|
|
DeprecatedAttr(DA->getLocation(),
|
|
Context,
|
|
SE->getString()));
|
|
}
|
|
|
|
return ObjCMethod;
|
|
}
|
|
|
|
bool Sema::CheckObjCDeclScope(Decl *D) {
|
|
if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
|
|
return false;
|
|
|
|
Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
|
|
D->setInvalidDecl();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Called whenever @defs(ClassName) is encountered in the source. Inserts the
|
|
/// instance variables of ClassName into Decls.
|
|
void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
|
|
IdentifierInfo *ClassName,
|
|
llvm::SmallVectorImpl<Decl*> &Decls) {
|
|
// Check that ClassName is a valid class
|
|
ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
|
|
if (!Class) {
|
|
Diag(DeclStart, diag::err_undef_interface) << ClassName;
|
|
return;
|
|
}
|
|
if (LangOpts.ObjCNonFragileABI) {
|
|
Diag(DeclStart, diag::err_atdef_nonfragile_interface);
|
|
return;
|
|
}
|
|
|
|
// Collect the instance variables
|
|
llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
|
|
Context.DeepCollectObjCIvars(Class, true, Ivars);
|
|
// For each ivar, create a fresh ObjCAtDefsFieldDecl.
|
|
for (unsigned i = 0; i < Ivars.size(); i++) {
|
|
FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
|
|
RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
|
|
Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
|
|
ID->getIdentifier(), ID->getType(),
|
|
ID->getBitWidth());
|
|
Decls.push_back(FD);
|
|
}
|
|
|
|
// Introduce all of these fields into the appropriate scope.
|
|
for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
|
|
D != Decls.end(); ++D) {
|
|
FieldDecl *FD = cast<FieldDecl>(*D);
|
|
if (getLangOptions().CPlusPlus)
|
|
PushOnScopeChains(cast<FieldDecl>(FD), S);
|
|
else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
|
|
Record->addDecl(FD);
|
|
}
|
|
}
|
|
|
|
/// \brief Build a type-check a new Objective-C exception variable declaration.
|
|
VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
|
|
QualType T,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
bool Invalid) {
|
|
// ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
|
|
// duration shall not be qualified by an address-space qualifier."
|
|
// Since all parameters have automatic store duration, they can not have
|
|
// an address space.
|
|
if (T.getAddressSpace() != 0) {
|
|
Diag(NameLoc, diag::err_arg_with_address_space);
|
|
Invalid = true;
|
|
}
|
|
|
|
// An @catch parameter must be an unqualified object pointer type;
|
|
// FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
|
|
if (Invalid) {
|
|
// Don't do any further checking.
|
|
} else if (T->isDependentType()) {
|
|
// Okay: we don't know what this type will instantiate to.
|
|
} else if (!T->isObjCObjectPointerType()) {
|
|
Invalid = true;
|
|
Diag(NameLoc ,diag::err_catch_param_not_objc_type);
|
|
} else if (T->isObjCQualifiedIdType()) {
|
|
Invalid = true;
|
|
Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
|
|
}
|
|
|
|
VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
|
|
SC_None, SC_None);
|
|
New->setExceptionVariable(true);
|
|
|
|
if (Invalid)
|
|
New->setInvalidDecl();
|
|
return New;
|
|
}
|
|
|
|
Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
|
|
// We allow the "register" storage class on exception variables because
|
|
// GCC did, but we drop it completely. Any other storage class is an error.
|
|
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
|
|
Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
|
|
<< FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
|
|
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
|
|
Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
|
|
<< DS.getStorageClassSpec();
|
|
}
|
|
if (D.getDeclSpec().isThreadSpecified())
|
|
Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
|
|
DiagnoseFunctionSpecifiers(D);
|
|
|
|
// Check that there are no default arguments inside the type of this
|
|
// exception object (C++ only).
|
|
if (getLangOptions().CPlusPlus)
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
TagDecl *OwnedDecl = 0;
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
|
|
QualType ExceptionType = TInfo->getType();
|
|
|
|
if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
|
|
// Objective-C++: Types shall not be defined in exception types.
|
|
Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
|
|
<< Context.getTypeDeclType(OwnedDecl);
|
|
}
|
|
|
|
VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
|
|
D.getIdentifierLoc(),
|
|
D.isInvalidType());
|
|
|
|
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
|
|
if (D.getCXXScopeSpec().isSet()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
New->setInvalidDecl();
|
|
}
|
|
|
|
// Add the parameter declaration into this scope.
|
|
S->AddDecl(New);
|
|
if (D.getIdentifier())
|
|
IdResolver.AddDecl(New);
|
|
|
|
ProcessDeclAttributes(S, New, D);
|
|
|
|
if (New->hasAttr<BlocksAttr>())
|
|
Diag(New->getLocation(), diag::err_block_on_nonlocal);
|
|
return New;
|
|
}
|
|
|
|
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
|
|
/// initialization.
|
|
void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
|
|
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
|
|
for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
|
|
Iv= Iv->getNextIvar()) {
|
|
QualType QT = Context.getBaseElementType(Iv->getType());
|
|
if (QT->isRecordType())
|
|
Ivars.push_back(Iv);
|
|
}
|
|
}
|
|
|
|
void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
|
|
CXXBaseOrMemberInitializer ** initializers,
|
|
unsigned numInitializers) {
|
|
if (numInitializers > 0) {
|
|
NumIvarInitializers = numInitializers;
|
|
CXXBaseOrMemberInitializer **ivarInitializers =
|
|
new (C) CXXBaseOrMemberInitializer*[NumIvarInitializers];
|
|
memcpy(ivarInitializers, initializers,
|
|
numInitializers * sizeof(CXXBaseOrMemberInitializer*));
|
|
IvarInitializers = ivarInitializers;
|
|
}
|
|
}
|
|
|
|
void Sema::DiagnoseUseOfUnimplementedSelectors() {
|
|
if (ReferencedSelectors.empty())
|
|
return;
|
|
for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
|
|
ReferencedSelectors.begin(),
|
|
E = ReferencedSelectors.end(); S != E; ++S) {
|
|
Selector Sel = (*S).first;
|
|
if (!LookupImplementedMethodInGlobalPool(Sel))
|
|
Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
|
|
}
|
|
return;
|
|
}
|