llvm-project/llvm/tools/llvm-c-test/echo.cpp

1126 lines
36 KiB
C++

//===-- echo.cpp - tool for testing libLLVM and llvm-c API ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the --echo command in llvm-c-test.
//
// This command uses the C API to read a module and output an exact copy of it
// as output. It is used to check that the resulting module matches the input
// to validate that the C API can read and write modules properly.
//
//===----------------------------------------------------------------------===//
#include "llvm-c-test.h"
#include "llvm-c/Target.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/ErrorHandling.h"
#include <stdio.h>
#include <stdlib.h>
using namespace llvm;
// Provide DenseMapInfo for C API opaque types.
template<typename T>
struct CAPIDenseMap {};
// The default DenseMapInfo require to know about pointer alignement.
// Because the C API uses opaques pointer types, their alignement is unknown.
// As a result, we need to roll out our own implementation.
template<typename T>
struct CAPIDenseMap<T*> {
struct CAPIDenseMapInfo {
static inline T* getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
return reinterpret_cast<T*>(Val);
}
static inline T* getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(-2);
return reinterpret_cast<T*>(Val);
}
static unsigned getHashValue(const T *PtrVal) {
return hash_value(PtrVal);
}
static bool isEqual(const T *LHS, const T *RHS) { return LHS == RHS; }
};
typedef DenseMap<T*, T*, CAPIDenseMapInfo> Map;
};
typedef CAPIDenseMap<LLVMValueRef>::Map ValueMap;
typedef CAPIDenseMap<LLVMBasicBlockRef>::Map BasicBlockMap;
struct TypeCloner {
LLVMModuleRef M;
LLVMContextRef Ctx;
TypeCloner(LLVMModuleRef M): M(M), Ctx(LLVMGetModuleContext(M)) {}
LLVMTypeRef Clone(LLVMValueRef Src) {
return Clone(LLVMTypeOf(Src));
}
LLVMTypeRef Clone(LLVMTypeRef Src) {
LLVMTypeKind Kind = LLVMGetTypeKind(Src);
switch (Kind) {
case LLVMVoidTypeKind:
return LLVMVoidTypeInContext(Ctx);
case LLVMHalfTypeKind:
return LLVMHalfTypeInContext(Ctx);
case LLVMFloatTypeKind:
return LLVMFloatTypeInContext(Ctx);
case LLVMDoubleTypeKind:
return LLVMDoubleTypeInContext(Ctx);
case LLVMX86_FP80TypeKind:
return LLVMX86FP80TypeInContext(Ctx);
case LLVMFP128TypeKind:
return LLVMFP128TypeInContext(Ctx);
case LLVMPPC_FP128TypeKind:
return LLVMPPCFP128TypeInContext(Ctx);
case LLVMLabelTypeKind:
return LLVMLabelTypeInContext(Ctx);
case LLVMIntegerTypeKind:
return LLVMIntTypeInContext(Ctx, LLVMGetIntTypeWidth(Src));
case LLVMFunctionTypeKind: {
unsigned ParamCount = LLVMCountParamTypes(Src);
LLVMTypeRef* Params = nullptr;
if (ParamCount > 0) {
Params = static_cast<LLVMTypeRef*>(
safe_malloc(ParamCount * sizeof(LLVMTypeRef)));
LLVMGetParamTypes(Src, Params);
for (unsigned i = 0; i < ParamCount; i++)
Params[i] = Clone(Params[i]);
}
LLVMTypeRef FunTy = LLVMFunctionType(Clone(LLVMGetReturnType(Src)),
Params, ParamCount,
LLVMIsFunctionVarArg(Src));
if (ParamCount > 0)
free(Params);
return FunTy;
}
case LLVMStructTypeKind: {
LLVMTypeRef S = nullptr;
const char *Name = LLVMGetStructName(Src);
if (Name) {
S = LLVMGetTypeByName(M, Name);
if (S)
return S;
S = LLVMStructCreateNamed(Ctx, Name);
if (LLVMIsOpaqueStruct(Src))
return S;
}
unsigned EltCount = LLVMCountStructElementTypes(Src);
SmallVector<LLVMTypeRef, 8> Elts;
for (unsigned i = 0; i < EltCount; i++)
Elts.push_back(Clone(LLVMStructGetTypeAtIndex(Src, i)));
if (Name)
LLVMStructSetBody(S, Elts.data(), EltCount, LLVMIsPackedStruct(Src));
else
S = LLVMStructTypeInContext(Ctx, Elts.data(), EltCount,
LLVMIsPackedStruct(Src));
return S;
}
case LLVMArrayTypeKind:
return LLVMArrayType(
Clone(LLVMGetElementType(Src)),
LLVMGetArrayLength(Src)
);
case LLVMPointerTypeKind:
return LLVMPointerType(
Clone(LLVMGetElementType(Src)),
LLVMGetPointerAddressSpace(Src)
);
case LLVMVectorTypeKind:
return LLVMVectorType(
Clone(LLVMGetElementType(Src)),
LLVMGetVectorSize(Src)
);
case LLVMMetadataTypeKind:
return LLVMMetadataTypeInContext(Ctx);
case LLVMX86_MMXTypeKind:
return LLVMX86MMXTypeInContext(Ctx);
case LLVMTokenTypeKind:
return LLVMTokenTypeInContext(Ctx);
}
fprintf(stderr, "%d is not a supported typekind\n", Kind);
exit(-1);
}
};
static ValueMap clone_params(LLVMValueRef Src, LLVMValueRef Dst) {
unsigned Count = LLVMCountParams(Src);
if (Count != LLVMCountParams(Dst))
report_fatal_error("Parameter count mismatch");
ValueMap VMap;
if (Count == 0)
return VMap;
LLVMValueRef SrcFirst = LLVMGetFirstParam(Src);
LLVMValueRef DstFirst = LLVMGetFirstParam(Dst);
LLVMValueRef SrcLast = LLVMGetLastParam(Src);
LLVMValueRef DstLast = LLVMGetLastParam(Dst);
LLVMValueRef SrcCur = SrcFirst;
LLVMValueRef DstCur = DstFirst;
LLVMValueRef SrcNext = nullptr;
LLVMValueRef DstNext = nullptr;
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(SrcCur, &NameLen);
LLVMSetValueName2(DstCur, Name, NameLen);
VMap[SrcCur] = DstCur;
Count--;
SrcNext = LLVMGetNextParam(SrcCur);
DstNext = LLVMGetNextParam(DstCur);
if (SrcNext == nullptr && DstNext == nullptr) {
if (SrcCur != SrcLast)
report_fatal_error("SrcLast param does not match End");
if (DstCur != DstLast)
report_fatal_error("DstLast param does not match End");
break;
}
if (SrcNext == nullptr)
report_fatal_error("SrcNext was unexpectedly null");
if (DstNext == nullptr)
report_fatal_error("DstNext was unexpectedly null");
LLVMValueRef SrcPrev = LLVMGetPreviousParam(SrcNext);
if (SrcPrev != SrcCur)
report_fatal_error("SrcNext.Previous param is not Current");
LLVMValueRef DstPrev = LLVMGetPreviousParam(DstNext);
if (DstPrev != DstCur)
report_fatal_error("DstNext.Previous param is not Current");
SrcCur = SrcNext;
DstCur = DstNext;
}
if (Count != 0)
report_fatal_error("Parameter count does not match iteration");
return VMap;
}
static void check_value_kind(LLVMValueRef V, LLVMValueKind K) {
if (LLVMGetValueKind(V) != K)
report_fatal_error("LLVMGetValueKind returned incorrect type");
}
static LLVMValueRef clone_constant_impl(LLVMValueRef Cst, LLVMModuleRef M);
static LLVMValueRef clone_constant(LLVMValueRef Cst, LLVMModuleRef M) {
LLVMValueRef Ret = clone_constant_impl(Cst, M);
check_value_kind(Ret, LLVMGetValueKind(Cst));
return Ret;
}
static LLVMValueRef clone_constant_impl(LLVMValueRef Cst, LLVMModuleRef M) {
if (!LLVMIsAConstant(Cst))
report_fatal_error("Expected a constant");
// Maybe it is a symbol
if (LLVMIsAGlobalValue(Cst)) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cst, &NameLen);
// Try function
if (LLVMIsAFunction(Cst)) {
check_value_kind(Cst, LLVMFunctionValueKind);
LLVMValueRef Dst = LLVMGetNamedFunction(M, Name);
if (Dst)
return Dst;
report_fatal_error("Could not find function");
}
// Try global variable
if (LLVMIsAGlobalVariable(Cst)) {
check_value_kind(Cst, LLVMGlobalVariableValueKind);
LLVMValueRef Dst = LLVMGetNamedGlobal(M, Name);
if (Dst)
return Dst;
report_fatal_error("Could not find variable");
}
// Try global alias
if (LLVMIsAGlobalAlias(Cst)) {
check_value_kind(Cst, LLVMGlobalAliasValueKind);
LLVMValueRef Dst = LLVMGetNamedGlobalAlias(M, Name, NameLen);
if (Dst)
return Dst;
report_fatal_error("Could not find alias");
}
fprintf(stderr, "Could not find @%s\n", Name);
exit(-1);
}
// Try integer literal
if (LLVMIsAConstantInt(Cst)) {
check_value_kind(Cst, LLVMConstantIntValueKind);
return LLVMConstInt(TypeCloner(M).Clone(Cst),
LLVMConstIntGetZExtValue(Cst), false);
}
// Try zeroinitializer
if (LLVMIsAConstantAggregateZero(Cst)) {
check_value_kind(Cst, LLVMConstantAggregateZeroValueKind);
return LLVMConstNull(TypeCloner(M).Clone(Cst));
}
// Try constant array
if (LLVMIsAConstantArray(Cst)) {
check_value_kind(Cst, LLVMConstantArrayValueKind);
LLVMTypeRef Ty = TypeCloner(M).Clone(Cst);
unsigned EltCount = LLVMGetArrayLength(Ty);
SmallVector<LLVMValueRef, 8> Elts;
for (unsigned i = 0; i < EltCount; i++)
Elts.push_back(clone_constant(LLVMGetOperand(Cst, i), M));
return LLVMConstArray(LLVMGetElementType(Ty), Elts.data(), EltCount);
}
// Try contant data array
if (LLVMIsAConstantDataArray(Cst)) {
check_value_kind(Cst, LLVMConstantDataArrayValueKind);
LLVMTypeRef Ty = TypeCloner(M).Clone(Cst);
unsigned EltCount = LLVMGetArrayLength(Ty);
SmallVector<LLVMValueRef, 8> Elts;
for (unsigned i = 0; i < EltCount; i++)
Elts.push_back(clone_constant(LLVMGetElementAsConstant(Cst, i), M));
return LLVMConstArray(LLVMGetElementType(Ty), Elts.data(), EltCount);
}
// Try constant struct
if (LLVMIsAConstantStruct(Cst)) {
check_value_kind(Cst, LLVMConstantStructValueKind);
LLVMTypeRef Ty = TypeCloner(M).Clone(Cst);
unsigned EltCount = LLVMCountStructElementTypes(Ty);
SmallVector<LLVMValueRef, 8> Elts;
for (unsigned i = 0; i < EltCount; i++)
Elts.push_back(clone_constant(LLVMGetOperand(Cst, i), M));
if (LLVMGetStructName(Ty))
return LLVMConstNamedStruct(Ty, Elts.data(), EltCount);
return LLVMConstStructInContext(LLVMGetModuleContext(M), Elts.data(),
EltCount, LLVMIsPackedStruct(Ty));
}
// Try undef
if (LLVMIsUndef(Cst)) {
check_value_kind(Cst, LLVMUndefValueValueKind);
return LLVMGetUndef(TypeCloner(M).Clone(Cst));
}
// Try null
if (LLVMIsNull(Cst)) {
check_value_kind(Cst, LLVMConstantTokenNoneValueKind);
LLVMTypeRef Ty = TypeCloner(M).Clone(Cst);
return LLVMConstNull(Ty);
}
// Try float literal
if (LLVMIsAConstantFP(Cst)) {
check_value_kind(Cst, LLVMConstantFPValueKind);
report_fatal_error("ConstantFP is not supported");
}
// This kind of constant is not supported
if (!LLVMIsAConstantExpr(Cst))
report_fatal_error("Expected a constant expression");
// At this point, it must be a constant expression
check_value_kind(Cst, LLVMConstantExprValueKind);
LLVMOpcode Op = LLVMGetConstOpcode(Cst);
switch(Op) {
case LLVMBitCast:
return LLVMConstBitCast(clone_constant(LLVMGetOperand(Cst, 0), M),
TypeCloner(M).Clone(Cst));
default:
fprintf(stderr, "%d is not a supported opcode\n", Op);
exit(-1);
}
}
struct FunCloner {
LLVMValueRef Fun;
LLVMModuleRef M;
ValueMap VMap;
BasicBlockMap BBMap;
FunCloner(LLVMValueRef Src, LLVMValueRef Dst): Fun(Dst),
M(LLVMGetGlobalParent(Fun)), VMap(clone_params(Src, Dst)) {}
LLVMTypeRef CloneType(LLVMTypeRef Src) {
return TypeCloner(M).Clone(Src);
}
LLVMTypeRef CloneType(LLVMValueRef Src) {
return TypeCloner(M).Clone(Src);
}
// Try to clone everything in the llvm::Value hierarchy.
LLVMValueRef CloneValue(LLVMValueRef Src) {
// First, the value may be constant.
if (LLVMIsAConstant(Src))
return clone_constant(Src, M);
// Function argument should always be in the map already.
auto i = VMap.find(Src);
if (i != VMap.end())
return i->second;
if (!LLVMIsAInstruction(Src))
report_fatal_error("Expected an instruction");
auto Ctx = LLVMGetModuleContext(M);
auto Builder = LLVMCreateBuilderInContext(Ctx);
auto BB = DeclareBB(LLVMGetInstructionParent(Src));
LLVMPositionBuilderAtEnd(Builder, BB);
auto Dst = CloneInstruction(Src, Builder);
LLVMDisposeBuilder(Builder);
return Dst;
}
void CloneAttrs(LLVMValueRef Src, LLVMValueRef Dst) {
auto Ctx = LLVMGetModuleContext(M);
int ArgCount = LLVMGetNumArgOperands(Src);
for (int i = LLVMAttributeReturnIndex; i <= ArgCount; i++) {
for (unsigned k = 0, e = LLVMGetLastEnumAttributeKind(); k < e; ++k) {
if (auto SrcA = LLVMGetCallSiteEnumAttribute(Src, i, k)) {
auto Val = LLVMGetEnumAttributeValue(SrcA);
auto A = LLVMCreateEnumAttribute(Ctx, k, Val);
LLVMAddCallSiteAttribute(Dst, i, A);
}
}
}
}
LLVMValueRef CloneInstruction(LLVMValueRef Src, LLVMBuilderRef Builder) {
check_value_kind(Src, LLVMInstructionValueKind);
if (!LLVMIsAInstruction(Src))
report_fatal_error("Expected an instruction");
size_t NameLen;
const char *Name = LLVMGetValueName2(Src, &NameLen);
// Check if this is something we already computed.
{
auto i = VMap.find(Src);
if (i != VMap.end()) {
// If we have a hit, it means we already generated the instruction
// as a dependancy to somethign else. We need to make sure
// it is ordered properly.
auto I = i->second;
LLVMInstructionRemoveFromParent(I);
LLVMInsertIntoBuilderWithName(Builder, I, Name);
return I;
}
}
// We tried everything, it must be an instruction
// that hasn't been generated already.
LLVMValueRef Dst = nullptr;
LLVMOpcode Op = LLVMGetInstructionOpcode(Src);
switch(Op) {
case LLVMRet: {
int OpCount = LLVMGetNumOperands(Src);
if (OpCount == 0)
Dst = LLVMBuildRetVoid(Builder);
else
Dst = LLVMBuildRet(Builder, CloneValue(LLVMGetOperand(Src, 0)));
break;
}
case LLVMBr: {
if (!LLVMIsConditional(Src)) {
LLVMValueRef SrcOp = LLVMGetOperand(Src, 0);
LLVMBasicBlockRef SrcBB = LLVMValueAsBasicBlock(SrcOp);
Dst = LLVMBuildBr(Builder, DeclareBB(SrcBB));
break;
}
LLVMValueRef Cond = LLVMGetCondition(Src);
LLVMValueRef Else = LLVMGetOperand(Src, 1);
LLVMBasicBlockRef ElseBB = DeclareBB(LLVMValueAsBasicBlock(Else));
LLVMValueRef Then = LLVMGetOperand(Src, 2);
LLVMBasicBlockRef ThenBB = DeclareBB(LLVMValueAsBasicBlock(Then));
Dst = LLVMBuildCondBr(Builder, CloneValue(Cond), ThenBB, ElseBB);
break;
}
case LLVMSwitch:
case LLVMIndirectBr:
break;
case LLVMInvoke: {
SmallVector<LLVMValueRef, 8> Args;
int ArgCount = LLVMGetNumArgOperands(Src);
for (int i = 0; i < ArgCount; i++)
Args.push_back(CloneValue(LLVMGetOperand(Src, i)));
LLVMValueRef Fn = CloneValue(LLVMGetCalledValue(Src));
LLVMBasicBlockRef Then = DeclareBB(LLVMGetNormalDest(Src));
LLVMBasicBlockRef Unwind = DeclareBB(LLVMGetUnwindDest(Src));
Dst = LLVMBuildInvoke(Builder, Fn, Args.data(), ArgCount,
Then, Unwind, Name);
CloneAttrs(Src, Dst);
break;
}
case LLVMUnreachable:
Dst = LLVMBuildUnreachable(Builder);
break;
case LLVMAdd: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildAdd(Builder, LHS, RHS, Name);
break;
}
case LLVMSub: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildSub(Builder, LHS, RHS, Name);
break;
}
case LLVMMul: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildMul(Builder, LHS, RHS, Name);
break;
}
case LLVMUDiv: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildUDiv(Builder, LHS, RHS, Name);
break;
}
case LLVMSDiv: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildSDiv(Builder, LHS, RHS, Name);
break;
}
case LLVMURem: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildURem(Builder, LHS, RHS, Name);
break;
}
case LLVMSRem: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildSRem(Builder, LHS, RHS, Name);
break;
}
case LLVMShl: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildShl(Builder, LHS, RHS, Name);
break;
}
case LLVMLShr: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildLShr(Builder, LHS, RHS, Name);
break;
}
case LLVMAShr: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildAShr(Builder, LHS, RHS, Name);
break;
}
case LLVMAnd: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildAnd(Builder, LHS, RHS, Name);
break;
}
case LLVMOr: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildOr(Builder, LHS, RHS, Name);
break;
}
case LLVMXor: {
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildXor(Builder, LHS, RHS, Name);
break;
}
case LLVMAlloca: {
LLVMTypeRef Ty = CloneType(LLVMGetAllocatedType(Src));
Dst = LLVMBuildAlloca(Builder, Ty, Name);
break;
}
case LLVMLoad: {
LLVMValueRef Ptr = CloneValue(LLVMGetOperand(Src, 0));
Dst = LLVMBuildLoad(Builder, Ptr, Name);
LLVMSetAlignment(Dst, LLVMGetAlignment(Src));
break;
}
case LLVMStore: {
LLVMValueRef Val = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef Ptr = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildStore(Builder, Val, Ptr);
LLVMSetAlignment(Dst, LLVMGetAlignment(Src));
break;
}
case LLVMGetElementPtr: {
LLVMValueRef Ptr = CloneValue(LLVMGetOperand(Src, 0));
SmallVector<LLVMValueRef, 8> Idx;
int NumIdx = LLVMGetNumIndices(Src);
for (int i = 1; i <= NumIdx; i++)
Idx.push_back(CloneValue(LLVMGetOperand(Src, i)));
if (LLVMIsInBounds(Src))
Dst = LLVMBuildInBoundsGEP(Builder, Ptr, Idx.data(), NumIdx, Name);
else
Dst = LLVMBuildGEP(Builder, Ptr, Idx.data(), NumIdx, Name);
break;
}
case LLVMAtomicCmpXchg: {
LLVMValueRef Ptr = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef Cmp = CloneValue(LLVMGetOperand(Src, 1));
LLVMValueRef New = CloneValue(LLVMGetOperand(Src, 2));
LLVMAtomicOrdering Succ = LLVMGetCmpXchgSuccessOrdering(Src);
LLVMAtomicOrdering Fail = LLVMGetCmpXchgFailureOrdering(Src);
LLVMBool SingleThread = LLVMIsAtomicSingleThread(Src);
Dst = LLVMBuildAtomicCmpXchg(Builder, Ptr, Cmp, New, Succ, Fail,
SingleThread);
} break;
case LLVMBitCast: {
LLVMValueRef V = CloneValue(LLVMGetOperand(Src, 0));
Dst = LLVMBuildBitCast(Builder, V, CloneType(Src), Name);
break;
}
case LLVMICmp: {
LLVMIntPredicate Pred = LLVMGetICmpPredicate(Src);
LLVMValueRef LHS = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef RHS = CloneValue(LLVMGetOperand(Src, 1));
Dst = LLVMBuildICmp(Builder, Pred, LHS, RHS, Name);
break;
}
case LLVMPHI: {
// We need to aggressively set things here because of loops.
VMap[Src] = Dst = LLVMBuildPhi(Builder, CloneType(Src), Name);
SmallVector<LLVMValueRef, 8> Values;
SmallVector<LLVMBasicBlockRef, 8> Blocks;
unsigned IncomingCount = LLVMCountIncoming(Src);
for (unsigned i = 0; i < IncomingCount; ++i) {
Blocks.push_back(DeclareBB(LLVMGetIncomingBlock(Src, i)));
Values.push_back(CloneValue(LLVMGetIncomingValue(Src, i)));
}
LLVMAddIncoming(Dst, Values.data(), Blocks.data(), IncomingCount);
return Dst;
}
case LLVMCall: {
SmallVector<LLVMValueRef, 8> Args;
int ArgCount = LLVMGetNumArgOperands(Src);
for (int i = 0; i < ArgCount; i++)
Args.push_back(CloneValue(LLVMGetOperand(Src, i)));
LLVMValueRef Fn = CloneValue(LLVMGetCalledValue(Src));
Dst = LLVMBuildCall(Builder, Fn, Args.data(), ArgCount, Name);
LLVMSetTailCall(Dst, LLVMIsTailCall(Src));
CloneAttrs(Src, Dst);
break;
}
case LLVMResume: {
Dst = LLVMBuildResume(Builder, CloneValue(LLVMGetOperand(Src, 0)));
break;
}
case LLVMLandingPad: {
// The landing pad API is a bit screwed up for historical reasons.
Dst = LLVMBuildLandingPad(Builder, CloneType(Src), nullptr, 0, Name);
unsigned NumClauses = LLVMGetNumClauses(Src);
for (unsigned i = 0; i < NumClauses; ++i)
LLVMAddClause(Dst, CloneValue(LLVMGetClause(Src, i)));
LLVMSetCleanup(Dst, LLVMIsCleanup(Src));
break;
}
case LLVMCleanupRet: {
LLVMValueRef CatchPad = CloneValue(LLVMGetOperand(Src, 0));
LLVMBasicBlockRef Unwind = nullptr;
if (LLVMBasicBlockRef UDest = LLVMGetUnwindDest(Src))
Unwind = DeclareBB(UDest);
Dst = LLVMBuildCleanupRet(Builder, CatchPad, Unwind);
break;
}
case LLVMCatchRet: {
LLVMValueRef CatchPad = CloneValue(LLVMGetOperand(Src, 0));
LLVMBasicBlockRef SuccBB = DeclareBB(LLVMGetSuccessor(Src, 0));
Dst = LLVMBuildCatchRet(Builder, CatchPad, SuccBB);
break;
}
case LLVMCatchPad: {
LLVMValueRef ParentPad = CloneValue(LLVMGetParentCatchSwitch(Src));
SmallVector<LLVMValueRef, 8> Args;
int ArgCount = LLVMGetNumArgOperands(Src);
for (int i = 0; i < ArgCount; i++)
Args.push_back(CloneValue(LLVMGetOperand(Src, i)));
Dst = LLVMBuildCatchPad(Builder, ParentPad,
Args.data(), ArgCount, Name);
break;
}
case LLVMCleanupPad: {
LLVMValueRef ParentPad = CloneValue(LLVMGetOperand(Src, 0));
SmallVector<LLVMValueRef, 8> Args;
int ArgCount = LLVMGetNumArgOperands(Src);
for (int i = 0; i < ArgCount; i++)
Args.push_back(CloneValue(LLVMGetArgOperand(Src, i)));
Dst = LLVMBuildCleanupPad(Builder, ParentPad,
Args.data(), ArgCount, Name);
break;
}
case LLVMCatchSwitch: {
LLVMValueRef ParentPad = CloneValue(LLVMGetOperand(Src, 0));
LLVMBasicBlockRef UnwindBB = nullptr;
if (LLVMBasicBlockRef UDest = LLVMGetUnwindDest(Src)) {
UnwindBB = DeclareBB(UDest);
}
unsigned NumHandlers = LLVMGetNumHandlers(Src);
Dst = LLVMBuildCatchSwitch(Builder, ParentPad, UnwindBB, NumHandlers, Name);
if (NumHandlers > 0) {
LLVMBasicBlockRef *Handlers = static_cast<LLVMBasicBlockRef*>(
safe_malloc(NumHandlers * sizeof(LLVMBasicBlockRef)));
LLVMGetHandlers(Src, Handlers);
for (unsigned i = 0; i < NumHandlers; i++)
LLVMAddHandler(Dst, DeclareBB(Handlers[i]));
free(Handlers);
}
break;
}
case LLVMExtractValue: {
LLVMValueRef Agg = CloneValue(LLVMGetOperand(Src, 0));
if (LLVMGetNumIndices(Src) != 1)
report_fatal_error("Expected only one indice");
auto I = LLVMGetIndices(Src)[0];
Dst = LLVMBuildExtractValue(Builder, Agg, I, Name);
break;
}
case LLVMInsertValue: {
LLVMValueRef Agg = CloneValue(LLVMGetOperand(Src, 0));
LLVMValueRef V = CloneValue(LLVMGetOperand(Src, 1));
if (LLVMGetNumIndices(Src) != 1)
report_fatal_error("Expected only one indice");
auto I = LLVMGetIndices(Src)[0];
Dst = LLVMBuildInsertValue(Builder, Agg, V, I, Name);
break;
}
default:
break;
}
if (Dst == nullptr) {
fprintf(stderr, "%d is not a supported opcode\n", Op);
exit(-1);
}
check_value_kind(Dst, LLVMInstructionValueKind);
return VMap[Src] = Dst;
}
LLVMBasicBlockRef DeclareBB(LLVMBasicBlockRef Src) {
// Check if this is something we already computed.
{
auto i = BBMap.find(Src);
if (i != BBMap.end()) {
return i->second;
}
}
LLVMValueRef V = LLVMBasicBlockAsValue(Src);
if (!LLVMValueIsBasicBlock(V) || LLVMValueAsBasicBlock(V) != Src)
report_fatal_error("Basic block is not a basic block");
const char *Name = LLVMGetBasicBlockName(Src);
size_t NameLen;
const char *VName = LLVMGetValueName2(V, &NameLen);
if (Name != VName)
report_fatal_error("Basic block name mismatch");
LLVMBasicBlockRef BB = LLVMAppendBasicBlock(Fun, Name);
return BBMap[Src] = BB;
}
LLVMBasicBlockRef CloneBB(LLVMBasicBlockRef Src) {
LLVMBasicBlockRef BB = DeclareBB(Src);
// Make sure ordering is correct.
LLVMBasicBlockRef Prev = LLVMGetPreviousBasicBlock(Src);
if (Prev)
LLVMMoveBasicBlockAfter(BB, DeclareBB(Prev));
LLVMValueRef First = LLVMGetFirstInstruction(Src);
LLVMValueRef Last = LLVMGetLastInstruction(Src);
if (First == nullptr) {
if (Last != nullptr)
report_fatal_error("Has no first instruction, but last one");
return BB;
}
auto Ctx = LLVMGetModuleContext(M);
LLVMBuilderRef Builder = LLVMCreateBuilderInContext(Ctx);
LLVMPositionBuilderAtEnd(Builder, BB);
LLVMValueRef Cur = First;
LLVMValueRef Next = nullptr;
while(true) {
CloneInstruction(Cur, Builder);
Next = LLVMGetNextInstruction(Cur);
if (Next == nullptr) {
if (Cur != Last)
report_fatal_error("Final instruction does not match Last");
break;
}
LLVMValueRef Prev = LLVMGetPreviousInstruction(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous instruction is not Current");
Cur = Next;
}
LLVMDisposeBuilder(Builder);
return BB;
}
void CloneBBs(LLVMValueRef Src) {
unsigned Count = LLVMCountBasicBlocks(Src);
if (Count == 0)
return;
LLVMBasicBlockRef First = LLVMGetFirstBasicBlock(Src);
LLVMBasicBlockRef Last = LLVMGetLastBasicBlock(Src);
LLVMBasicBlockRef Cur = First;
LLVMBasicBlockRef Next = nullptr;
while(true) {
CloneBB(Cur);
Count--;
Next = LLVMGetNextBasicBlock(Cur);
if (Next == nullptr) {
if (Cur != Last)
report_fatal_error("Final basic block does not match Last");
break;
}
LLVMBasicBlockRef Prev = LLVMGetPreviousBasicBlock(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous basic bloc is not Current");
Cur = Next;
}
if (Count != 0)
report_fatal_error("Basic block count does not match iterration");
}
};
static void declare_symbols(LLVMModuleRef Src, LLVMModuleRef M) {
auto Ctx = LLVMGetModuleContext(M);
LLVMValueRef Begin = LLVMGetFirstGlobal(Src);
LLVMValueRef End = LLVMGetLastGlobal(Src);
LLVMValueRef Cur = Begin;
LLVMValueRef Next = nullptr;
if (!Begin) {
if (End != nullptr)
report_fatal_error("Range has an end but no beginning");
goto FunDecl;
}
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cur, &NameLen);
if (LLVMGetNamedGlobal(M, Name))
report_fatal_error("GlobalVariable already cloned");
LLVMAddGlobal(M, LLVMGetElementType(TypeCloner(M).Clone(Cur)), Name);
Next = LLVMGetNextGlobal(Cur);
if (Next == nullptr) {
if (Cur != End)
report_fatal_error("");
break;
}
LLVMValueRef Prev = LLVMGetPreviousGlobal(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous global is not Current");
Cur = Next;
}
FunDecl:
Begin = LLVMGetFirstFunction(Src);
End = LLVMGetLastFunction(Src);
if (!Begin) {
if (End != nullptr)
report_fatal_error("Range has an end but no beginning");
goto AliasDecl;
}
Cur = Begin;
Next = nullptr;
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cur, &NameLen);
if (LLVMGetNamedFunction(M, Name))
report_fatal_error("Function already cloned");
auto Ty = LLVMGetElementType(TypeCloner(M).Clone(Cur));
auto F = LLVMAddFunction(M, Name, Ty);
// Copy attributes
for (int i = LLVMAttributeFunctionIndex, c = LLVMCountParams(F);
i <= c; ++i) {
for (unsigned k = 0, e = LLVMGetLastEnumAttributeKind(); k < e; ++k) {
if (auto SrcA = LLVMGetEnumAttributeAtIndex(Cur, i, k)) {
auto Val = LLVMGetEnumAttributeValue(SrcA);
auto DstA = LLVMCreateEnumAttribute(Ctx, k, Val);
LLVMAddAttributeAtIndex(F, i, DstA);
}
}
}
Next = LLVMGetNextFunction(Cur);
if (Next == nullptr) {
if (Cur != End)
report_fatal_error("Last function does not match End");
break;
}
LLVMValueRef Prev = LLVMGetPreviousFunction(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous function is not Current");
Cur = Next;
}
AliasDecl:
Begin = LLVMGetFirstGlobalAlias(Src);
End = LLVMGetLastGlobalAlias(Src);
if (!Begin) {
if (End != nullptr)
report_fatal_error("Range has an end but no beginning");
return;
}
Cur = Begin;
Next = nullptr;
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cur, &NameLen);
if (LLVMGetNamedGlobalAlias(M, Name, NameLen))
report_fatal_error("Global alias already cloned");
LLVMTypeRef CurType = TypeCloner(M).Clone(Cur);
// FIXME: Allow NULL aliasee.
LLVMAddAlias(M, CurType, LLVMGetUndef(CurType), Name);
Next = LLVMGetNextGlobalAlias(Cur);
if (Next == nullptr) {
if (Cur != End)
report_fatal_error("");
break;
}
LLVMValueRef Prev = LLVMGetPreviousGlobalAlias(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous global is not Current");
Cur = Next;
}
}
static void clone_symbols(LLVMModuleRef Src, LLVMModuleRef M) {
LLVMValueRef Begin = LLVMGetFirstGlobal(Src);
LLVMValueRef End = LLVMGetLastGlobal(Src);
LLVMValueRef Cur = Begin;
LLVMValueRef Next = nullptr;
if (!Begin) {
if (End != nullptr)
report_fatal_error("Range has an end but no beginning");
goto FunClone;
}
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cur, &NameLen);
LLVMValueRef G = LLVMGetNamedGlobal(M, Name);
if (!G)
report_fatal_error("GlobalVariable must have been declared already");
if (auto I = LLVMGetInitializer(Cur))
LLVMSetInitializer(G, clone_constant(I, M));
LLVMSetGlobalConstant(G, LLVMIsGlobalConstant(Cur));
LLVMSetThreadLocal(G, LLVMIsThreadLocal(Cur));
LLVMSetExternallyInitialized(G, LLVMIsExternallyInitialized(Cur));
LLVMSetLinkage(G, LLVMGetLinkage(Cur));
LLVMSetSection(G, LLVMGetSection(Cur));
LLVMSetVisibility(G, LLVMGetVisibility(Cur));
LLVMSetUnnamedAddress(G, LLVMGetUnnamedAddress(Cur));
LLVMSetAlignment(G, LLVMGetAlignment(Cur));
Next = LLVMGetNextGlobal(Cur);
if (Next == nullptr) {
if (Cur != End)
report_fatal_error("");
break;
}
LLVMValueRef Prev = LLVMGetPreviousGlobal(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous global is not Current");
Cur = Next;
}
FunClone:
Begin = LLVMGetFirstFunction(Src);
End = LLVMGetLastFunction(Src);
if (!Begin) {
if (End != nullptr)
report_fatal_error("Range has an end but no beginning");
goto AliasClone;
}
Cur = Begin;
Next = nullptr;
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cur, &NameLen);
LLVMValueRef Fun = LLVMGetNamedFunction(M, Name);
if (!Fun)
report_fatal_error("Function must have been declared already");
if (LLVMHasPersonalityFn(Cur)) {
size_t FNameLen;
const char *FName = LLVMGetValueName2(LLVMGetPersonalityFn(Cur),
&FNameLen);
LLVMValueRef P = LLVMGetNamedFunction(M, FName);
if (!P)
report_fatal_error("Could not find personality function");
LLVMSetPersonalityFn(Fun, P);
}
FunCloner FC(Cur, Fun);
FC.CloneBBs(Cur);
Next = LLVMGetNextFunction(Cur);
if (Next == nullptr) {
if (Cur != End)
report_fatal_error("Last function does not match End");
break;
}
LLVMValueRef Prev = LLVMGetPreviousFunction(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous function is not Current");
Cur = Next;
}
AliasClone:
Begin = LLVMGetFirstGlobalAlias(Src);
End = LLVMGetLastGlobalAlias(Src);
if (!Begin) {
if (End != nullptr)
report_fatal_error("Range has an end but no beginning");
return;
}
Cur = Begin;
Next = nullptr;
while (true) {
size_t NameLen;
const char *Name = LLVMGetValueName2(Cur, &NameLen);
LLVMValueRef Alias = LLVMGetNamedGlobalAlias(M, Name, NameLen);
if (!Alias)
report_fatal_error("Global alias must have been declared already");
if (LLVMValueRef Aliasee = LLVMAliasGetAliasee(Cur)) {
LLVMAliasSetAliasee(Alias, clone_constant(Aliasee, M));
}
LLVMSetLinkage(Alias, LLVMGetLinkage(Cur));
LLVMSetUnnamedAddress(Alias, LLVMGetUnnamedAddress(Cur));
Next = LLVMGetNextGlobalAlias(Cur);
if (Next == nullptr) {
if (Cur != End)
report_fatal_error("Last global alias does not match End");
break;
}
LLVMValueRef Prev = LLVMGetPreviousGlobalAlias(Next);
if (Prev != Cur)
report_fatal_error("Next.Previous global alias is not Current");
Cur = Next;
}
}
int llvm_echo(void) {
LLVMEnablePrettyStackTrace();
LLVMModuleRef Src = llvm_load_module(false, true);
size_t SourceFileLen;
const char *SourceFileName = LLVMGetSourceFileName(Src, &SourceFileLen);
size_t ModuleIdentLen;
const char *ModuleName = LLVMGetModuleIdentifier(Src, &ModuleIdentLen);
LLVMContextRef Ctx = LLVMContextCreate();
LLVMModuleRef M = LLVMModuleCreateWithNameInContext(ModuleName, Ctx);
LLVMSetSourceFileName(M, SourceFileName, SourceFileLen);
LLVMSetModuleIdentifier(M, ModuleName, ModuleIdentLen);
size_t SourceFlagsLen;
LLVMModuleFlagEntry *ModuleFlags =
LLVMCopyModuleFlagsMetadata(Src, &SourceFlagsLen);
for (unsigned i = 0; i < SourceFlagsLen; ++i) {
size_t EntryNameLen;
const char *EntryName =
LLVMModuleFlagEntriesGetKey(ModuleFlags, i, &EntryNameLen);
LLVMAddModuleFlag(M, LLVMModuleFlagEntriesGetFlagBehavior(ModuleFlags, i),
EntryName, EntryNameLen,
LLVMModuleFlagEntriesGetMetadata(ModuleFlags, i));
}
LLVMSetTarget(M, LLVMGetTarget(Src));
LLVMSetModuleDataLayout(M, LLVMGetModuleDataLayout(Src));
if (strcmp(LLVMGetDataLayoutStr(M), LLVMGetDataLayoutStr(Src)))
report_fatal_error("Inconsistent DataLayout string representation");
size_t ModuleInlineAsmLen;
const char *ModuleAsm = LLVMGetModuleInlineAsm(Src, &ModuleInlineAsmLen);
LLVMSetModuleInlineAsm2(M, ModuleAsm, ModuleInlineAsmLen);
declare_symbols(Src, M);
clone_symbols(Src, M);
char *Str = LLVMPrintModuleToString(M);
fputs(Str, stdout);
LLVMDisposeModuleFlagsMetadata(ModuleFlags);
LLVMDisposeMessage(Str);
LLVMDisposeModule(Src);
LLVMDisposeModule(M);
LLVMContextDispose(Ctx);
return 0;
}