llvm-project/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp

1211 lines
40 KiB
C++

//===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include <limits>
using namespace llvm;
// Include the auto-generated portion of the compress emitter.
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
namespace {
struct RISCVOperand;
class RISCVAsmParser : public MCTargetAsmParser {
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
RISCVTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<RISCVTargetStreamer &>(TS);
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper, Twine Msg);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
// Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
// synthesize the desired immedate value into the destination register.
void emitLoadImm(unsigned DestReg, int64_t Value, MCStreamer &Out);
/// Helper for processing MC instructions that have been successfully matched
/// by MatchAndEmitInstruction. Modifications to the emitted instructions,
/// like the expansion of pseudo instructions (e.g., "li"), can be performed
/// in this method.
bool processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"
OperandMatchResultTy parseImmediate(OperandVector &Operands);
OperandMatchResultTy parseRegister(OperandVector &Operands,
bool AllowParens = false);
OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, bool ForceImmediate);
bool parseDirectiveOption();
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().getFeatureBits()[Feature])) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().getFeatureBits()[Feature]) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
public:
enum RISCVMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
static bool classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind,
int64_t &Addend);
RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".dword", ".8byte");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
};
/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
} Kind;
bool IsRV64;
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
};
RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
IsRV64 = o.IsRV64;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Token:
Tok = o.Tok;
break;
}
}
bool isToken() const override { return Kind == Token; }
bool isReg() const override { return Kind == Register; }
bool isImm() const override { return Kind == Immediate; }
bool isMem() const override { return false; }
bool evaluateConstantImm(int64_t &Imm, RISCVMCExpr::VariantKind &VK) const {
const MCExpr *Val = getImm();
bool Ret = false;
if (auto *RE = dyn_cast<RISCVMCExpr>(Val)) {
Ret = RE->evaluateAsConstant(Imm);
VK = RE->getKind();
} else if (auto CE = dyn_cast<MCConstantExpr>(Val)) {
Ret = true;
VK = RISCVMCExpr::VK_RISCV_None;
Imm = CE->getValue();
}
return Ret;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isShiftedInt<N-1, 1>(Op).
template <int N> bool isBareSimmNLsb0() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
bool IsValid;
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isShiftedInt<N - 1, 1>(Imm);
return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
}
// Predicate methods for AsmOperands defined in RISCVInstrInfo.td
bool isBareSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
/// Return true if the operand is a valid for the fence instruction e.g.
/// ('iorw').
bool isFenceArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
// Letters must be unique, taken from 'iorw', and in ascending order. This
// holds as long as each individual character is one of 'iorw' and is
// greater than the previous character.
char Prev = '\0';
for (char c : Str) {
if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
return false;
if (c <= Prev)
return false;
Prev = c;
}
return true;
}
/// Return true if the operand is a valid floating point rounding mode.
bool isFRMArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
}
bool isImmXLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
// Given only Imm, ensuring that the actually specified constant is either
// a signed or unsigned 64-bit number is unfortunately impossible.
bool IsInRange = isRV64() ? true : isInt<32>(Imm) || isUInt<32>(Imm);
return IsConstantImm && IsInRange && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImmLog2XLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
if (!evaluateConstantImm(Imm, VK) || VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenNonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
if (!evaluateConstantImm(Imm, VK) || VK != RISCVMCExpr::VK_RISCV_None)
return false;
if (Imm == 0)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImm5() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm5NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isInt<6>(Imm);
return IsValid &&
(VK == RISCVMCExpr::VK_RISCV_None || VK == RISCVMCExpr::VK_RISCV_LO);
}
bool isSImm6NonZero() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = ((Imm != 0) && isInt<6>(Imm));
return IsValid &&
(VK == RISCVMCExpr::VK_RISCV_None || VK == RISCVMCExpr::VK_RISCV_LO);
}
bool isCLUIImm() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && (Imm != 0) &&
(isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm7Lsb00() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb00() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb000() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
bool isUImm9Lsb000() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm10Lsb00NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm12() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isInt<12>(Imm);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_LO ||
VK == RISCVMCExpr::VK_RISCV_PCREL_LO);
}
bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
bool isUImm12() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isUInt<12>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
bool isSImm10Lsb0000NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm20() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isUInt<20>(Imm);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_PCREL_HI);
}
bool isSImm21Lsb0() const { return isBareSimmNLsb0<21>(); }
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
/// True if this operand is for an RV64 instruction
bool isRV64() const { return IsRV64; }
unsigned getReg() const override {
assert(Kind == Register && "Invalid type access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Immediate:
OS << *getImm();
break;
case Register:
OS << "<register x";
OS << getReg() << ">";
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
bool IsRV64) {
auto Op = make_unique<RISCVOperand>(Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = make_unique<RISCVOperand>(Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = make_unique<RISCVOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
bool IsConstant = false;
if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
IsConstant = RE->evaluateAsConstant(Imm);
} else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
IsConstant = true;
Imm = CE->getValue();
}
if (IsConstant)
Inst.addOperand(MCOperand::createImm(Imm));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addFenceArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// isFenceArg has validated the operand, meaning this cast is safe
auto SE = cast<MCSymbolRefExpr>(getImm());
unsigned Imm = 0;
for (char c : SE->getSymbol().getName()) {
switch (c) {
default: llvm_unreachable("FenceArg must contain only [iorw]");
case 'i': Imm |= RISCVFenceField::I; break;
case 'o': Imm |= RISCVFenceField::O; break;
case 'r': Imm |= RISCVFenceField::R; break;
case 'w': Imm |= RISCVFenceField::W; break;
}
}
Inst.addOperand(MCOperand::createImm(Imm));
}
// Returns the rounding mode represented by this RISCVOperand. Should only
// be called after checking isFRMArg.
RISCVFPRndMode::RoundingMode getRoundingMode() const {
// isFRMArg has validated the operand, meaning this cast is safe.
auto SE = cast<MCSymbolRefExpr>(getImm());
RISCVFPRndMode::RoundingMode FRM =
RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
return FRM;
}
void addFRMArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getRoundingMode()));
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "RISCVGenAsmMatcher.inc"
// Return the matching FPR64 register for the given FPR32.
// FIXME: Ideally this function could be removed in favour of using
// information from TableGen.
unsigned convertFPR32ToFPR64(unsigned Reg) {
switch (Reg) {
default:
llvm_unreachable("Not a recognised FPR32 register");
case RISCV::F0_32: return RISCV::F0_64;
case RISCV::F1_32: return RISCV::F1_64;
case RISCV::F2_32: return RISCV::F2_64;
case RISCV::F3_32: return RISCV::F3_64;
case RISCV::F4_32: return RISCV::F4_64;
case RISCV::F5_32: return RISCV::F5_64;
case RISCV::F6_32: return RISCV::F6_64;
case RISCV::F7_32: return RISCV::F7_64;
case RISCV::F8_32: return RISCV::F8_64;
case RISCV::F9_32: return RISCV::F9_64;
case RISCV::F10_32: return RISCV::F10_64;
case RISCV::F11_32: return RISCV::F11_64;
case RISCV::F12_32: return RISCV::F12_64;
case RISCV::F13_32: return RISCV::F13_64;
case RISCV::F14_32: return RISCV::F14_64;
case RISCV::F15_32: return RISCV::F15_64;
case RISCV::F16_32: return RISCV::F16_64;
case RISCV::F17_32: return RISCV::F17_64;
case RISCV::F18_32: return RISCV::F18_64;
case RISCV::F19_32: return RISCV::F19_64;
case RISCV::F20_32: return RISCV::F20_64;
case RISCV::F21_32: return RISCV::F21_64;
case RISCV::F22_32: return RISCV::F22_64;
case RISCV::F23_32: return RISCV::F23_64;
case RISCV::F24_32: return RISCV::F24_64;
case RISCV::F25_32: return RISCV::F25_64;
case RISCV::F26_32: return RISCV::F26_64;
case RISCV::F27_32: return RISCV::F27_64;
case RISCV::F28_32: return RISCV::F28_64;
case RISCV::F29_32: return RISCV::F29_64;
case RISCV::F30_32: return RISCV::F30_64;
case RISCV::F31_32: return RISCV::F31_64;
}
}
unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
unsigned Reg = Op.getReg();
bool IsRegFPR32 =
RISCVMCRegisterClasses[RISCV::FPR32RegClassID].contains(Reg);
bool IsRegFPR32C =
RISCVMCRegisterClasses[RISCV::FPR32CRegClassID].contains(Reg);
// As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
// register from FPR32 to FPR64 or FPR32C to FPR64C if necessary.
if ((IsRegFPR32 && Kind == MCK_FPR64) ||
(IsRegFPR32C && Kind == MCK_FPR64C)) {
Op.Reg.RegNum = convertFPR32ToFPR64(Reg);
return Match_Success;
}
return Match_InvalidOperand;
}
bool RISCVAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
Twine Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
default:
break;
case Match_Success:
return processInstruction(Inst, IDLoc, Out);
case Match_MissingFeature:
return Error(IDLoc, "instruction use requires an option to be enabled");
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_InvalidImmXLen:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constant 64-bit integer");
}
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidUImmLog2XLen:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenNonZero:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidSImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1);
case Match_InvalidSImm6NonZero:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1,
"immediate must be non-zero in the range");
case Match_InvalidCLUIImm:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 1, (1 << 5) - 1,
"immediate must be in [0xfffe0, 0xfffff] or");
case Match_InvalidUImm7Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidSImm9Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm9Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 9) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm10Lsb00NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 4, (1 << 10) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm10Lsb0000NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
"immediate must be a multiple of 16 bytes and non-zero in the range");
case Match_InvalidSImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 11),
(1 << 11) - 1);
case Match_InvalidSImm12Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1);
case Match_InvalidSImm13Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm20:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1);
case Match_InvalidSImm21Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidFenceArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be formed of letters selected in-order from 'iorw'");
}
case Match_InvalidFRMArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be a valid floating point rounding mode mnemonic");
}
case Match_InvalidBareSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
}
llvm_unreachable("Unknown match type detected!");
}
bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
StringRef Name = getLexer().getTok().getIdentifier();
if (!MatchRegisterName(Name) || !MatchRegisterAltName(Name)) {
getParser().Lex(); // Eat identifier token.
return false;
}
return Error(StartLoc, "invalid register name");
}
OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken Buf[2];
// If this a parenthesised register name is allowed, parse it atomically
if (AllowParens && getLexer().is(AsmToken::LParen)) {
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
HadParens = true;
getParser().Lex(); // Eat '('
}
}
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
unsigned RegNo = MatchRegisterName(Name);
if (RegNo == 0) {
RegNo = MatchRegisterAltName(Name);
if (RegNo == 0) {
if (HadParens)
getLexer().UnLex(Buf[0]);
return MatchOperand_NoMatch;
}
}
if (HadParens)
Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
}
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
}
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String:
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
break;
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
break;
}
case AsmToken::Percent:
return parseOperandWithModifier(Operands);
}
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::Percent) {
Error(getLoc(), "expected '%' for operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '%'
if (getLexer().getKind() != AsmToken::Identifier) {
Error(getLoc(), "expected valid identifier for operand modifier");
return MatchOperand_ParseFail;
}
StringRef Identifier = getParser().getTok().getIdentifier();
RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
Error(getLoc(), "unrecognized operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat the identifier
if (getLexer().getKind() != AsmToken::LParen) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
const MCExpr *SubExpr;
if (getParser().parseParenExpression(SubExpr, E)) {
return MatchOperand_ParseFail;
}
const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::LParen)) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
if (parseRegister(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected register");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
return MatchOperand_Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true. If ForceImmediate is true, no attempt will be made to parse the
/// operand as a register, which is needed for pseudoinstructions such as
/// call.
bool RISCVAsmParser::parseOperand(OperandVector &Operands,
bool ForceImmediate) {
// Attempt to parse token as register, unless ForceImmediate.
if (!ForceImmediate && parseRegister(Operands, true) == MatchOperand_Success)
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands) == MatchOperand_Success) {
// Parse memory base register if present
if (getLexer().is(AsmToken::LParen))
return parseMemOpBaseReg(Operands) != MatchOperand_Success;
return false;
}
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// First operand is token for instruction
Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand
bool ForceImmediate = (Name == "call" || Name == "tail");
if (parseOperand(Operands, ForceImmediate))
return true;
// Parse until end of statement, consuming commas between operands
while (getLexer().is(AsmToken::Comma)) {
// Consume comma token
getLexer().Lex();
// Parse next operand
if (parseOperand(Operands, false))
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind,
int64_t &Addend) {
Kind = RISCVMCExpr::VK_RISCV_None;
Addend = 0;
if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
Kind = RE->getKind();
Expr = RE->getSubExpr();
}
// It's a simple symbol reference or constant with no addend.
if (isa<MCConstantExpr>(Expr) || isa<MCSymbolRefExpr>(Expr))
return true;
const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
if (!BE)
return false;
if (!isa<MCSymbolRefExpr>(BE->getLHS()))
return false;
if (BE->getOpcode() != MCBinaryExpr::Add &&
BE->getOpcode() != MCBinaryExpr::Sub)
return false;
// We are able to support the subtraction of two symbol references
if (BE->getOpcode() == MCBinaryExpr::Sub &&
isa<MCSymbolRefExpr>(BE->getRHS()))
return true;
// See if the addend is a constant, otherwise there's more going
// on here than we can deal with.
auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
if (!AddendExpr)
return false;
Addend = AddendExpr->getValue();
if (BE->getOpcode() == MCBinaryExpr::Sub)
Addend = -Addend;
// It's some symbol reference + a constant addend
return Kind != RISCVMCExpr::VK_RISCV_Invalid;
}
bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
// This returns false if this function recognizes the directive
// regardless of whether it is successfully handles or reports an
// error. Otherwise it returns true to give the generic parser a
// chance at recognizing it.
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".option")
return parseDirectiveOption();
return true;
}
bool RISCVAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected identifier");
StringRef Option = Tok.getIdentifier();
if (Option == "rvc") {
getTargetStreamer().emitDirectiveOptionRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
setFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "norvc") {
getTargetStreamer().emitDirectiveOptionNoRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
clearFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'rvc' or 'norvc'");
Parser.eatToEndOfStatement();
return false;
}
void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
CInst.setLoc(Inst.getLoc());
S.EmitInstruction((Res ? CInst : Inst), getSTI());
}
void RISCVAsmParser::emitLoadImm(unsigned DestReg, int64_t Value,
MCStreamer &Out) {
if (isInt<32>(Value)) {
// Emits the MC instructions for loading a 32-bit constant into a register.
//
// Depending on the active bits in the immediate Value v, the following
// instruction sequences are emitted:
//
// v == 0 : ADDI(W)
// v[0,12) != 0 && v[12,32) == 0 : ADDI(W)
// v[0,12) == 0 && v[12,32) != 0 : LUI
// v[0,32) != 0 : LUI+ADDI(W)
//
int64_t Hi20 = ((Value + 0x800) >> 12) & 0xFFFFF;
int64_t Lo12 = SignExtend64<12>(Value);
unsigned SrcReg = RISCV::X0;
if (Hi20) {
emitToStreamer(Out,
MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Hi20));
SrcReg = DestReg;
}
if (Lo12 || Hi20 == 0) {
unsigned AddiOpcode =
STI->hasFeature(RISCV::Feature64Bit) ? RISCV::ADDIW : RISCV::ADDI;
emitToStreamer(Out, MCInstBuilder(AddiOpcode)
.addReg(DestReg)
.addReg(SrcReg)
.addImm(Lo12));
}
return;
}
assert(STI->hasFeature(RISCV::Feature64Bit) &&
"Target must be 64-bit to support a >32-bit constant");
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
// while the following ADDI instructions contribute up to 12 bits each.
//
// On the first glance, implementing this seems to be possible by simply
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
// fact that ADDI performs a sign extended addition, doing it like that would
// only be possible when at most 11 bits of the ADDI instructions are used.
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
// requires that the constant is processed starting with the least significant
// bit.
//
// In the following, constants are processed from LSB to MSB but instruction
// emission is performed from MSB to LSB by recursively calling
// emitLoadImm. In each recursion, first the lowest 12 bits are removed
// from the constant and the optimal shift amount, which can be greater than
// 12 bits if the constant is sparse, is determined. Then, the shifted
// remaining constant is processed recursively and gets emitted as soon as it
// fits into 32 bits. The emission of the shifts and additions is subsequently
// performed when the recursion returns.
//
int64_t Lo12 = SignExtend64<12>(Value);
int64_t Hi52 = (Value + 0x800) >> 12;
int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
emitLoadImm(DestReg, Hi52, Out);
emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
.addReg(DestReg)
.addReg(DestReg)
.addImm(ShiftAmount));
if (Lo12)
emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
.addReg(DestReg)
.addReg(DestReg)
.addImm(Lo12));
}
bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
Inst.setLoc(IDLoc);
if (Inst.getOpcode() == RISCV::PseudoLI) {
auto Reg = Inst.getOperand(0).getReg();
int64_t Imm = Inst.getOperand(1).getImm();
// On RV32 the immediate here can either be a signed or an unsigned
// 32-bit number. Sign extension has to be performed to ensure that Imm
// represents the expected signed 64-bit number.
if (!isRV64())
Imm = SignExtend64<32>(Imm);
emitLoadImm(Reg, Imm, Out);
return false;
}
emitToStreamer(Out, Inst);
return false;
}
extern "C" void LLVMInitializeRISCVAsmParser() {
RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}