forked from OSchip/llvm-project
2320 lines
96 KiB
C++
2320 lines
96 KiB
C++
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs loop invariant code motion, attempting to remove as much
|
|
// code from the body of a loop as possible. It does this by either hoisting
|
|
// code into the preheader block, or by sinking code to the exit blocks if it is
|
|
// safe. This pass also promotes must-aliased memory locations in the loop to
|
|
// live in registers, thus hoisting and sinking "invariant" loads and stores.
|
|
//
|
|
// This pass uses alias analysis for two purposes:
|
|
//
|
|
// 1. Moving loop invariant loads and calls out of loops. If we can determine
|
|
// that a load or call inside of a loop never aliases anything stored to,
|
|
// we can hoist it or sink it like any other instruction.
|
|
// 2. Scalar Promotion of Memory - If there is a store instruction inside of
|
|
// the loop, we try to move the store to happen AFTER the loop instead of
|
|
// inside of the loop. This can only happen if a few conditions are true:
|
|
// A. The pointer stored through is loop invariant
|
|
// B. There are no stores or loads in the loop which _may_ alias the
|
|
// pointer. There are no calls in the loop which mod/ref the pointer.
|
|
// If these conditions are true, we can promote the loads and stores in the
|
|
// loop of the pointer to use a temporary alloca'd variable. We then use
|
|
// the SSAUpdater to construct the appropriate SSA form for the value.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LICM.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/GuardUtils.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/MustExecute.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/PredIteratorCache.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include <algorithm>
|
|
#include <utility>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "licm"
|
|
|
|
STATISTIC(NumCreatedBlocks, "Number of blocks created");
|
|
STATISTIC(NumClonedBranches, "Number of branches cloned");
|
|
STATISTIC(NumSunk, "Number of instructions sunk out of loop");
|
|
STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
|
|
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
|
|
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
|
|
STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
|
|
|
|
/// Memory promotion is enabled by default.
|
|
static cl::opt<bool>
|
|
DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable memory promotion in LICM pass"));
|
|
|
|
static cl::opt<bool> ControlFlowHoisting(
|
|
"licm-control-flow-hoisting", cl::Hidden, cl::init(false),
|
|
cl::desc("Enable control flow (and PHI) hoisting in LICM"));
|
|
|
|
static cl::opt<unsigned> HoistSinkColdnessThreshold(
|
|
"licm-coldness-threshold", cl::Hidden, cl::init(4),
|
|
cl::desc("Relative coldness Threshold of hoisting/sinking destination "
|
|
"block for LICM to be considered beneficial"));
|
|
|
|
static cl::opt<uint32_t> MaxNumUsesTraversed(
|
|
"licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
|
|
cl::desc("Max num uses visited for identifying load "
|
|
"invariance in loop using invariant start (default = 8)"));
|
|
|
|
// Default value of zero implies we use the regular alias set tracker mechanism
|
|
// instead of the cross product using AA to identify aliasing of the memory
|
|
// location we are interested in.
|
|
static cl::opt<int>
|
|
LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
|
|
cl::desc("How many instruction to cross product using AA"));
|
|
|
|
// Experimental option to allow imprecision in LICM in pathological cases, in
|
|
// exchange for faster compile. This is to be removed if MemorySSA starts to
|
|
// address the same issue. This flag applies only when LICM uses MemorySSA
|
|
// instead on AliasSetTracker. LICM calls MemorySSAWalker's
|
|
// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
|
|
// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
|
|
// which may not be precise, since optimizeUses is capped. The result is
|
|
// correct, but we may not get as "far up" as possible to get which access is
|
|
// clobbering the one queried.
|
|
cl::opt<unsigned> llvm::SetLicmMssaOptCap(
|
|
"licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
|
|
cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
|
|
"for faster compile. Caps the MemorySSA clobbering calls."));
|
|
|
|
// Experimentally, memory promotion carries less importance than sinking and
|
|
// hoisting. Limit when we do promotion when using MemorySSA, in order to save
|
|
// compile time.
|
|
cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
|
|
"licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
|
|
cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
|
|
"effect. When MSSA in LICM is enabled, then this is the maximum "
|
|
"number of accesses allowed to be present in a loop in order to "
|
|
"enable memory promotion."));
|
|
|
|
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
|
|
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
|
|
const LoopSafetyInfo *SafetyInfo,
|
|
TargetTransformInfo *TTI, bool &FreeInLoop);
|
|
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
|
|
BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
|
|
MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
|
|
OptimizationRemarkEmitter *ORE);
|
|
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
|
|
BlockFrequencyInfo *BFI, const Loop *CurLoop,
|
|
ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
|
|
OptimizationRemarkEmitter *ORE);
|
|
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
|
|
const DominatorTree *DT,
|
|
const Loop *CurLoop,
|
|
const LoopSafetyInfo *SafetyInfo,
|
|
OptimizationRemarkEmitter *ORE,
|
|
const Instruction *CtxI = nullptr);
|
|
static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
|
|
AliasSetTracker *CurAST, Loop *CurLoop,
|
|
AAResults *AA);
|
|
static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
|
|
Loop *CurLoop,
|
|
SinkAndHoistLICMFlags &Flags);
|
|
static Instruction *cloneInstructionInExitBlock(
|
|
Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
|
|
const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
|
|
|
|
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
|
|
AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
|
|
|
|
static void moveInstructionBefore(Instruction &I, Instruction &Dest,
|
|
ICFLoopSafetyInfo &SafetyInfo,
|
|
MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
|
|
|
|
namespace {
|
|
struct LoopInvariantCodeMotion {
|
|
bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
|
|
BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
|
|
TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
|
|
OptimizationRemarkEmitter *ORE);
|
|
|
|
LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
|
|
unsigned LicmMssaNoAccForPromotionCap)
|
|
: LicmMssaOptCap(LicmMssaOptCap),
|
|
LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
|
|
|
|
private:
|
|
unsigned LicmMssaOptCap;
|
|
unsigned LicmMssaNoAccForPromotionCap;
|
|
|
|
std::unique_ptr<AliasSetTracker>
|
|
collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
|
|
std::unique_ptr<AliasSetTracker>
|
|
collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
|
|
MemorySSAUpdater *MSSAU);
|
|
};
|
|
|
|
struct LegacyLICMPass : public LoopPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
LegacyLICMPass(
|
|
unsigned LicmMssaOptCap = SetLicmMssaOptCap,
|
|
unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
|
|
: LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
|
|
initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
|
|
MemorySSA *MSSA = EnableMSSALoopDependency
|
|
? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
|
|
: nullptr;
|
|
bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
|
|
BlockFrequencyInfo *BFI =
|
|
hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
|
|
: nullptr;
|
|
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
|
|
return LICM.runOnLoop(
|
|
L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
|
|
&getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
|
|
&getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
|
|
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
|
|
*L->getHeader()->getParent()),
|
|
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
|
|
*L->getHeader()->getParent()),
|
|
SE ? &SE->getSE() : nullptr, MSSA, &ORE);
|
|
}
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
///
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
if (EnableMSSALoopDependency) {
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
|
|
AU.addPreserved<LazyBlockFrequencyInfoPass>();
|
|
AU.addPreserved<LazyBranchProbabilityInfoPass>();
|
|
}
|
|
|
|
private:
|
|
LoopInvariantCodeMotion LICM;
|
|
};
|
|
} // namespace
|
|
|
|
PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR, LPMUpdater &) {
|
|
// For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
|
|
|
|
LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
|
|
if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
|
|
&AR.SE, AR.MSSA, &ORE))
|
|
return PreservedAnalyses::all();
|
|
|
|
auto PA = getLoopPassPreservedAnalyses();
|
|
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<LoopAnalysis>();
|
|
if (AR.MSSA)
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
|
|
return PA;
|
|
}
|
|
|
|
char LegacyLICMPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
|
|
INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
|
|
false)
|
|
|
|
Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
|
|
Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
|
|
unsigned LicmMssaNoAccForPromotionCap) {
|
|
return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
|
|
}
|
|
|
|
/// Hoist expressions out of the specified loop. Note, alias info for inner
|
|
/// loop is not preserved so it is not a good idea to run LICM multiple
|
|
/// times on one loop.
|
|
bool LoopInvariantCodeMotion::runOnLoop(
|
|
Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
|
|
BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
|
|
ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
|
|
bool Changed = false;
|
|
|
|
assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
|
|
|
|
// If this loop has metadata indicating that LICM is not to be performed then
|
|
// just exit.
|
|
if (hasDisableLICMTransformsHint(L)) {
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<AliasSetTracker> CurAST;
|
|
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
|
bool NoOfMemAccTooLarge = false;
|
|
unsigned LicmMssaOptCounter = 0;
|
|
|
|
if (!MSSA) {
|
|
LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
|
|
CurAST = collectAliasInfoForLoop(L, LI, AA);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
|
|
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
|
|
|
|
unsigned AccessCapCount = 0;
|
|
for (auto *BB : L->getBlocks()) {
|
|
if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
|
|
for (const auto &MA : *Accesses) {
|
|
(void)MA;
|
|
AccessCapCount++;
|
|
if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
|
|
NoOfMemAccTooLarge = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (NoOfMemAccTooLarge)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get the preheader block to move instructions into...
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
|
|
// Compute loop safety information.
|
|
ICFLoopSafetyInfo SafetyInfo;
|
|
SafetyInfo.computeLoopSafetyInfo(L);
|
|
|
|
// We want to visit all of the instructions in this loop... that are not parts
|
|
// of our subloops (they have already had their invariants hoisted out of
|
|
// their loop, into this loop, so there is no need to process the BODIES of
|
|
// the subloops).
|
|
//
|
|
// Traverse the body of the loop in depth first order on the dominator tree so
|
|
// that we are guaranteed to see definitions before we see uses. This allows
|
|
// us to sink instructions in one pass, without iteration. After sinking
|
|
// instructions, we perform another pass to hoist them out of the loop.
|
|
SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
|
|
LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
|
|
/*IsSink=*/true};
|
|
if (L->hasDedicatedExits())
|
|
Changed |=
|
|
sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
|
|
CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
|
|
Flags.IsSink = false;
|
|
if (Preheader)
|
|
Changed |=
|
|
hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
|
|
CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);
|
|
|
|
// Now that all loop invariants have been removed from the loop, promote any
|
|
// memory references to scalars that we can.
|
|
// Don't sink stores from loops without dedicated block exits. Exits
|
|
// containing indirect branches are not transformed by loop simplify,
|
|
// make sure we catch that. An additional load may be generated in the
|
|
// preheader for SSA updater, so also avoid sinking when no preheader
|
|
// is available.
|
|
if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
|
|
!NoOfMemAccTooLarge) {
|
|
// Figure out the loop exits and their insertion points
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
// We can't insert into a catchswitch.
|
|
bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
|
|
return isa<CatchSwitchInst>(Exit->getTerminator());
|
|
});
|
|
|
|
if (!HasCatchSwitch) {
|
|
SmallVector<Instruction *, 8> InsertPts;
|
|
SmallVector<MemoryAccess *, 8> MSSAInsertPts;
|
|
InsertPts.reserve(ExitBlocks.size());
|
|
if (MSSAU)
|
|
MSSAInsertPts.reserve(ExitBlocks.size());
|
|
for (BasicBlock *ExitBlock : ExitBlocks) {
|
|
InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
|
|
if (MSSAU)
|
|
MSSAInsertPts.push_back(nullptr);
|
|
}
|
|
|
|
PredIteratorCache PIC;
|
|
|
|
bool Promoted = false;
|
|
|
|
// Build an AST using MSSA.
|
|
if (!CurAST.get())
|
|
CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
|
|
|
|
// Loop over all of the alias sets in the tracker object.
|
|
for (AliasSet &AS : *CurAST) {
|
|
// We can promote this alias set if it has a store, if it is a "Must"
|
|
// alias set, if the pointer is loop invariant, and if we are not
|
|
// eliminating any volatile loads or stores.
|
|
if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
|
|
!L->isLoopInvariant(AS.begin()->getValue()))
|
|
continue;
|
|
|
|
assert(
|
|
!AS.empty() &&
|
|
"Must alias set should have at least one pointer element in it!");
|
|
|
|
SmallSetVector<Value *, 8> PointerMustAliases;
|
|
for (const auto &ASI : AS)
|
|
PointerMustAliases.insert(ASI.getValue());
|
|
|
|
Promoted |= promoteLoopAccessesToScalars(
|
|
PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
|
|
DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
|
|
}
|
|
|
|
// Once we have promoted values across the loop body we have to
|
|
// recursively reform LCSSA as any nested loop may now have values defined
|
|
// within the loop used in the outer loop.
|
|
// FIXME: This is really heavy handed. It would be a bit better to use an
|
|
// SSAUpdater strategy during promotion that was LCSSA aware and reformed
|
|
// it as it went.
|
|
if (Promoted)
|
|
formLCSSARecursively(*L, *DT, LI, SE);
|
|
|
|
Changed |= Promoted;
|
|
}
|
|
}
|
|
|
|
// Check that neither this loop nor its parent have had LCSSA broken. LICM is
|
|
// specifically moving instructions across the loop boundary and so it is
|
|
// especially in need of sanity checking here.
|
|
assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
|
|
assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
|
|
"Parent loop not left in LCSSA form after LICM!");
|
|
|
|
if (MSSAU.get() && VerifyMemorySSA)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
|
|
if (Changed && SE)
|
|
SE->forgetLoopDispositions(L);
|
|
return Changed;
|
|
}
|
|
|
|
/// Walk the specified region of the CFG (defined by all blocks dominated by
|
|
/// the specified block, and that are in the current loop) in reverse depth
|
|
/// first order w.r.t the DominatorTree. This allows us to visit uses before
|
|
/// definitions, allowing us to sink a loop body in one pass without iteration.
|
|
///
|
|
bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
|
|
DominatorTree *DT, BlockFrequencyInfo *BFI,
|
|
TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
|
|
Loop *CurLoop, AliasSetTracker *CurAST,
|
|
MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
|
|
SinkAndHoistLICMFlags &Flags,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
|
|
// Verify inputs.
|
|
assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
|
|
CurLoop != nullptr && SafetyInfo != nullptr &&
|
|
"Unexpected input to sinkRegion.");
|
|
assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
|
|
"Either AliasSetTracker or MemorySSA should be initialized.");
|
|
|
|
// We want to visit children before parents. We will enque all the parents
|
|
// before their children in the worklist and process the worklist in reverse
|
|
// order.
|
|
SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
|
|
|
|
bool Changed = false;
|
|
for (DomTreeNode *DTN : reverse(Worklist)) {
|
|
BasicBlock *BB = DTN->getBlock();
|
|
// Only need to process the contents of this block if it is not part of a
|
|
// subloop (which would already have been processed).
|
|
if (inSubLoop(BB, CurLoop, LI))
|
|
continue;
|
|
|
|
for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
|
|
Instruction &I = *--II;
|
|
|
|
// If the instruction is dead, we would try to sink it because it isn't
|
|
// used in the loop, instead, just delete it.
|
|
if (isInstructionTriviallyDead(&I, TLI)) {
|
|
LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
|
|
salvageKnowledge(&I);
|
|
salvageDebugInfo(I);
|
|
++II;
|
|
eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if we can sink this instruction to the exit blocks
|
|
// of the loop. We can do this if the all users of the instruction are
|
|
// outside of the loop. In this case, it doesn't even matter if the
|
|
// operands of the instruction are loop invariant.
|
|
//
|
|
bool FreeInLoop = false;
|
|
if (!I.mayHaveSideEffects() &&
|
|
isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
|
|
canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
|
|
ORE)) {
|
|
if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
|
|
if (!FreeInLoop) {
|
|
++II;
|
|
salvageDebugInfo(I);
|
|
eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
|
|
}
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (MSSAU && VerifyMemorySSA)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
// This is a helper class for hoistRegion to make it able to hoist control flow
|
|
// in order to be able to hoist phis. The way this works is that we initially
|
|
// start hoisting to the loop preheader, and when we see a loop invariant branch
|
|
// we make note of this. When we then come to hoist an instruction that's
|
|
// conditional on such a branch we duplicate the branch and the relevant control
|
|
// flow, then hoist the instruction into the block corresponding to its original
|
|
// block in the duplicated control flow.
|
|
class ControlFlowHoister {
|
|
private:
|
|
// Information about the loop we are hoisting from
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
Loop *CurLoop;
|
|
MemorySSAUpdater *MSSAU;
|
|
|
|
// A map of blocks in the loop to the block their instructions will be hoisted
|
|
// to.
|
|
DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
|
|
|
|
// The branches that we can hoist, mapped to the block that marks a
|
|
// convergence point of their control flow.
|
|
DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
|
|
|
|
public:
|
|
ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
|
|
MemorySSAUpdater *MSSAU)
|
|
: LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
|
|
|
|
void registerPossiblyHoistableBranch(BranchInst *BI) {
|
|
// We can only hoist conditional branches with loop invariant operands.
|
|
if (!ControlFlowHoisting || !BI->isConditional() ||
|
|
!CurLoop->hasLoopInvariantOperands(BI))
|
|
return;
|
|
|
|
// The branch destinations need to be in the loop, and we don't gain
|
|
// anything by duplicating conditional branches with duplicate successors,
|
|
// as it's essentially the same as an unconditional branch.
|
|
BasicBlock *TrueDest = BI->getSuccessor(0);
|
|
BasicBlock *FalseDest = BI->getSuccessor(1);
|
|
if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
|
|
TrueDest == FalseDest)
|
|
return;
|
|
|
|
// We can hoist BI if one branch destination is the successor of the other,
|
|
// or both have common successor which we check by seeing if the
|
|
// intersection of their successors is non-empty.
|
|
// TODO: This could be expanded to allowing branches where both ends
|
|
// eventually converge to a single block.
|
|
SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
|
|
TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
|
|
FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
|
|
BasicBlock *CommonSucc = nullptr;
|
|
if (TrueDestSucc.count(FalseDest)) {
|
|
CommonSucc = FalseDest;
|
|
} else if (FalseDestSucc.count(TrueDest)) {
|
|
CommonSucc = TrueDest;
|
|
} else {
|
|
set_intersect(TrueDestSucc, FalseDestSucc);
|
|
// If there's one common successor use that.
|
|
if (TrueDestSucc.size() == 1)
|
|
CommonSucc = *TrueDestSucc.begin();
|
|
// If there's more than one pick whichever appears first in the block list
|
|
// (we can't use the value returned by TrueDestSucc.begin() as it's
|
|
// unpredicatable which element gets returned).
|
|
else if (!TrueDestSucc.empty()) {
|
|
Function *F = TrueDest->getParent();
|
|
auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
|
|
auto It = std::find_if(F->begin(), F->end(), IsSucc);
|
|
assert(It != F->end() && "Could not find successor in function");
|
|
CommonSucc = &*It;
|
|
}
|
|
}
|
|
// The common successor has to be dominated by the branch, as otherwise
|
|
// there will be some other path to the successor that will not be
|
|
// controlled by this branch so any phi we hoist would be controlled by the
|
|
// wrong condition. This also takes care of avoiding hoisting of loop back
|
|
// edges.
|
|
// TODO: In some cases this could be relaxed if the successor is dominated
|
|
// by another block that's been hoisted and we can guarantee that the
|
|
// control flow has been replicated exactly.
|
|
if (CommonSucc && DT->dominates(BI, CommonSucc))
|
|
HoistableBranches[BI] = CommonSucc;
|
|
}
|
|
|
|
bool canHoistPHI(PHINode *PN) {
|
|
// The phi must have loop invariant operands.
|
|
if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
|
|
return false;
|
|
// We can hoist phis if the block they are in is the target of hoistable
|
|
// branches which cover all of the predecessors of the block.
|
|
SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
|
|
BasicBlock *BB = PN->getParent();
|
|
for (BasicBlock *PredBB : predecessors(BB))
|
|
PredecessorBlocks.insert(PredBB);
|
|
// If we have less predecessor blocks than predecessors then the phi will
|
|
// have more than one incoming value for the same block which we can't
|
|
// handle.
|
|
// TODO: This could be handled be erasing some of the duplicate incoming
|
|
// values.
|
|
if (PredecessorBlocks.size() != pred_size(BB))
|
|
return false;
|
|
for (auto &Pair : HoistableBranches) {
|
|
if (Pair.second == BB) {
|
|
// Which blocks are predecessors via this branch depends on if the
|
|
// branch is triangle-like or diamond-like.
|
|
if (Pair.first->getSuccessor(0) == BB) {
|
|
PredecessorBlocks.erase(Pair.first->getParent());
|
|
PredecessorBlocks.erase(Pair.first->getSuccessor(1));
|
|
} else if (Pair.first->getSuccessor(1) == BB) {
|
|
PredecessorBlocks.erase(Pair.first->getParent());
|
|
PredecessorBlocks.erase(Pair.first->getSuccessor(0));
|
|
} else {
|
|
PredecessorBlocks.erase(Pair.first->getSuccessor(0));
|
|
PredecessorBlocks.erase(Pair.first->getSuccessor(1));
|
|
}
|
|
}
|
|
}
|
|
// PredecessorBlocks will now be empty if for every predecessor of BB we
|
|
// found a hoistable branch source.
|
|
return PredecessorBlocks.empty();
|
|
}
|
|
|
|
BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
|
|
if (!ControlFlowHoisting)
|
|
return CurLoop->getLoopPreheader();
|
|
// If BB has already been hoisted, return that
|
|
if (HoistDestinationMap.count(BB))
|
|
return HoistDestinationMap[BB];
|
|
|
|
// Check if this block is conditional based on a pending branch
|
|
auto HasBBAsSuccessor =
|
|
[&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
|
|
return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
|
|
Pair.first->getSuccessor(1) == BB);
|
|
};
|
|
auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
|
|
HasBBAsSuccessor);
|
|
|
|
// If not involved in a pending branch, hoist to preheader
|
|
BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
|
|
if (It == HoistableBranches.end()) {
|
|
LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
|
|
<< " as hoist destination for " << BB->getName()
|
|
<< "\n");
|
|
HoistDestinationMap[BB] = InitialPreheader;
|
|
return InitialPreheader;
|
|
}
|
|
BranchInst *BI = It->first;
|
|
assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
|
|
HoistableBranches.end() &&
|
|
"BB is expected to be the target of at most one branch");
|
|
|
|
LLVMContext &C = BB->getContext();
|
|
BasicBlock *TrueDest = BI->getSuccessor(0);
|
|
BasicBlock *FalseDest = BI->getSuccessor(1);
|
|
BasicBlock *CommonSucc = HoistableBranches[BI];
|
|
BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
|
|
|
|
// Create hoisted versions of blocks that currently don't have them
|
|
auto CreateHoistedBlock = [&](BasicBlock *Orig) {
|
|
if (HoistDestinationMap.count(Orig))
|
|
return HoistDestinationMap[Orig];
|
|
BasicBlock *New =
|
|
BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
|
|
HoistDestinationMap[Orig] = New;
|
|
DT->addNewBlock(New, HoistTarget);
|
|
if (CurLoop->getParentLoop())
|
|
CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
|
|
++NumCreatedBlocks;
|
|
LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
|
|
<< " as hoist destination for " << Orig->getName()
|
|
<< "\n");
|
|
return New;
|
|
};
|
|
BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
|
|
BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
|
|
BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
|
|
|
|
// Link up these blocks with branches.
|
|
if (!HoistCommonSucc->getTerminator()) {
|
|
// The new common successor we've generated will branch to whatever that
|
|
// hoist target branched to.
|
|
BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
|
|
assert(TargetSucc && "Expected hoist target to have a single successor");
|
|
HoistCommonSucc->moveBefore(TargetSucc);
|
|
BranchInst::Create(TargetSucc, HoistCommonSucc);
|
|
}
|
|
if (!HoistTrueDest->getTerminator()) {
|
|
HoistTrueDest->moveBefore(HoistCommonSucc);
|
|
BranchInst::Create(HoistCommonSucc, HoistTrueDest);
|
|
}
|
|
if (!HoistFalseDest->getTerminator()) {
|
|
HoistFalseDest->moveBefore(HoistCommonSucc);
|
|
BranchInst::Create(HoistCommonSucc, HoistFalseDest);
|
|
}
|
|
|
|
// If BI is being cloned to what was originally the preheader then
|
|
// HoistCommonSucc will now be the new preheader.
|
|
if (HoistTarget == InitialPreheader) {
|
|
// Phis in the loop header now need to use the new preheader.
|
|
InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
|
|
if (MSSAU)
|
|
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
|
|
HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
|
|
// The new preheader dominates the loop header.
|
|
DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
|
|
DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
|
|
DT->changeImmediateDominator(HeaderNode, PreheaderNode);
|
|
// The preheader hoist destination is now the new preheader, with the
|
|
// exception of the hoist destination of this branch.
|
|
for (auto &Pair : HoistDestinationMap)
|
|
if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
|
|
Pair.second = HoistCommonSucc;
|
|
}
|
|
|
|
// Now finally clone BI.
|
|
ReplaceInstWithInst(
|
|
HoistTarget->getTerminator(),
|
|
BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
|
|
++NumClonedBranches;
|
|
|
|
assert(CurLoop->getLoopPreheader() &&
|
|
"Hoisting blocks should not have destroyed preheader");
|
|
return HoistDestinationMap[BB];
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
|
|
// only worthwhile if the destination block is actually colder than current
|
|
// block.
|
|
static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
|
|
OptimizationRemarkEmitter *ORE,
|
|
BlockFrequencyInfo *BFI) {
|
|
// Check block frequency only when runtime profile is available
|
|
// to avoid pathological cases. With static profile, lean towards
|
|
// hosting because it helps canonicalize the loop for vectorizer.
|
|
if (!DstBlock->getParent()->hasProfileData())
|
|
return true;
|
|
|
|
if (!HoistSinkColdnessThreshold || !BFI)
|
|
return true;
|
|
|
|
BasicBlock *SrcBlock = I.getParent();
|
|
if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
|
|
BFI->getBlockFreq(SrcBlock).getFrequency()) {
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "SinkHoistInst", &I)
|
|
<< "failed to sink or hoist instruction because containing block "
|
|
"has lower frequency than destination block";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Walk the specified region of the CFG (defined by all blocks dominated by
|
|
/// the specified block, and that are in the current loop) in depth first
|
|
/// order w.r.t the DominatorTree. This allows us to visit definitions before
|
|
/// uses, allowing us to hoist a loop body in one pass without iteration.
|
|
///
|
|
bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
|
|
DominatorTree *DT, BlockFrequencyInfo *BFI,
|
|
TargetLibraryInfo *TLI, Loop *CurLoop,
|
|
AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
|
|
ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
|
|
SinkAndHoistLICMFlags &Flags,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
// Verify inputs.
|
|
assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
|
|
CurLoop != nullptr && SafetyInfo != nullptr &&
|
|
"Unexpected input to hoistRegion.");
|
|
assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
|
|
"Either AliasSetTracker or MemorySSA should be initialized.");
|
|
|
|
ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
|
|
|
|
// Keep track of instructions that have been hoisted, as they may need to be
|
|
// re-hoisted if they end up not dominating all of their uses.
|
|
SmallVector<Instruction *, 16> HoistedInstructions;
|
|
|
|
// For PHI hoisting to work we need to hoist blocks before their successors.
|
|
// We can do this by iterating through the blocks in the loop in reverse
|
|
// post-order.
|
|
LoopBlocksRPO Worklist(CurLoop);
|
|
Worklist.perform(LI);
|
|
bool Changed = false;
|
|
for (BasicBlock *BB : Worklist) {
|
|
// Only need to process the contents of this block if it is not part of a
|
|
// subloop (which would already have been processed).
|
|
if (inSubLoop(BB, CurLoop, LI))
|
|
continue;
|
|
|
|
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
|
|
Instruction &I = *II++;
|
|
// Try constant folding this instruction. If all the operands are
|
|
// constants, it is technically hoistable, but it would be better to
|
|
// just fold it.
|
|
if (Constant *C = ConstantFoldInstruction(
|
|
&I, I.getModule()->getDataLayout(), TLI)) {
|
|
LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
|
|
<< '\n');
|
|
if (CurAST)
|
|
CurAST->copyValue(&I, C);
|
|
// FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
|
|
I.replaceAllUsesWith(C);
|
|
if (isInstructionTriviallyDead(&I, TLI))
|
|
eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Try hoisting the instruction out to the preheader. We can only do
|
|
// this if all of the operands of the instruction are loop invariant and
|
|
// if it is safe to hoist the instruction. We also check block frequency
|
|
// to make sure instruction only gets hoisted into colder blocks.
|
|
// TODO: It may be safe to hoist if we are hoisting to a conditional block
|
|
// and we have accurately duplicated the control flow from the loop header
|
|
// to that block.
|
|
if (CurLoop->hasLoopInvariantOperands(&I) &&
|
|
canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
|
|
ORE) &&
|
|
worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
|
|
isSafeToExecuteUnconditionally(
|
|
I, DT, CurLoop, SafetyInfo, ORE,
|
|
CurLoop->getLoopPreheader()->getTerminator())) {
|
|
hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
|
|
MSSAU, SE, ORE);
|
|
HoistedInstructions.push_back(&I);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Attempt to remove floating point division out of the loop by
|
|
// converting it to a reciprocal multiplication.
|
|
if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
|
|
CurLoop->isLoopInvariant(I.getOperand(1))) {
|
|
auto Divisor = I.getOperand(1);
|
|
auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
|
|
auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
|
|
ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
|
|
SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
|
|
ReciprocalDivisor->insertBefore(&I);
|
|
|
|
auto Product =
|
|
BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
|
|
Product->setFastMathFlags(I.getFastMathFlags());
|
|
SafetyInfo->insertInstructionTo(Product, I.getParent());
|
|
Product->insertAfter(&I);
|
|
I.replaceAllUsesWith(Product);
|
|
eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
|
|
|
|
hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
|
|
SafetyInfo, MSSAU, SE, ORE);
|
|
HoistedInstructions.push_back(ReciprocalDivisor);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
auto IsInvariantStart = [&](Instruction &I) {
|
|
using namespace PatternMatch;
|
|
return I.use_empty() &&
|
|
match(&I, m_Intrinsic<Intrinsic::invariant_start>());
|
|
};
|
|
auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
|
|
return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
|
|
SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
|
|
};
|
|
if ((IsInvariantStart(I) || isGuard(&I)) &&
|
|
CurLoop->hasLoopInvariantOperands(&I) &&
|
|
MustExecuteWithoutWritesBefore(I)) {
|
|
hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
|
|
MSSAU, SE, ORE);
|
|
HoistedInstructions.push_back(&I);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
if (CFH.canHoistPHI(PN)) {
|
|
// Redirect incoming blocks first to ensure that we create hoisted
|
|
// versions of those blocks before we hoist the phi.
|
|
for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
|
|
PN->setIncomingBlock(
|
|
i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
|
|
hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
|
|
MSSAU, SE, ORE);
|
|
assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Remember possibly hoistable branches so we can actually hoist them
|
|
// later if needed.
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(&I))
|
|
CFH.registerPossiblyHoistableBranch(BI);
|
|
}
|
|
}
|
|
|
|
// If we hoisted instructions to a conditional block they may not dominate
|
|
// their uses that weren't hoisted (such as phis where some operands are not
|
|
// loop invariant). If so make them unconditional by moving them to their
|
|
// immediate dominator. We iterate through the instructions in reverse order
|
|
// which ensures that when we rehoist an instruction we rehoist its operands,
|
|
// and also keep track of where in the block we are rehoisting to to make sure
|
|
// that we rehoist instructions before the instructions that use them.
|
|
Instruction *HoistPoint = nullptr;
|
|
if (ControlFlowHoisting) {
|
|
for (Instruction *I : reverse(HoistedInstructions)) {
|
|
if (!llvm::all_of(I->uses(),
|
|
[&](Use &U) { return DT->dominates(I, U); })) {
|
|
BasicBlock *Dominator =
|
|
DT->getNode(I->getParent())->getIDom()->getBlock();
|
|
if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
|
|
if (HoistPoint)
|
|
assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
|
|
"New hoist point expected to dominate old hoist point");
|
|
HoistPoint = Dominator->getTerminator();
|
|
}
|
|
LLVM_DEBUG(dbgs() << "LICM rehoisting to "
|
|
<< HoistPoint->getParent()->getName()
|
|
<< ": " << *I << "\n");
|
|
moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
|
|
HoistPoint = I;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
if (MSSAU && VerifyMemorySSA)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
|
|
// Now that we've finished hoisting make sure that LI and DT are still
|
|
// valid.
|
|
#ifdef EXPENSIVE_CHECKS
|
|
if (Changed) {
|
|
assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
|
|
"Dominator tree verification failed");
|
|
LI->verify(*DT);
|
|
}
|
|
#endif
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Return true if LI is invariant within scope of the loop. LI is invariant if
|
|
// CurLoop is dominated by an invariant.start representing the same memory
|
|
// location and size as the memory location LI loads from, and also the
|
|
// invariant.start has no uses.
|
|
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
|
|
Loop *CurLoop) {
|
|
Value *Addr = LI->getOperand(0);
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
|
|
|
|
// It is not currently possible for clang to generate an invariant.start
|
|
// intrinsic with scalable vector types because we don't support thread local
|
|
// sizeless types and we don't permit sizeless types in structs or classes.
|
|
// Furthermore, even if support is added for this in future the intrinsic
|
|
// itself is defined to have a size of -1 for variable sized objects. This
|
|
// makes it impossible to verify if the intrinsic envelops our region of
|
|
// interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
|
|
// types would have a -1 parameter, but the former is clearly double the size
|
|
// of the latter.
|
|
if (LocSizeInBits.isScalable())
|
|
return false;
|
|
|
|
// if the type is i8 addrspace(x)*, we know this is the type of
|
|
// llvm.invariant.start operand
|
|
auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
|
|
LI->getPointerAddressSpace());
|
|
unsigned BitcastsVisited = 0;
|
|
// Look through bitcasts until we reach the i8* type (this is invariant.start
|
|
// operand type).
|
|
while (Addr->getType() != PtrInt8Ty) {
|
|
auto *BC = dyn_cast<BitCastInst>(Addr);
|
|
// Avoid traversing high number of bitcast uses.
|
|
if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
|
|
return false;
|
|
Addr = BC->getOperand(0);
|
|
}
|
|
|
|
unsigned UsesVisited = 0;
|
|
// Traverse all uses of the load operand value, to see if invariant.start is
|
|
// one of the uses, and whether it dominates the load instruction.
|
|
for (auto *U : Addr->users()) {
|
|
// Avoid traversing for Load operand with high number of users.
|
|
if (++UsesVisited > MaxNumUsesTraversed)
|
|
return false;
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
|
|
// If there are escaping uses of invariant.start instruction, the load maybe
|
|
// non-invariant.
|
|
if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
|
|
!II->use_empty())
|
|
continue;
|
|
ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
|
|
// The intrinsic supports having a -1 argument for variable sized objects
|
|
// so we should check for that here.
|
|
if (InvariantSize->isNegative())
|
|
continue;
|
|
uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
|
|
// Confirm the invariant.start location size contains the load operand size
|
|
// in bits. Also, the invariant.start should dominate the load, and we
|
|
// should not hoist the load out of a loop that contains this dominating
|
|
// invariant.start.
|
|
if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
|
|
DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// Return true if-and-only-if we know how to (mechanically) both hoist and
|
|
/// sink a given instruction out of a loop. Does not address legality
|
|
/// concerns such as aliasing or speculation safety.
|
|
bool isHoistableAndSinkableInst(Instruction &I) {
|
|
// Only these instructions are hoistable/sinkable.
|
|
return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
|
|
isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
|
|
isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
|
|
isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
|
|
isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
|
|
isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
|
|
isa<InsertValueInst>(I) || isa<FreezeInst>(I));
|
|
}
|
|
/// Return true if all of the alias sets within this AST are known not to
|
|
/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
|
|
bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
|
|
const Loop *L) {
|
|
if (CurAST) {
|
|
for (AliasSet &AS : *CurAST) {
|
|
if (!AS.isForwardingAliasSet() && AS.isMod()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else { /*MSSAU*/
|
|
for (auto *BB : L->getBlocks())
|
|
if (MSSAU->getMemorySSA()->getBlockDefs(BB))
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return true if I is the only Instruction with a MemoryAccess in L.
|
|
bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
|
|
const MemorySSAUpdater *MSSAU) {
|
|
for (auto *BB : L->getBlocks())
|
|
if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
|
|
int NotAPhi = 0;
|
|
for (const auto &Acc : *Accs) {
|
|
if (isa<MemoryPhi>(&Acc))
|
|
continue;
|
|
const auto *MUD = cast<MemoryUseOrDef>(&Acc);
|
|
if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
|
|
Loop *CurLoop, AliasSetTracker *CurAST,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool TargetExecutesOncePerLoop,
|
|
SinkAndHoistLICMFlags *Flags,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
// If we don't understand the instruction, bail early.
|
|
if (!isHoistableAndSinkableInst(I))
|
|
return false;
|
|
|
|
MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
|
|
if (MSSA)
|
|
assert(Flags != nullptr && "Flags cannot be null.");
|
|
|
|
// Loads have extra constraints we have to verify before we can hoist them.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (!LI->isUnordered())
|
|
return false; // Don't sink/hoist volatile or ordered atomic loads!
|
|
|
|
// Loads from constant memory are always safe to move, even if they end up
|
|
// in the same alias set as something that ends up being modified.
|
|
if (AA->pointsToConstantMemory(LI->getOperand(0)))
|
|
return true;
|
|
if (LI->hasMetadata(LLVMContext::MD_invariant_load))
|
|
return true;
|
|
|
|
if (LI->isAtomic() && !TargetExecutesOncePerLoop)
|
|
return false; // Don't risk duplicating unordered loads
|
|
|
|
// This checks for an invariant.start dominating the load.
|
|
if (isLoadInvariantInLoop(LI, DT, CurLoop))
|
|
return true;
|
|
|
|
bool Invalidated;
|
|
if (CurAST)
|
|
Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
|
|
CurLoop, AA);
|
|
else
|
|
Invalidated = pointerInvalidatedByLoopWithMSSA(
|
|
MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
|
|
// Check loop-invariant address because this may also be a sinkable load
|
|
// whose address is not necessarily loop-invariant.
|
|
if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(
|
|
DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
|
|
<< "failed to move load with loop-invariant address "
|
|
"because the loop may invalidate its value";
|
|
});
|
|
|
|
return !Invalidated;
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Don't sink or hoist dbg info; it's legal, but not useful.
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
return false;
|
|
|
|
// Don't sink calls which can throw.
|
|
if (CI->mayThrow())
|
|
return false;
|
|
|
|
using namespace PatternMatch;
|
|
if (match(CI, m_Intrinsic<Intrinsic::assume>()))
|
|
// Assumes don't actually alias anything or throw
|
|
return true;
|
|
|
|
if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
|
|
// Widenable conditions don't actually alias anything or throw
|
|
return true;
|
|
|
|
// Handle simple cases by querying alias analysis.
|
|
FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
|
|
if (Behavior == FMRB_DoesNotAccessMemory)
|
|
return true;
|
|
if (AAResults::onlyReadsMemory(Behavior)) {
|
|
// A readonly argmemonly function only reads from memory pointed to by
|
|
// it's arguments with arbitrary offsets. If we can prove there are no
|
|
// writes to this memory in the loop, we can hoist or sink.
|
|
if (AAResults::onlyAccessesArgPointees(Behavior)) {
|
|
// TODO: expand to writeable arguments
|
|
for (Value *Op : CI->arg_operands())
|
|
if (Op->getType()->isPointerTy()) {
|
|
bool Invalidated;
|
|
if (CurAST)
|
|
Invalidated = pointerInvalidatedByLoop(
|
|
MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
|
|
CurAST, CurLoop, AA);
|
|
else
|
|
Invalidated = pointerInvalidatedByLoopWithMSSA(
|
|
MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
|
|
*Flags);
|
|
if (Invalidated)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If this call only reads from memory and there are no writes to memory
|
|
// in the loop, we can hoist or sink the call as appropriate.
|
|
if (isReadOnly(CurAST, MSSAU, CurLoop))
|
|
return true;
|
|
}
|
|
|
|
// FIXME: This should use mod/ref information to see if we can hoist or
|
|
// sink the call.
|
|
|
|
return false;
|
|
} else if (auto *FI = dyn_cast<FenceInst>(&I)) {
|
|
// Fences alias (most) everything to provide ordering. For the moment,
|
|
// just give up if there are any other memory operations in the loop.
|
|
if (CurAST) {
|
|
auto Begin = CurAST->begin();
|
|
assert(Begin != CurAST->end() && "must contain FI");
|
|
if (std::next(Begin) != CurAST->end())
|
|
// constant memory for instance, TODO: handle better
|
|
return false;
|
|
auto *UniqueI = Begin->getUniqueInstruction();
|
|
if (!UniqueI)
|
|
// other memory op, give up
|
|
return false;
|
|
(void)FI; // suppress unused variable warning
|
|
assert(UniqueI == FI && "AS must contain FI");
|
|
return true;
|
|
} else // MSSAU
|
|
return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
|
|
} else if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (!SI->isUnordered())
|
|
return false; // Don't sink/hoist volatile or ordered atomic store!
|
|
|
|
// We can only hoist a store that we can prove writes a value which is not
|
|
// read or overwritten within the loop. For those cases, we fallback to
|
|
// load store promotion instead. TODO: We can extend this to cases where
|
|
// there is exactly one write to the location and that write dominates an
|
|
// arbitrary number of reads in the loop.
|
|
if (CurAST) {
|
|
auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
|
|
|
|
if (AS.isRef() || !AS.isMustAlias())
|
|
// Quick exit test, handled by the full path below as well.
|
|
return false;
|
|
auto *UniqueI = AS.getUniqueInstruction();
|
|
if (!UniqueI)
|
|
// other memory op, give up
|
|
return false;
|
|
assert(UniqueI == SI && "AS must contain SI");
|
|
return true;
|
|
} else { // MSSAU
|
|
if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
|
|
return true;
|
|
// If there are more accesses than the Promotion cap, give up, we're not
|
|
// walking a list that long.
|
|
if (Flags->NoOfMemAccTooLarge)
|
|
return false;
|
|
// Check store only if there's still "quota" to check clobber.
|
|
if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
|
|
return false;
|
|
// If there are interfering Uses (i.e. their defining access is in the
|
|
// loop), or ordered loads (stored as Defs!), don't move this store.
|
|
// Could do better here, but this is conservatively correct.
|
|
// TODO: Cache set of Uses on the first walk in runOnLoop, update when
|
|
// moving accesses. Can also extend to dominating uses.
|
|
auto *SIMD = MSSA->getMemoryAccess(SI);
|
|
for (auto *BB : CurLoop->getBlocks())
|
|
if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
|
|
for (const auto &MA : *Accesses)
|
|
if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
|
|
auto *MD = MU->getDefiningAccess();
|
|
if (!MSSA->isLiveOnEntryDef(MD) &&
|
|
CurLoop->contains(MD->getBlock()))
|
|
return false;
|
|
// Disable hoisting past potentially interfering loads. Optimized
|
|
// Uses may point to an access outside the loop, as getClobbering
|
|
// checks the previous iteration when walking the backedge.
|
|
// FIXME: More precise: no Uses that alias SI.
|
|
if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
|
|
return false;
|
|
} else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
|
|
if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
|
|
(void)LI; // Silence warning.
|
|
assert(!LI->isUnordered() && "Expected unordered load");
|
|
return false;
|
|
}
|
|
// Any call, while it may not be clobbering SI, it may be a use.
|
|
if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
|
|
// Check if the call may read from the memory locattion written
|
|
// to by SI. Check CI's attributes and arguments; the number of
|
|
// such checks performed is limited above by NoOfMemAccTooLarge.
|
|
ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
|
|
if (isModOrRefSet(MRI))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
|
|
Flags->LicmMssaOptCounter++;
|
|
// If there are no clobbering Defs in the loop, store is safe to hoist.
|
|
return MSSA->isLiveOnEntryDef(Source) ||
|
|
!CurLoop->contains(Source->getBlock());
|
|
}
|
|
}
|
|
|
|
assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
|
|
|
|
// We've established mechanical ability and aliasing, it's up to the caller
|
|
// to check fault safety
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if a PHINode is a trivially replaceable with an
|
|
/// Instruction.
|
|
/// This is true when all incoming values are that instruction.
|
|
/// This pattern occurs most often with LCSSA PHI nodes.
|
|
///
|
|
static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
|
|
for (const Value *IncValue : PN.incoming_values())
|
|
if (IncValue != &I)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the instruction is free in the loop.
|
|
static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
|
|
const TargetTransformInfo *TTI) {
|
|
|
|
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
|
|
TargetTransformInfo::TCC_Free)
|
|
return false;
|
|
// For a GEP, we cannot simply use getUserCost because currently it
|
|
// optimistically assume that a GEP will fold into addressing mode
|
|
// regardless of its users.
|
|
const BasicBlock *BB = GEP->getParent();
|
|
for (const User *U : GEP->users()) {
|
|
const Instruction *UI = cast<Instruction>(U);
|
|
if (CurLoop->contains(UI) &&
|
|
(BB != UI->getParent() ||
|
|
(!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
|
|
return false;
|
|
}
|
|
return true;
|
|
} else
|
|
return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
|
|
TargetTransformInfo::TCC_Free;
|
|
}
|
|
|
|
/// Return true if the only users of this instruction are outside of
|
|
/// the loop. If this is true, we can sink the instruction to the exit
|
|
/// blocks of the loop.
|
|
///
|
|
/// We also return true if the instruction could be folded away in lowering.
|
|
/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
|
|
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
|
|
const LoopSafetyInfo *SafetyInfo,
|
|
TargetTransformInfo *TTI, bool &FreeInLoop) {
|
|
const auto &BlockColors = SafetyInfo->getBlockColors();
|
|
bool IsFree = isFreeInLoop(I, CurLoop, TTI);
|
|
for (const User *U : I.users()) {
|
|
const Instruction *UI = cast<Instruction>(U);
|
|
if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
|
|
const BasicBlock *BB = PN->getParent();
|
|
// We cannot sink uses in catchswitches.
|
|
if (isa<CatchSwitchInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
// We need to sink a callsite to a unique funclet. Avoid sinking if the
|
|
// phi use is too muddled.
|
|
if (isa<CallInst>(I))
|
|
if (!BlockColors.empty() &&
|
|
BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
|
|
return false;
|
|
}
|
|
|
|
if (CurLoop->contains(UI)) {
|
|
if (IsFree) {
|
|
FreeInLoop = true;
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static Instruction *cloneInstructionInExitBlock(
|
|
Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
|
|
const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
|
|
Instruction *New;
|
|
if (auto *CI = dyn_cast<CallInst>(&I)) {
|
|
const auto &BlockColors = SafetyInfo->getBlockColors();
|
|
|
|
// Sinking call-sites need to be handled differently from other
|
|
// instructions. The cloned call-site needs a funclet bundle operand
|
|
// appropriate for its location in the CFG.
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
|
|
BundleIdx != BundleEnd; ++BundleIdx) {
|
|
OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
|
|
if (Bundle.getTagID() == LLVMContext::OB_funclet)
|
|
continue;
|
|
|
|
OpBundles.emplace_back(Bundle);
|
|
}
|
|
|
|
if (!BlockColors.empty()) {
|
|
const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
|
|
assert(CV.size() == 1 && "non-unique color for exit block!");
|
|
BasicBlock *BBColor = CV.front();
|
|
Instruction *EHPad = BBColor->getFirstNonPHI();
|
|
if (EHPad->isEHPad())
|
|
OpBundles.emplace_back("funclet", EHPad);
|
|
}
|
|
|
|
New = CallInst::Create(CI, OpBundles);
|
|
} else {
|
|
New = I.clone();
|
|
}
|
|
|
|
ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
|
|
if (!I.getName().empty())
|
|
New->setName(I.getName() + ".le");
|
|
|
|
if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
|
|
// Create a new MemoryAccess and let MemorySSA set its defining access.
|
|
MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
|
|
New, nullptr, New->getParent(), MemorySSA::Beginning);
|
|
if (NewMemAcc) {
|
|
if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
|
|
MSSAU->insertDef(MemDef, /*RenameUses=*/true);
|
|
else {
|
|
auto *MemUse = cast<MemoryUse>(NewMemAcc);
|
|
MSSAU->insertUse(MemUse, /*RenameUses=*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build LCSSA PHI nodes for any in-loop operands. Note that this is
|
|
// particularly cheap because we can rip off the PHI node that we're
|
|
// replacing for the number and blocks of the predecessors.
|
|
// OPT: If this shows up in a profile, we can instead finish sinking all
|
|
// invariant instructions, and then walk their operands to re-establish
|
|
// LCSSA. That will eliminate creating PHI nodes just to nuke them when
|
|
// sinking bottom-up.
|
|
for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
|
|
++OI)
|
|
if (Instruction *OInst = dyn_cast<Instruction>(*OI))
|
|
if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
|
|
if (!OLoop->contains(&PN)) {
|
|
PHINode *OpPN =
|
|
PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
|
|
OInst->getName() + ".lcssa", &ExitBlock.front());
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
|
|
*OI = OpPN;
|
|
}
|
|
return New;
|
|
}
|
|
|
|
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
|
|
AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
|
|
if (AST)
|
|
AST->deleteValue(&I);
|
|
if (MSSAU)
|
|
MSSAU->removeMemoryAccess(&I);
|
|
SafetyInfo.removeInstruction(&I);
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
static void moveInstructionBefore(Instruction &I, Instruction &Dest,
|
|
ICFLoopSafetyInfo &SafetyInfo,
|
|
MemorySSAUpdater *MSSAU,
|
|
ScalarEvolution *SE) {
|
|
SafetyInfo.removeInstruction(&I);
|
|
SafetyInfo.insertInstructionTo(&I, Dest.getParent());
|
|
I.moveBefore(&Dest);
|
|
if (MSSAU)
|
|
if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
|
|
MSSAU->getMemorySSA()->getMemoryAccess(&I)))
|
|
MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
|
|
MemorySSA::BeforeTerminator);
|
|
if (SE)
|
|
SE->forgetValue(&I);
|
|
}
|
|
|
|
static Instruction *sinkThroughTriviallyReplaceablePHI(
|
|
PHINode *TPN, Instruction *I, LoopInfo *LI,
|
|
SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
|
|
const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
|
|
MemorySSAUpdater *MSSAU) {
|
|
assert(isTriviallyReplaceablePHI(*TPN, *I) &&
|
|
"Expect only trivially replaceable PHI");
|
|
BasicBlock *ExitBlock = TPN->getParent();
|
|
Instruction *New;
|
|
auto It = SunkCopies.find(ExitBlock);
|
|
if (It != SunkCopies.end())
|
|
New = It->second;
|
|
else
|
|
New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
|
|
*I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
|
|
return New;
|
|
}
|
|
|
|
static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
|
|
BasicBlock *BB = PN->getParent();
|
|
if (!BB->canSplitPredecessors())
|
|
return false;
|
|
// It's not impossible to split EHPad blocks, but if BlockColors already exist
|
|
// it require updating BlockColors for all offspring blocks accordingly. By
|
|
// skipping such corner case, we can make updating BlockColors after splitting
|
|
// predecessor fairly simple.
|
|
if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
|
|
return false;
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
BasicBlock *BBPred = *PI;
|
|
if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
|
|
isa<CallBrInst>(BBPred->getTerminator()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
|
|
LoopInfo *LI, const Loop *CurLoop,
|
|
LoopSafetyInfo *SafetyInfo,
|
|
MemorySSAUpdater *MSSAU) {
|
|
#ifndef NDEBUG
|
|
SmallVector<BasicBlock *, 32> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
|
|
ExitBlocks.end());
|
|
#endif
|
|
BasicBlock *ExitBB = PN->getParent();
|
|
assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
|
|
|
|
// Split predecessors of the loop exit to make instructions in the loop are
|
|
// exposed to exit blocks through trivially replaceable PHIs while keeping the
|
|
// loop in the canonical form where each predecessor of each exit block should
|
|
// be contained within the loop. For example, this will convert the loop below
|
|
// from
|
|
//
|
|
// LB1:
|
|
// %v1 =
|
|
// br %LE, %LB2
|
|
// LB2:
|
|
// %v2 =
|
|
// br %LE, %LB1
|
|
// LE:
|
|
// %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
|
|
//
|
|
// to
|
|
//
|
|
// LB1:
|
|
// %v1 =
|
|
// br %LE.split, %LB2
|
|
// LB2:
|
|
// %v2 =
|
|
// br %LE.split2, %LB1
|
|
// LE.split:
|
|
// %p1 = phi [%v1, %LB1] <-- trivially replaceable
|
|
// br %LE
|
|
// LE.split2:
|
|
// %p2 = phi [%v2, %LB2] <-- trivially replaceable
|
|
// br %LE
|
|
// LE:
|
|
// %p = phi [%p1, %LE.split], [%p2, %LE.split2]
|
|
//
|
|
const auto &BlockColors = SafetyInfo->getBlockColors();
|
|
SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
|
|
while (!PredBBs.empty()) {
|
|
BasicBlock *PredBB = *PredBBs.begin();
|
|
assert(CurLoop->contains(PredBB) &&
|
|
"Expect all predecessors are in the loop");
|
|
if (PN->getBasicBlockIndex(PredBB) >= 0) {
|
|
BasicBlock *NewPred = SplitBlockPredecessors(
|
|
ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
|
|
// Since we do not allow splitting EH-block with BlockColors in
|
|
// canSplitPredecessors(), we can simply assign predecessor's color to
|
|
// the new block.
|
|
if (!BlockColors.empty())
|
|
// Grab a reference to the ColorVector to be inserted before getting the
|
|
// reference to the vector we are copying because inserting the new
|
|
// element in BlockColors might cause the map to be reallocated.
|
|
SafetyInfo->copyColors(NewPred, PredBB);
|
|
}
|
|
PredBBs.remove(PredBB);
|
|
}
|
|
}
|
|
|
|
/// When an instruction is found to only be used outside of the loop, this
|
|
/// function moves it to the exit blocks and patches up SSA form as needed.
|
|
/// This method is guaranteed to remove the original instruction from its
|
|
/// position, and may either delete it or move it to outside of the loop.
|
|
///
|
|
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
|
|
BlockFrequencyInfo *BFI, const Loop *CurLoop,
|
|
ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
|
|
<< "sinking " << ore::NV("Inst", &I);
|
|
});
|
|
bool Changed = false;
|
|
if (isa<LoadInst>(I))
|
|
++NumMovedLoads;
|
|
else if (isa<CallInst>(I))
|
|
++NumMovedCalls;
|
|
++NumSunk;
|
|
|
|
// Iterate over users to be ready for actual sinking. Replace users via
|
|
// unreachable blocks with undef and make all user PHIs trivially replaceable.
|
|
SmallPtrSet<Instruction *, 8> VisitedUsers;
|
|
for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
|
|
auto *User = cast<Instruction>(*UI);
|
|
Use &U = UI.getUse();
|
|
++UI;
|
|
|
|
if (VisitedUsers.count(User) || CurLoop->contains(User))
|
|
continue;
|
|
|
|
if (!DT->isReachableFromEntry(User->getParent())) {
|
|
U = UndefValue::get(I.getType());
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// The user must be a PHI node.
|
|
PHINode *PN = cast<PHINode>(User);
|
|
|
|
// Surprisingly, instructions can be used outside of loops without any
|
|
// exits. This can only happen in PHI nodes if the incoming block is
|
|
// unreachable.
|
|
BasicBlock *BB = PN->getIncomingBlock(U);
|
|
if (!DT->isReachableFromEntry(BB)) {
|
|
U = UndefValue::get(I.getType());
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
VisitedUsers.insert(PN);
|
|
if (isTriviallyReplaceablePHI(*PN, I))
|
|
continue;
|
|
|
|
if (!canSplitPredecessors(PN, SafetyInfo))
|
|
return Changed;
|
|
|
|
// Split predecessors of the PHI so that we can make users trivially
|
|
// replaceable.
|
|
splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
|
|
|
|
// Should rebuild the iterators, as they may be invalidated by
|
|
// splitPredecessorsOfLoopExit().
|
|
UI = I.user_begin();
|
|
UE = I.user_end();
|
|
}
|
|
|
|
if (VisitedUsers.empty())
|
|
return Changed;
|
|
|
|
#ifndef NDEBUG
|
|
SmallVector<BasicBlock *, 32> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
|
|
ExitBlocks.end());
|
|
#endif
|
|
|
|
// Clones of this instruction. Don't create more than one per exit block!
|
|
SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
|
|
|
|
// If this instruction is only used outside of the loop, then all users are
|
|
// PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
|
|
// the instruction.
|
|
// First check if I is worth sinking for all uses. Sink only when it is worth
|
|
// across all uses.
|
|
SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
|
|
SmallVector<PHINode *, 8> ExitPNs;
|
|
for (auto *UI : Users) {
|
|
auto *User = cast<Instruction>(UI);
|
|
|
|
if (CurLoop->contains(User))
|
|
continue;
|
|
|
|
PHINode *PN = cast<PHINode>(User);
|
|
assert(ExitBlockSet.count(PN->getParent()) &&
|
|
"The LCSSA PHI is not in an exit block!");
|
|
if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
|
|
return Changed;
|
|
}
|
|
|
|
ExitPNs.push_back(PN);
|
|
}
|
|
|
|
for (auto *PN : ExitPNs) {
|
|
|
|
// The PHI must be trivially replaceable.
|
|
Instruction *New = sinkThroughTriviallyReplaceablePHI(
|
|
PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
|
|
PN->replaceAllUsesWith(New);
|
|
eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// When an instruction is found to only use loop invariant operands that
|
|
/// is safe to hoist, this instruction is called to do the dirty work.
|
|
///
|
|
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
|
|
BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
|
|
MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
|
|
<< "\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
|
|
<< ore::NV("Inst", &I);
|
|
});
|
|
|
|
// Metadata can be dependent on conditions we are hoisting above.
|
|
// Conservatively strip all metadata on the instruction unless we were
|
|
// guaranteed to execute I if we entered the loop, in which case the metadata
|
|
// is valid in the loop preheader.
|
|
if (I.hasMetadataOtherThanDebugLoc() &&
|
|
// The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
|
|
// time in isGuaranteedToExecute if we don't actually have anything to
|
|
// drop. It is a compile time optimization, not required for correctness.
|
|
!SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
|
|
I.dropUnknownNonDebugMetadata();
|
|
|
|
if (isa<PHINode>(I))
|
|
// Move the new node to the end of the phi list in the destination block.
|
|
moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
|
|
else
|
|
// Move the new node to the destination block, before its terminator.
|
|
moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
|
|
|
|
I.updateLocationAfterHoist();
|
|
|
|
if (isa<LoadInst>(I))
|
|
++NumMovedLoads;
|
|
else if (isa<CallInst>(I))
|
|
++NumMovedCalls;
|
|
++NumHoisted;
|
|
}
|
|
|
|
/// Only sink or hoist an instruction if it is not a trapping instruction,
|
|
/// or if the instruction is known not to trap when moved to the preheader.
|
|
/// or if it is a trapping instruction and is guaranteed to execute.
|
|
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
|
|
const DominatorTree *DT,
|
|
const Loop *CurLoop,
|
|
const LoopSafetyInfo *SafetyInfo,
|
|
OptimizationRemarkEmitter *ORE,
|
|
const Instruction *CtxI) {
|
|
if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
|
|
return true;
|
|
|
|
bool GuaranteedToExecute =
|
|
SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
|
|
|
|
if (!GuaranteedToExecute) {
|
|
auto *LI = dyn_cast<LoadInst>(&Inst);
|
|
if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(
|
|
DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
|
|
<< "failed to hoist load with loop-invariant address "
|
|
"because load is conditionally executed";
|
|
});
|
|
}
|
|
|
|
return GuaranteedToExecute;
|
|
}
|
|
|
|
namespace {
|
|
class LoopPromoter : public LoadAndStorePromoter {
|
|
Value *SomePtr; // Designated pointer to store to.
|
|
const SmallSetVector<Value *, 8> &PointerMustAliases;
|
|
SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
|
|
SmallVectorImpl<Instruction *> &LoopInsertPts;
|
|
SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
|
|
PredIteratorCache &PredCache;
|
|
AliasSetTracker *AST;
|
|
MemorySSAUpdater *MSSAU;
|
|
LoopInfo &LI;
|
|
DebugLoc DL;
|
|
int Alignment;
|
|
bool UnorderedAtomic;
|
|
AAMDNodes AATags;
|
|
ICFLoopSafetyInfo &SafetyInfo;
|
|
|
|
Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (Loop *L = LI.getLoopFor(I->getParent()))
|
|
if (!L->contains(BB)) {
|
|
// We need to create an LCSSA PHI node for the incoming value and
|
|
// store that.
|
|
PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
|
|
I->getName() + ".lcssa", &BB->front());
|
|
for (BasicBlock *Pred : PredCache.get(BB))
|
|
PN->addIncoming(I, Pred);
|
|
return PN;
|
|
}
|
|
return V;
|
|
}
|
|
|
|
public:
|
|
LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
|
|
const SmallSetVector<Value *, 8> &PMA,
|
|
SmallVectorImpl<BasicBlock *> &LEB,
|
|
SmallVectorImpl<Instruction *> &LIP,
|
|
SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
|
|
AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
|
|
DebugLoc dl, int alignment, bool UnorderedAtomic,
|
|
const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
|
|
: LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
|
|
LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
|
|
PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
|
|
Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
|
|
SafetyInfo(SafetyInfo) {}
|
|
|
|
bool isInstInList(Instruction *I,
|
|
const SmallVectorImpl<Instruction *> &) const override {
|
|
Value *Ptr;
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
Ptr = LI->getOperand(0);
|
|
else
|
|
Ptr = cast<StoreInst>(I)->getPointerOperand();
|
|
return PointerMustAliases.count(Ptr);
|
|
}
|
|
|
|
void doExtraRewritesBeforeFinalDeletion() override {
|
|
// Insert stores after in the loop exit blocks. Each exit block gets a
|
|
// store of the live-out values that feed them. Since we've already told
|
|
// the SSA updater about the defs in the loop and the preheader
|
|
// definition, it is all set and we can start using it.
|
|
for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
|
|
BasicBlock *ExitBlock = LoopExitBlocks[i];
|
|
Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
|
|
LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
|
|
Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
|
|
Instruction *InsertPos = LoopInsertPts[i];
|
|
StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
|
|
if (UnorderedAtomic)
|
|
NewSI->setOrdering(AtomicOrdering::Unordered);
|
|
NewSI->setAlignment(Align(Alignment));
|
|
NewSI->setDebugLoc(DL);
|
|
if (AATags)
|
|
NewSI->setAAMetadata(AATags);
|
|
|
|
if (MSSAU) {
|
|
MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
|
|
MemoryAccess *NewMemAcc;
|
|
if (!MSSAInsertPoint) {
|
|
NewMemAcc = MSSAU->createMemoryAccessInBB(
|
|
NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
|
|
} else {
|
|
NewMemAcc =
|
|
MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
|
|
}
|
|
MSSAInsertPts[i] = NewMemAcc;
|
|
MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
|
|
// FIXME: true for safety, false may still be correct.
|
|
}
|
|
}
|
|
}
|
|
|
|
void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
|
|
// Update alias analysis.
|
|
if (AST)
|
|
AST->copyValue(LI, V);
|
|
}
|
|
void instructionDeleted(Instruction *I) const override {
|
|
SafetyInfo.removeInstruction(I);
|
|
if (AST)
|
|
AST->deleteValue(I);
|
|
if (MSSAU)
|
|
MSSAU->removeMemoryAccess(I);
|
|
}
|
|
};
|
|
|
|
|
|
/// Return true iff we can prove that a caller of this function can not inspect
|
|
/// the contents of the provided object in a well defined program.
|
|
bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
|
|
if (isa<AllocaInst>(Object))
|
|
// Since the alloca goes out of scope, we know the caller can't retain a
|
|
// reference to it and be well defined. Thus, we don't need to check for
|
|
// capture.
|
|
return true;
|
|
|
|
// For all other objects we need to know that the caller can't possibly
|
|
// have gotten a reference to the object. There are two components of
|
|
// that:
|
|
// 1) Object can't be escaped by this function. This is what
|
|
// PointerMayBeCaptured checks.
|
|
// 2) Object can't have been captured at definition site. For this, we
|
|
// need to know the return value is noalias. At the moment, we use a
|
|
// weaker condition and handle only AllocLikeFunctions (which are
|
|
// known to be noalias). TODO
|
|
return isAllocLikeFn(Object, TLI) &&
|
|
!PointerMayBeCaptured(Object, true, true);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/// Try to promote memory values to scalars by sinking stores out of the
|
|
/// loop and moving loads to before the loop. We do this by looping over
|
|
/// the stores in the loop, looking for stores to Must pointers which are
|
|
/// loop invariant.
|
|
///
|
|
bool llvm::promoteLoopAccessesToScalars(
|
|
const SmallSetVector<Value *, 8> &PointerMustAliases,
|
|
SmallVectorImpl<BasicBlock *> &ExitBlocks,
|
|
SmallVectorImpl<Instruction *> &InsertPts,
|
|
SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
|
|
LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
|
|
Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
|
|
ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
|
|
// Verify inputs.
|
|
assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
|
|
SafetyInfo != nullptr &&
|
|
"Unexpected Input to promoteLoopAccessesToScalars");
|
|
|
|
Value *SomePtr = *PointerMustAliases.begin();
|
|
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
|
|
|
// It is not safe to promote a load/store from the loop if the load/store is
|
|
// conditional. For example, turning:
|
|
//
|
|
// for () { if (c) *P += 1; }
|
|
//
|
|
// into:
|
|
//
|
|
// tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
|
|
//
|
|
// is not safe, because *P may only be valid to access if 'c' is true.
|
|
//
|
|
// The safety property divides into two parts:
|
|
// p1) The memory may not be dereferenceable on entry to the loop. In this
|
|
// case, we can't insert the required load in the preheader.
|
|
// p2) The memory model does not allow us to insert a store along any dynamic
|
|
// path which did not originally have one.
|
|
//
|
|
// If at least one store is guaranteed to execute, both properties are
|
|
// satisfied, and promotion is legal.
|
|
//
|
|
// This, however, is not a necessary condition. Even if no store/load is
|
|
// guaranteed to execute, we can still establish these properties.
|
|
// We can establish (p1) by proving that hoisting the load into the preheader
|
|
// is safe (i.e. proving dereferenceability on all paths through the loop). We
|
|
// can use any access within the alias set to prove dereferenceability,
|
|
// since they're all must alias.
|
|
//
|
|
// There are two ways establish (p2):
|
|
// a) Prove the location is thread-local. In this case the memory model
|
|
// requirement does not apply, and stores are safe to insert.
|
|
// b) Prove a store dominates every exit block. In this case, if an exit
|
|
// blocks is reached, the original dynamic path would have taken us through
|
|
// the store, so inserting a store into the exit block is safe. Note that this
|
|
// is different from the store being guaranteed to execute. For instance,
|
|
// if an exception is thrown on the first iteration of the loop, the original
|
|
// store is never executed, but the exit blocks are not executed either.
|
|
|
|
bool DereferenceableInPH = false;
|
|
bool SafeToInsertStore = false;
|
|
|
|
SmallVector<Instruction *, 64> LoopUses;
|
|
|
|
// We start with an alignment of one and try to find instructions that allow
|
|
// us to prove better alignment.
|
|
Align Alignment;
|
|
// Keep track of which types of access we see
|
|
bool SawUnorderedAtomic = false;
|
|
bool SawNotAtomic = false;
|
|
AAMDNodes AATags;
|
|
|
|
const DataLayout &MDL = Preheader->getModule()->getDataLayout();
|
|
|
|
bool IsKnownThreadLocalObject = false;
|
|
if (SafetyInfo->anyBlockMayThrow()) {
|
|
// If a loop can throw, we have to insert a store along each unwind edge.
|
|
// That said, we can't actually make the unwind edge explicit. Therefore,
|
|
// we have to prove that the store is dead along the unwind edge. We do
|
|
// this by proving that the caller can't have a reference to the object
|
|
// after return and thus can't possibly load from the object.
|
|
Value *Object = getUnderlyingObject(SomePtr);
|
|
if (!isKnownNonEscaping(Object, TLI))
|
|
return false;
|
|
// Subtlety: Alloca's aren't visible to callers, but *are* potentially
|
|
// visible to other threads if captured and used during their lifetimes.
|
|
IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
|
|
}
|
|
|
|
// Check that all of the pointers in the alias set have the same type. We
|
|
// cannot (yet) promote a memory location that is loaded and stored in
|
|
// different sizes. While we are at it, collect alignment and AA info.
|
|
for (Value *ASIV : PointerMustAliases) {
|
|
// Check that all of the pointers in the alias set have the same type. We
|
|
// cannot (yet) promote a memory location that is loaded and stored in
|
|
// different sizes.
|
|
if (SomePtr->getType() != ASIV->getType())
|
|
return false;
|
|
|
|
for (User *U : ASIV->users()) {
|
|
// Ignore instructions that are outside the loop.
|
|
Instruction *UI = dyn_cast<Instruction>(U);
|
|
if (!UI || !CurLoop->contains(UI))
|
|
continue;
|
|
|
|
// If there is an non-load/store instruction in the loop, we can't promote
|
|
// it.
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
|
|
if (!Load->isUnordered())
|
|
return false;
|
|
|
|
SawUnorderedAtomic |= Load->isAtomic();
|
|
SawNotAtomic |= !Load->isAtomic();
|
|
|
|
Align InstAlignment = Load->getAlign();
|
|
|
|
// Note that proving a load safe to speculate requires proving
|
|
// sufficient alignment at the target location. Proving it guaranteed
|
|
// to execute does as well. Thus we can increase our guaranteed
|
|
// alignment as well.
|
|
if (!DereferenceableInPH || (InstAlignment > Alignment))
|
|
if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
|
|
ORE, Preheader->getTerminator())) {
|
|
DereferenceableInPH = true;
|
|
Alignment = std::max(Alignment, InstAlignment);
|
|
}
|
|
} else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
|
|
// Stores *of* the pointer are not interesting, only stores *to* the
|
|
// pointer.
|
|
if (UI->getOperand(1) != ASIV)
|
|
continue;
|
|
if (!Store->isUnordered())
|
|
return false;
|
|
|
|
SawUnorderedAtomic |= Store->isAtomic();
|
|
SawNotAtomic |= !Store->isAtomic();
|
|
|
|
// If the store is guaranteed to execute, both properties are satisfied.
|
|
// We may want to check if a store is guaranteed to execute even if we
|
|
// already know that promotion is safe, since it may have higher
|
|
// alignment than any other guaranteed stores, in which case we can
|
|
// raise the alignment on the promoted store.
|
|
Align InstAlignment = Store->getAlign();
|
|
|
|
if (!DereferenceableInPH || !SafeToInsertStore ||
|
|
(InstAlignment > Alignment)) {
|
|
if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
|
|
DereferenceableInPH = true;
|
|
SafeToInsertStore = true;
|
|
Alignment = std::max(Alignment, InstAlignment);
|
|
}
|
|
}
|
|
|
|
// If a store dominates all exit blocks, it is safe to sink.
|
|
// As explained above, if an exit block was executed, a dominating
|
|
// store must have been executed at least once, so we are not
|
|
// introducing stores on paths that did not have them.
|
|
// Note that this only looks at explicit exit blocks. If we ever
|
|
// start sinking stores into unwind edges (see above), this will break.
|
|
if (!SafeToInsertStore)
|
|
SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
|
|
return DT->dominates(Store->getParent(), Exit);
|
|
});
|
|
|
|
// If the store is not guaranteed to execute, we may still get
|
|
// deref info through it.
|
|
if (!DereferenceableInPH) {
|
|
DereferenceableInPH = isDereferenceableAndAlignedPointer(
|
|
Store->getPointerOperand(), Store->getValueOperand()->getType(),
|
|
Store->getAlign(), MDL, Preheader->getTerminator(), DT);
|
|
}
|
|
} else
|
|
return false; // Not a load or store.
|
|
|
|
// Merge the AA tags.
|
|
if (LoopUses.empty()) {
|
|
// On the first load/store, just take its AA tags.
|
|
UI->getAAMetadata(AATags);
|
|
} else if (AATags) {
|
|
UI->getAAMetadata(AATags, /* Merge = */ true);
|
|
}
|
|
|
|
LoopUses.push_back(UI);
|
|
}
|
|
}
|
|
|
|
// If we found both an unordered atomic instruction and a non-atomic memory
|
|
// access, bail. We can't blindly promote non-atomic to atomic since we
|
|
// might not be able to lower the result. We can't downgrade since that
|
|
// would violate memory model. Also, align 0 is an error for atomics.
|
|
if (SawUnorderedAtomic && SawNotAtomic)
|
|
return false;
|
|
|
|
// If we're inserting an atomic load in the preheader, we must be able to
|
|
// lower it. We're only guaranteed to be able to lower naturally aligned
|
|
// atomics.
|
|
auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
|
|
if (SawUnorderedAtomic &&
|
|
Alignment < MDL.getTypeStoreSize(SomePtrElemType))
|
|
return false;
|
|
|
|
// If we couldn't prove we can hoist the load, bail.
|
|
if (!DereferenceableInPH)
|
|
return false;
|
|
|
|
// We know we can hoist the load, but don't have a guaranteed store.
|
|
// Check whether the location is thread-local. If it is, then we can insert
|
|
// stores along paths which originally didn't have them without violating the
|
|
// memory model.
|
|
if (!SafeToInsertStore) {
|
|
if (IsKnownThreadLocalObject)
|
|
SafeToInsertStore = true;
|
|
else {
|
|
Value *Object = getUnderlyingObject(SomePtr);
|
|
SafeToInsertStore =
|
|
(isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
|
|
!PointerMayBeCaptured(Object, true, true);
|
|
}
|
|
}
|
|
|
|
// If we've still failed to prove we can sink the store, give up.
|
|
if (!SafeToInsertStore)
|
|
return false;
|
|
|
|
// Otherwise, this is safe to promote, lets do it!
|
|
LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
|
|
<< '\n');
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
|
|
LoopUses[0])
|
|
<< "Moving accesses to memory location out of the loop";
|
|
});
|
|
++NumPromoted;
|
|
|
|
// Look at all the loop uses, and try to merge their locations.
|
|
std::vector<const DILocation *> LoopUsesLocs;
|
|
for (auto U : LoopUses)
|
|
LoopUsesLocs.push_back(U->getDebugLoc().get());
|
|
auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
|
|
|
|
// We use the SSAUpdater interface to insert phi nodes as required.
|
|
SmallVector<PHINode *, 16> NewPHIs;
|
|
SSAUpdater SSA(&NewPHIs);
|
|
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
|
|
InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
|
|
Alignment.value(), SawUnorderedAtomic, AATags,
|
|
*SafetyInfo);
|
|
|
|
// Set up the preheader to have a definition of the value. It is the live-out
|
|
// value from the preheader that uses in the loop will use.
|
|
LoadInst *PreheaderLoad = new LoadInst(
|
|
SomePtr->getType()->getPointerElementType(), SomePtr,
|
|
SomePtr->getName() + ".promoted", Preheader->getTerminator());
|
|
if (SawUnorderedAtomic)
|
|
PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
|
|
PreheaderLoad->setAlignment(Alignment);
|
|
PreheaderLoad->setDebugLoc(DebugLoc());
|
|
if (AATags)
|
|
PreheaderLoad->setAAMetadata(AATags);
|
|
SSA.AddAvailableValue(Preheader, PreheaderLoad);
|
|
|
|
if (MSSAU) {
|
|
MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
|
|
PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
|
|
MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
|
|
MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
|
|
}
|
|
|
|
if (MSSAU && VerifyMemorySSA)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
// Rewrite all the loads in the loop and remember all the definitions from
|
|
// stores in the loop.
|
|
Promoter.run(LoopUses);
|
|
|
|
if (MSSAU && VerifyMemorySSA)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
// If the SSAUpdater didn't use the load in the preheader, just zap it now.
|
|
if (PreheaderLoad->use_empty())
|
|
eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns an owning pointer to an alias set which incorporates aliasing info
|
|
/// from L and all subloops of L.
|
|
std::unique_ptr<AliasSetTracker>
|
|
LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
|
|
AAResults *AA) {
|
|
auto CurAST = std::make_unique<AliasSetTracker>(*AA);
|
|
|
|
// Add everything from all the sub loops.
|
|
for (Loop *InnerL : L->getSubLoops())
|
|
for (BasicBlock *BB : InnerL->blocks())
|
|
CurAST->add(*BB);
|
|
|
|
// And merge in this loop (without anything from inner loops).
|
|
for (BasicBlock *BB : L->blocks())
|
|
if (LI->getLoopFor(BB) == L)
|
|
CurAST->add(*BB);
|
|
|
|
return CurAST;
|
|
}
|
|
|
|
std::unique_ptr<AliasSetTracker>
|
|
LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
|
|
Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
|
|
auto *MSSA = MSSAU->getMemorySSA();
|
|
auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
|
|
CurAST->addAllInstructionsInLoopUsingMSSA();
|
|
return CurAST;
|
|
}
|
|
|
|
static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
|
|
AliasSetTracker *CurAST, Loop *CurLoop,
|
|
AAResults *AA) {
|
|
// First check to see if any of the basic blocks in CurLoop invalidate *V.
|
|
bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
|
|
|
|
if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
|
|
return isInvalidatedAccordingToAST;
|
|
|
|
// Check with a diagnostic analysis if we can refine the information above.
|
|
// This is to identify the limitations of using the AST.
|
|
// The alias set mechanism used by LICM has a major weakness in that it
|
|
// combines all things which may alias into a single set *before* asking
|
|
// modref questions. As a result, a single readonly call within a loop will
|
|
// collapse all loads and stores into a single alias set and report
|
|
// invalidation if the loop contains any store. For example, readonly calls
|
|
// with deopt states have this form and create a general alias set with all
|
|
// loads and stores. In order to get any LICM in loops containing possible
|
|
// deopt states we need a more precise invalidation of checking the mod ref
|
|
// info of each instruction within the loop and LI. This has a complexity of
|
|
// O(N^2), so currently, it is used only as a diagnostic tool since the
|
|
// default value of LICMN2Threshold is zero.
|
|
|
|
// Don't look at nested loops.
|
|
if (CurLoop->begin() != CurLoop->end())
|
|
return true;
|
|
|
|
int N = 0;
|
|
for (BasicBlock *BB : CurLoop->getBlocks())
|
|
for (Instruction &I : *BB) {
|
|
if (N >= LICMN2Theshold) {
|
|
LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
|
|
<< *(MemLoc.Ptr) << "\n");
|
|
return true;
|
|
}
|
|
N++;
|
|
auto Res = AA->getModRefInfo(&I, MemLoc);
|
|
if (isModSet(Res)) {
|
|
LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
|
|
<< *(MemLoc.Ptr) << "\n");
|
|
return true;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
|
|
return false;
|
|
}
|
|
|
|
static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
|
|
Loop *CurLoop,
|
|
SinkAndHoistLICMFlags &Flags) {
|
|
// For hoisting, use the walker to determine safety
|
|
if (!Flags.IsSink) {
|
|
MemoryAccess *Source;
|
|
// See declaration of SetLicmMssaOptCap for usage details.
|
|
if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
|
|
Source = MU->getDefiningAccess();
|
|
else {
|
|
Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
|
|
Flags.LicmMssaOptCounter++;
|
|
}
|
|
return !MSSA->isLiveOnEntryDef(Source) &&
|
|
CurLoop->contains(Source->getBlock());
|
|
}
|
|
|
|
// For sinking, we'd need to check all Defs below this use. The getClobbering
|
|
// call will look on the backedge of the loop, but will check aliasing with
|
|
// the instructions on the previous iteration.
|
|
// For example:
|
|
// for (i ... )
|
|
// load a[i] ( Use (LoE)
|
|
// store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
|
|
// i++;
|
|
// The load sees no clobbering inside the loop, as the backedge alias check
|
|
// does phi translation, and will check aliasing against store a[i-1].
|
|
// However sinking the load outside the loop, below the store is incorrect.
|
|
|
|
// For now, only sink if there are no Defs in the loop, and the existing ones
|
|
// precede the use and are in the same block.
|
|
// FIXME: Increase precision: Safe to sink if Use post dominates the Def;
|
|
// needs PostDominatorTreeAnalysis.
|
|
// FIXME: More precise: no Defs that alias this Use.
|
|
if (Flags.NoOfMemAccTooLarge)
|
|
return true;
|
|
for (auto *BB : CurLoop->getBlocks())
|
|
if (auto *Accesses = MSSA->getBlockDefs(BB))
|
|
for (const auto &MA : *Accesses)
|
|
if (const auto *MD = dyn_cast<MemoryDef>(&MA))
|
|
if (MU->getBlock() != MD->getBlock() ||
|
|
!MSSA->locallyDominates(MD, MU))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Little predicate that returns true if the specified basic block is in
|
|
/// a subloop of the current one, not the current one itself.
|
|
///
|
|
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
|
|
assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
|
|
return LI->getLoopFor(BB) != CurLoop;
|
|
}
|