llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_allocator_combined.h

213 lines
6.1 KiB
C++

//===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
// This class implements a complete memory allocator by using two
// internal allocators:
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
// When allocating 2^x bytes it should return 2^x aligned chunk.
// PrimaryAllocator is used via a local AllocatorCache.
// SecondaryAllocator can allocate anything, but is not efficient.
template <class PrimaryAllocator, class AllocatorCache,
class SecondaryAllocator> // NOLINT
class CombinedAllocator {
public:
void InitCommon(bool may_return_null) {
primary_.Init();
atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
}
void InitLinkerInitialized(bool may_return_null) {
secondary_.InitLinkerInitialized(may_return_null);
stats_.InitLinkerInitialized();
InitCommon(may_return_null);
}
void Init(bool may_return_null) {
secondary_.Init(may_return_null);
stats_.Init();
InitCommon(may_return_null);
}
void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
bool cleared = false, bool check_rss_limit = false) {
// Returning 0 on malloc(0) may break a lot of code.
if (size == 0)
size = 1;
if (size + alignment < size) return ReturnNullOrDieOnBadRequest();
if (check_rss_limit && RssLimitIsExceeded()) return ReturnNullOrDieOnOOM();
if (alignment > 8)
size = RoundUpTo(size, alignment);
void *res;
bool from_primary = primary_.CanAllocate(size, alignment);
if (from_primary)
res = cache->Allocate(&primary_, primary_.ClassID(size));
else
res = secondary_.Allocate(&stats_, size, alignment);
if (alignment > 8)
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
if (cleared && res && from_primary)
internal_bzero_aligned16(res, RoundUpTo(size, 16));
return res;
}
bool MayReturnNull() const {
return atomic_load(&may_return_null_, memory_order_acquire);
}
void *ReturnNullOrDieOnBadRequest() {
if (MayReturnNull())
return nullptr;
ReportAllocatorCannotReturnNull(false);
}
void *ReturnNullOrDieOnOOM() {
if (MayReturnNull()) return nullptr;
ReportAllocatorCannotReturnNull(true);
}
void SetMayReturnNull(bool may_return_null) {
secondary_.SetMayReturnNull(may_return_null);
atomic_store(&may_return_null_, may_return_null, memory_order_release);
}
bool RssLimitIsExceeded() {
return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire);
}
void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) {
atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded,
memory_order_release);
}
void Deallocate(AllocatorCache *cache, void *p) {
if (!p) return;
if (primary_.PointerIsMine(p))
cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
else
secondary_.Deallocate(&stats_, p);
}
void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
uptr alignment) {
if (!p)
return Allocate(cache, new_size, alignment);
if (!new_size) {
Deallocate(cache, p);
return nullptr;
}
CHECK(PointerIsMine(p));
uptr old_size = GetActuallyAllocatedSize(p);
uptr memcpy_size = Min(new_size, old_size);
void *new_p = Allocate(cache, new_size, alignment);
if (new_p)
internal_memcpy(new_p, p, memcpy_size);
Deallocate(cache, p);
return new_p;
}
bool PointerIsMine(void *p) {
if (primary_.PointerIsMine(p))
return true;
return secondary_.PointerIsMine(p);
}
bool FromPrimary(void *p) {
return primary_.PointerIsMine(p);
}
void *GetMetaData(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetMetaData(p);
return secondary_.GetMetaData(p);
}
void *GetBlockBegin(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetBlockBegin(p);
return secondary_.GetBlockBegin(p);
}
// This function does the same as GetBlockBegin, but is much faster.
// Must be called with the allocator locked.
void *GetBlockBeginFastLocked(void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetBlockBegin(p);
return secondary_.GetBlockBeginFastLocked(p);
}
uptr GetActuallyAllocatedSize(void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetActuallyAllocatedSize(p);
return secondary_.GetActuallyAllocatedSize(p);
}
uptr TotalMemoryUsed() {
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
}
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
void InitCache(AllocatorCache *cache) {
cache->Init(&stats_);
}
void DestroyCache(AllocatorCache *cache) {
cache->Destroy(&primary_, &stats_);
}
void SwallowCache(AllocatorCache *cache) {
cache->Drain(&primary_);
}
void GetStats(AllocatorStatCounters s) const {
stats_.Get(s);
}
void PrintStats() {
primary_.PrintStats();
secondary_.PrintStats();
}
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
// introspection API.
void ForceLock() {
primary_.ForceLock();
secondary_.ForceLock();
}
void ForceUnlock() {
secondary_.ForceUnlock();
primary_.ForceUnlock();
}
void ReleaseToOS() { primary_.ReleaseToOS(); }
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
primary_.ForEachChunk(callback, arg);
secondary_.ForEachChunk(callback, arg);
}
private:
PrimaryAllocator primary_;
SecondaryAllocator secondary_;
AllocatorGlobalStats stats_;
atomic_uint8_t may_return_null_;
atomic_uint8_t rss_limit_is_exceeded_;
};