forked from OSchip/llvm-project
949 lines
35 KiB
C++
949 lines
35 KiB
C++
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "AffineExprDetail.h"
|
|
#include "AffineMapDetail.h"
|
|
#include "AttributeDetail.h"
|
|
#include "IntegerSetDetail.h"
|
|
#include "LocationDetail.h"
|
|
#include "TypeDetail.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/Diagnostics.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Identifier.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Support/ThreadLocalCache.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/RWMutex.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <memory>
|
|
|
|
#define DEBUG_TYPE "mlircontext"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
using llvm::hash_combine;
|
|
using llvm::hash_combine_range;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MLIRContext CommandLine Options
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This struct contains command line options that can be used to initialize
|
|
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
|
|
/// for global command line options.
|
|
struct MLIRContextOptions {
|
|
llvm::cl::opt<bool> disableThreading{
|
|
"mlir-disable-threading",
|
|
llvm::cl::desc("Disabling multi-threading within MLIR")};
|
|
|
|
llvm::cl::opt<bool> printOpOnDiagnostic{
|
|
"mlir-print-op-on-diagnostic",
|
|
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
|
|
"the operation as an attached note"),
|
|
llvm::cl::init(true)};
|
|
|
|
llvm::cl::opt<bool> printStackTraceOnDiagnostic{
|
|
"mlir-print-stacktrace-on-diagnostic",
|
|
llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
|
|
"as an attached note")};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static llvm::ManagedStatic<MLIRContextOptions> clOptions;
|
|
|
|
/// Register a set of useful command-line options that can be used to configure
|
|
/// various flags within the MLIRContext. These flags are used when constructing
|
|
/// an MLIR context for initialization.
|
|
void mlir::registerMLIRContextCLOptions() {
|
|
// Make sure that the options struct has been initialized.
|
|
*clOptions;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Locking Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// Utility reader lock that takes a runtime flag that specifies if we really
|
|
/// need to lock.
|
|
struct ScopedReaderLock {
|
|
ScopedReaderLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
|
|
: mutex(shouldLock ? &mutexParam : nullptr) {
|
|
if (mutex)
|
|
mutex->lock_shared();
|
|
}
|
|
~ScopedReaderLock() {
|
|
if (mutex)
|
|
mutex->unlock_shared();
|
|
}
|
|
llvm::sys::SmartRWMutex<true> *mutex;
|
|
};
|
|
/// Utility writer lock that takes a runtime flag that specifies if we really
|
|
/// need to lock.
|
|
struct ScopedWriterLock {
|
|
ScopedWriterLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
|
|
: mutex(shouldLock ? &mutexParam : nullptr) {
|
|
if (mutex)
|
|
mutex->lock();
|
|
}
|
|
~ScopedWriterLock() {
|
|
if (mutex)
|
|
mutex->unlock();
|
|
}
|
|
llvm::sys::SmartRWMutex<true> *mutex;
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMap and IntegerSet hashing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A utility function to safely get or create a uniqued instance within the
|
|
/// given set container.
|
|
template <typename ValueT, typename DenseInfoT, typename KeyT,
|
|
typename ConstructorFn>
|
|
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
|
|
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
|
|
bool threadingIsEnabled,
|
|
ConstructorFn &&constructorFn) {
|
|
// Check for an existing instance in read-only mode.
|
|
if (threadingIsEnabled) {
|
|
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
|
|
auto it = container.find_as(key);
|
|
if (it != container.end())
|
|
return *it;
|
|
}
|
|
|
|
// Acquire a writer-lock so that we can safely create the new instance.
|
|
ScopedWriterLock instanceLock(mutex, threadingIsEnabled);
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
// may have already created one. Otherwise, construct a new instance.
|
|
auto existing = container.insert_as(ValueT(), key);
|
|
if (existing.second)
|
|
return *existing.first = constructorFn();
|
|
return *existing.first;
|
|
}
|
|
|
|
namespace {
|
|
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
|
|
// Affine maps are uniqued based on their dim/symbol counts and affine
|
|
// expressions.
|
|
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
|
|
using DenseMapInfo<AffineMap>::isEqual;
|
|
|
|
static unsigned getHashValue(const AffineMap &key) {
|
|
return getHashValue(
|
|
KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
std::get<0>(key), std::get<1>(key),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
|
|
rhs.getResults());
|
|
}
|
|
};
|
|
|
|
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
|
|
// Integer sets are uniqued based on their dim/symbol counts, affine
|
|
// expressions appearing in the LHS of constraints, and eqFlags.
|
|
using KeyTy =
|
|
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
|
|
using DenseMapInfo<IntegerSet>::isEqual;
|
|
|
|
static unsigned getHashValue(const IntegerSet &key) {
|
|
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
|
|
key.getConstraints(), key.getEqFlags()));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
std::get<0>(key), std::get<1>(key),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
|
|
rhs.getConstraints(), rhs.getEqFlags());
|
|
}
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MLIRContextImpl
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace mlir {
|
|
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
|
|
/// This class is completely private to this file, so everything is public.
|
|
class MLIRContextImpl {
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Identifier uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Identifier allocator and mutex for thread safety.
|
|
llvm::BumpPtrAllocator identifierAllocator;
|
|
llvm::sys::SmartRWMutex<true> identifierMutex;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Diagnostics
|
|
//===--------------------------------------------------------------------===//
|
|
DiagnosticEngine diagEngine;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Options
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// In most cases, creating operation in unregistered dialect is not desired
|
|
/// and indicate a misconfiguration of the compiler. This option enables to
|
|
/// detect such use cases
|
|
bool allowUnregisteredDialects = false;
|
|
|
|
/// Enable support for multi-threading within MLIR.
|
|
bool threadingIsEnabled = true;
|
|
|
|
/// Track if we are currently executing in a threaded execution environment
|
|
/// (like the pass-manager): this is only a debugging feature to help reducing
|
|
/// the chances of data races one some context APIs.
|
|
#ifndef NDEBUG
|
|
std::atomic<int> multiThreadedExecutionContext{0};
|
|
#endif
|
|
|
|
/// If the operation should be attached to diagnostics printed via the
|
|
/// Operation::emit methods.
|
|
bool printOpOnDiagnostic = true;
|
|
|
|
/// If the current stack trace should be attached when emitting diagnostics.
|
|
bool printStackTraceOnDiagnostic = false;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Other
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// This is a list of dialects that are created referring to this context.
|
|
/// The MLIRContext owns the objects.
|
|
DenseMap<StringRef, std::unique_ptr<Dialect>> loadedDialects;
|
|
DialectRegistry dialectsRegistry;
|
|
|
|
/// This is a mapping from operation name to AbstractOperation for registered
|
|
/// operations.
|
|
llvm::StringMap<AbstractOperation> registeredOperations;
|
|
|
|
/// Identifiers are uniqued by string value and use the internal string set
|
|
/// for storage.
|
|
llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;
|
|
/// A thread local cache of identifiers to reduce lock contention.
|
|
ThreadLocalCache<llvm::StringMap<llvm::StringMapEntry<llvm::NoneType> *>>
|
|
localIdentifierCache;
|
|
|
|
/// An allocator used for AbstractAttribute and AbstractType objects.
|
|
llvm::BumpPtrAllocator abstractDialectSymbolAllocator;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Affine uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Affine allocator and mutex for thread safety.
|
|
llvm::BumpPtrAllocator affineAllocator;
|
|
llvm::sys::SmartRWMutex<true> affineMutex;
|
|
|
|
// Affine map uniquing.
|
|
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
|
|
AffineMapSet affineMaps;
|
|
|
|
// Integer set uniquing.
|
|
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
|
|
IntegerSets integerSets;
|
|
|
|
// Affine expression uniquing.
|
|
StorageUniquer affineUniquer;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
DenseMap<TypeID, const AbstractType *> registeredTypes;
|
|
StorageUniquer typeUniquer;
|
|
|
|
/// Cached Type Instances.
|
|
BFloat16Type bf16Ty;
|
|
Float16Type f16Ty;
|
|
Float32Type f32Ty;
|
|
Float64Type f64Ty;
|
|
IndexType indexTy;
|
|
IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
|
|
NoneType noneType;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Attribute uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
DenseMap<TypeID, const AbstractAttribute *> registeredAttributes;
|
|
StorageUniquer attributeUniquer;
|
|
|
|
/// Cached Attribute Instances.
|
|
BoolAttr falseAttr, trueAttr;
|
|
UnitAttr unitAttr;
|
|
UnknownLoc unknownLocAttr;
|
|
DictionaryAttr emptyDictionaryAttr;
|
|
|
|
public:
|
|
MLIRContextImpl() : identifiers(identifierAllocator) {}
|
|
~MLIRContextImpl() {
|
|
for (auto typeMapping : registeredTypes)
|
|
typeMapping.second->~AbstractType();
|
|
for (auto attrMapping : registeredAttributes)
|
|
attrMapping.second->~AbstractAttribute();
|
|
}
|
|
};
|
|
} // end namespace mlir
|
|
|
|
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
|
|
// Initialize values based on the command line flags if they were provided.
|
|
if (clOptions.isConstructed()) {
|
|
disableMultithreading(clOptions->disableThreading);
|
|
printOpOnDiagnostic(clOptions->printOpOnDiagnostic);
|
|
printStackTraceOnDiagnostic(clOptions->printStackTraceOnDiagnostic);
|
|
}
|
|
|
|
// Ensure the builtin dialect is always pre-loaded.
|
|
getOrLoadDialect<BuiltinDialect>();
|
|
|
|
// Initialize several common attributes and types to avoid the need to lock
|
|
// the context when accessing them.
|
|
|
|
//// Types.
|
|
/// Floating-point Types.
|
|
impl->bf16Ty = TypeUniquer::get<BFloat16Type>(this);
|
|
impl->f16Ty = TypeUniquer::get<Float16Type>(this);
|
|
impl->f32Ty = TypeUniquer::get<Float32Type>(this);
|
|
impl->f64Ty = TypeUniquer::get<Float64Type>(this);
|
|
/// Index Type.
|
|
impl->indexTy = TypeUniquer::get<IndexType>(this);
|
|
/// Integer Types.
|
|
impl->int1Ty = TypeUniquer::get<IntegerType>(this, 1, IntegerType::Signless);
|
|
impl->int8Ty = TypeUniquer::get<IntegerType>(this, 8, IntegerType::Signless);
|
|
impl->int16Ty =
|
|
TypeUniquer::get<IntegerType>(this, 16, IntegerType::Signless);
|
|
impl->int32Ty =
|
|
TypeUniquer::get<IntegerType>(this, 32, IntegerType::Signless);
|
|
impl->int64Ty =
|
|
TypeUniquer::get<IntegerType>(this, 64, IntegerType::Signless);
|
|
impl->int128Ty =
|
|
TypeUniquer::get<IntegerType>(this, 128, IntegerType::Signless);
|
|
/// None Type.
|
|
impl->noneType = TypeUniquer::get<NoneType>(this);
|
|
|
|
//// Attributes.
|
|
//// Note: These must be registered after the types as they may generate one
|
|
//// of the above types internally.
|
|
/// Bool Attributes.
|
|
impl->falseAttr = AttributeUniquer::get<IntegerAttr>(
|
|
this, impl->int1Ty, APInt(/*numBits=*/1, false))
|
|
.cast<BoolAttr>();
|
|
impl->trueAttr = AttributeUniquer::get<IntegerAttr>(
|
|
this, impl->int1Ty, APInt(/*numBits=*/1, true))
|
|
.cast<BoolAttr>();
|
|
/// Unit Attribute.
|
|
impl->unitAttr = AttributeUniquer::get<UnitAttr>(this);
|
|
/// Unknown Location Attribute.
|
|
impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(this);
|
|
/// The empty dictionary attribute.
|
|
impl->emptyDictionaryAttr =
|
|
AttributeUniquer::get<DictionaryAttr>(this, ArrayRef<NamedAttribute>());
|
|
|
|
// Register the affine storage objects with the uniquer.
|
|
impl->affineUniquer
|
|
.registerParametricStorageType<AffineBinaryOpExprStorage>();
|
|
impl->affineUniquer
|
|
.registerParametricStorageType<AffineConstantExprStorage>();
|
|
impl->affineUniquer.registerParametricStorageType<AffineDimExprStorage>();
|
|
}
|
|
|
|
MLIRContext::~MLIRContext() {}
|
|
|
|
/// Copy the specified array of elements into memory managed by the provided
|
|
/// bump pointer allocator. This assumes the elements are all PODs.
|
|
template <typename T>
|
|
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
|
|
ArrayRef<T> elements) {
|
|
auto result = allocator.Allocate<T>(elements.size());
|
|
std::uninitialized_copy(elements.begin(), elements.end(), result);
|
|
return ArrayRef<T>(result, elements.size());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostic Handlers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the diagnostic engine for this context.
|
|
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialect and Operation Registration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DialectRegistry &MLIRContext::getDialectRegistry() {
|
|
return impl->dialectsRegistry;
|
|
}
|
|
|
|
/// Return information about all registered IR dialects.
|
|
std::vector<Dialect *> MLIRContext::getLoadedDialects() {
|
|
std::vector<Dialect *> result;
|
|
result.reserve(impl->loadedDialects.size());
|
|
for (auto &dialect : impl->loadedDialects)
|
|
result.push_back(dialect.second.get());
|
|
llvm::array_pod_sort(result.begin(), result.end(),
|
|
[](Dialect *const *lhs, Dialect *const *rhs) -> int {
|
|
return (*lhs)->getNamespace() < (*rhs)->getNamespace();
|
|
});
|
|
return result;
|
|
}
|
|
std::vector<StringRef> MLIRContext::getAvailableDialects() {
|
|
std::vector<StringRef> result;
|
|
for (auto &dialect : impl->dialectsRegistry)
|
|
result.push_back(dialect.first);
|
|
return result;
|
|
}
|
|
|
|
/// Get a registered IR dialect with the given namespace. If none is found,
|
|
/// then return nullptr.
|
|
Dialect *MLIRContext::getLoadedDialect(StringRef name) {
|
|
// Dialects are sorted by name, so we can use binary search for lookup.
|
|
auto it = impl->loadedDialects.find(name);
|
|
return (it != impl->loadedDialects.end()) ? it->second.get() : nullptr;
|
|
}
|
|
|
|
Dialect *MLIRContext::getOrLoadDialect(StringRef name) {
|
|
Dialect *dialect = getLoadedDialect(name);
|
|
if (dialect)
|
|
return dialect;
|
|
return impl->dialectsRegistry.loadByName(name, this);
|
|
}
|
|
|
|
/// Get a dialect for the provided namespace and TypeID: abort the program if a
|
|
/// dialect exist for this namespace with different TypeID. Returns a pointer to
|
|
/// the dialect owned by the context.
|
|
Dialect *
|
|
MLIRContext::getOrLoadDialect(StringRef dialectNamespace, TypeID dialectID,
|
|
function_ref<std::unique_ptr<Dialect>()> ctor) {
|
|
auto &impl = getImpl();
|
|
// Get the correct insertion position sorted by namespace.
|
|
std::unique_ptr<Dialect> &dialect = impl.loadedDialects[dialectNamespace];
|
|
|
|
if (!dialect) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Load new dialect in Context " << dialectNamespace << "\n");
|
|
#ifndef NDEBUG
|
|
if (impl.multiThreadedExecutionContext != 0)
|
|
llvm::report_fatal_error(
|
|
"Loading a dialect (" + dialectNamespace +
|
|
") while in a multi-threaded execution context (maybe "
|
|
"the PassManager): this can indicate a "
|
|
"missing `dependentDialects` in a pass for example.");
|
|
#endif
|
|
dialect = ctor();
|
|
assert(dialect && "dialect ctor failed");
|
|
return dialect.get();
|
|
}
|
|
|
|
// Abort if dialect with namespace has already been registered.
|
|
if (dialect->getTypeID() != dialectID)
|
|
llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
|
|
"' has already been registered");
|
|
|
|
return dialect.get();
|
|
}
|
|
|
|
bool MLIRContext::allowsUnregisteredDialects() {
|
|
return impl->allowUnregisteredDialects;
|
|
}
|
|
|
|
void MLIRContext::allowUnregisteredDialects(bool allowing) {
|
|
impl->allowUnregisteredDialects = allowing;
|
|
}
|
|
|
|
/// Return true if multi-threading is disabled by the context.
|
|
bool MLIRContext::isMultithreadingEnabled() {
|
|
return impl->threadingIsEnabled && llvm::llvm_is_multithreaded();
|
|
}
|
|
|
|
/// Set the flag specifying if multi-threading is disabled by the context.
|
|
void MLIRContext::disableMultithreading(bool disable) {
|
|
impl->threadingIsEnabled = !disable;
|
|
|
|
// Update the threading mode for each of the uniquers.
|
|
impl->affineUniquer.disableMultithreading(disable);
|
|
impl->attributeUniquer.disableMultithreading(disable);
|
|
impl->typeUniquer.disableMultithreading(disable);
|
|
}
|
|
|
|
void MLIRContext::enterMultiThreadedExecution() {
|
|
#ifndef NDEBUG
|
|
++impl->multiThreadedExecutionContext;
|
|
#endif
|
|
}
|
|
void MLIRContext::exitMultiThreadedExecution() {
|
|
#ifndef NDEBUG
|
|
--impl->multiThreadedExecutionContext;
|
|
#endif
|
|
}
|
|
|
|
/// Return true if we should attach the operation to diagnostics emitted via
|
|
/// Operation::emit.
|
|
bool MLIRContext::shouldPrintOpOnDiagnostic() {
|
|
return impl->printOpOnDiagnostic;
|
|
}
|
|
|
|
/// Set the flag specifying if we should attach the operation to diagnostics
|
|
/// emitted via Operation::emit.
|
|
void MLIRContext::printOpOnDiagnostic(bool enable) {
|
|
impl->printOpOnDiagnostic = enable;
|
|
}
|
|
|
|
/// Return true if we should attach the current stacktrace to diagnostics when
|
|
/// emitted.
|
|
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
|
|
return impl->printStackTraceOnDiagnostic;
|
|
}
|
|
|
|
/// Set the flag specifying if we should attach the current stacktrace when
|
|
/// emitting diagnostics.
|
|
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
|
|
impl->printStackTraceOnDiagnostic = enable;
|
|
}
|
|
|
|
/// Return information about all registered operations. This isn't very
|
|
/// efficient, typically you should ask the operations about their properties
|
|
/// directly.
|
|
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
|
|
// We just have the operations in a non-deterministic hash table order. Dump
|
|
// into a temporary array, then sort it by operation name to get a stable
|
|
// ordering.
|
|
llvm::StringMap<AbstractOperation> ®isteredOps =
|
|
impl->registeredOperations;
|
|
|
|
std::vector<AbstractOperation *> result;
|
|
result.reserve(registeredOps.size());
|
|
for (auto &elt : registeredOps)
|
|
result.push_back(&elt.second);
|
|
llvm::array_pod_sort(
|
|
result.begin(), result.end(),
|
|
[](AbstractOperation *const *lhs, AbstractOperation *const *rhs) {
|
|
return (*lhs)->name.compare((*rhs)->name);
|
|
});
|
|
|
|
return result;
|
|
}
|
|
|
|
bool MLIRContext::isOperationRegistered(StringRef name) {
|
|
return impl->registeredOperations.count(name);
|
|
}
|
|
|
|
void Dialect::addType(TypeID typeID, AbstractType &&typeInfo) {
|
|
auto &impl = context->getImpl();
|
|
assert(impl.multiThreadedExecutionContext == 0 &&
|
|
"Registering a new type kind while in a multi-threaded execution "
|
|
"context");
|
|
auto *newInfo =
|
|
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractType>())
|
|
AbstractType(std::move(typeInfo));
|
|
if (!impl.registeredTypes.insert({typeID, newInfo}).second)
|
|
llvm::report_fatal_error("Dialect Type already registered.");
|
|
}
|
|
|
|
void Dialect::addAttribute(TypeID typeID, AbstractAttribute &&attrInfo) {
|
|
auto &impl = context->getImpl();
|
|
assert(impl.multiThreadedExecutionContext == 0 &&
|
|
"Registering a new attribute kind while in a multi-threaded execution "
|
|
"context");
|
|
auto *newInfo =
|
|
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractAttribute>())
|
|
AbstractAttribute(std::move(attrInfo));
|
|
if (!impl.registeredAttributes.insert({typeID, newInfo}).second)
|
|
llvm::report_fatal_error("Dialect Attribute already registered.");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AbstractAttribute
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Get the dialect that registered the attribute with the provided typeid.
|
|
const AbstractAttribute &AbstractAttribute::lookup(TypeID typeID,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto it = impl.registeredAttributes.find(typeID);
|
|
if (it == impl.registeredAttributes.end())
|
|
llvm::report_fatal_error("Trying to create an Attribute that was not "
|
|
"registered in this MLIRContext.");
|
|
return *it->second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AbstractOperation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult AbstractOperation::parseAssembly(OpAsmParser &parser,
|
|
OperationState &result) const {
|
|
return parseAssemblyFn(parser, result);
|
|
}
|
|
|
|
/// Look up the specified operation in the operation set and return a pointer
|
|
/// to it if present. Otherwise, return a null pointer.
|
|
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto it = impl.registeredOperations.find(opName);
|
|
if (it != impl.registeredOperations.end())
|
|
return &it->second;
|
|
return nullptr;
|
|
}
|
|
|
|
void AbstractOperation::insert(
|
|
StringRef name, Dialect &dialect, OperationProperties opProperties,
|
|
TypeID typeID, ParseAssemblyFn parseAssembly, PrintAssemblyFn printAssembly,
|
|
VerifyInvariantsFn verifyInvariants, FoldHookFn foldHook,
|
|
GetCanonicalizationPatternsFn getCanonicalizationPatterns,
|
|
detail::InterfaceMap &&interfaceMap, HasTraitFn hasTrait) {
|
|
AbstractOperation opInfo(name, dialect, opProperties, typeID, parseAssembly,
|
|
printAssembly, verifyInvariants, foldHook,
|
|
getCanonicalizationPatterns, std::move(interfaceMap),
|
|
hasTrait);
|
|
|
|
auto &impl = dialect.getContext()->getImpl();
|
|
assert(impl.multiThreadedExecutionContext == 0 &&
|
|
"Registering a new operation kind while in a multi-threaded execution "
|
|
"context");
|
|
if (!impl.registeredOperations.insert({name, std::move(opInfo)}).second) {
|
|
llvm::errs() << "error: operation named '" << name
|
|
<< "' is already registered.\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
AbstractOperation::AbstractOperation(
|
|
StringRef name, Dialect &dialect, OperationProperties opProperties,
|
|
TypeID typeID, ParseAssemblyFn parseAssembly, PrintAssemblyFn printAssembly,
|
|
VerifyInvariantsFn verifyInvariants, FoldHookFn foldHook,
|
|
GetCanonicalizationPatternsFn getCanonicalizationPatterns,
|
|
detail::InterfaceMap &&interfaceMap, HasTraitFn hasTrait)
|
|
: name(Identifier::get(name, dialect.getContext())), dialect(dialect),
|
|
typeID(typeID), opProperties(opProperties),
|
|
interfaceMap(std::move(interfaceMap)), foldHookFn(foldHook),
|
|
getCanonicalizationPatternsFn(getCanonicalizationPatterns),
|
|
hasTraitFn(hasTrait), parseAssemblyFn(parseAssembly),
|
|
printAssemblyFn(printAssembly), verifyInvariantsFn(verifyInvariants) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AbstractType
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const AbstractType &AbstractType::lookup(TypeID typeID, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto it = impl.registeredTypes.find(typeID);
|
|
if (it == impl.registeredTypes.end())
|
|
llvm::report_fatal_error(
|
|
"Trying to create a Type that was not registered in this MLIRContext.");
|
|
return *it->second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Identifier uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return an identifier for the specified string.
|
|
Identifier Identifier::get(StringRef str, MLIRContext *context) {
|
|
// Check invariants after seeing if we already have something in the
|
|
// identifier table - if we already had it in the table, then it already
|
|
// passed invariant checks.
|
|
assert(!str.empty() && "Cannot create an empty identifier");
|
|
assert(str.find('\0') == StringRef::npos &&
|
|
"Cannot create an identifier with a nul character");
|
|
|
|
auto &impl = context->getImpl();
|
|
if (!context->isMultithreadingEnabled())
|
|
return Identifier(&*impl.identifiers.insert(str).first);
|
|
|
|
// Check for an existing instance in the local cache.
|
|
auto *&localEntry = (*impl.localIdentifierCache)[str];
|
|
if (localEntry)
|
|
return Identifier(localEntry);
|
|
|
|
// Check for an existing identifier in read-only mode.
|
|
{
|
|
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
|
|
auto it = impl.identifiers.find(str);
|
|
if (it != impl.identifiers.end()) {
|
|
localEntry = &*it;
|
|
return Identifier(localEntry);
|
|
}
|
|
}
|
|
|
|
// Acquire a writer-lock so that we can safely create the new instance.
|
|
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
|
|
auto it = impl.identifiers.insert(str).first;
|
|
localEntry = &*it;
|
|
return Identifier(localEntry);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the storage uniquer used for constructing type storage instances.
|
|
/// This should not be used directly.
|
|
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
|
|
|
|
BFloat16Type BFloat16Type::get(MLIRContext *context) {
|
|
return context->getImpl().bf16Ty;
|
|
}
|
|
Float16Type Float16Type::get(MLIRContext *context) {
|
|
return context->getImpl().f16Ty;
|
|
}
|
|
Float32Type Float32Type::get(MLIRContext *context) {
|
|
return context->getImpl().f32Ty;
|
|
}
|
|
Float64Type Float64Type::get(MLIRContext *context) {
|
|
return context->getImpl().f64Ty;
|
|
}
|
|
|
|
/// Get an instance of the IndexType.
|
|
IndexType IndexType::get(MLIRContext *context) {
|
|
return context->getImpl().indexTy;
|
|
}
|
|
|
|
/// Return an existing integer type instance if one is cached within the
|
|
/// context.
|
|
static IntegerType
|
|
getCachedIntegerType(unsigned width,
|
|
IntegerType::SignednessSemantics signedness,
|
|
MLIRContext *context) {
|
|
if (signedness != IntegerType::Signless)
|
|
return IntegerType();
|
|
|
|
switch (width) {
|
|
case 1:
|
|
return context->getImpl().int1Ty;
|
|
case 8:
|
|
return context->getImpl().int8Ty;
|
|
case 16:
|
|
return context->getImpl().int16Ty;
|
|
case 32:
|
|
return context->getImpl().int32Ty;
|
|
case 64:
|
|
return context->getImpl().int64Ty;
|
|
case 128:
|
|
return context->getImpl().int128Ty;
|
|
default:
|
|
return IntegerType();
|
|
}
|
|
}
|
|
|
|
IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
|
|
return get(width, IntegerType::Signless, context);
|
|
}
|
|
|
|
IntegerType IntegerType::get(unsigned width,
|
|
IntegerType::SignednessSemantics signedness,
|
|
MLIRContext *context) {
|
|
if (auto cached = getCachedIntegerType(width, signedness, context))
|
|
return cached;
|
|
return Base::get(context, width, signedness);
|
|
}
|
|
|
|
IntegerType IntegerType::getChecked(unsigned width, Location location) {
|
|
return getChecked(width, IntegerType::Signless, location);
|
|
}
|
|
|
|
IntegerType IntegerType::getChecked(unsigned width,
|
|
SignednessSemantics signedness,
|
|
Location location) {
|
|
if (auto cached =
|
|
getCachedIntegerType(width, signedness, location->getContext()))
|
|
return cached;
|
|
return Base::getChecked(location, width, signedness);
|
|
}
|
|
|
|
/// Get an instance of the NoneType.
|
|
NoneType NoneType::get(MLIRContext *context) {
|
|
if (NoneType cachedInst = context->getImpl().noneType)
|
|
return cachedInst;
|
|
// Note: May happen when initializing the singleton attributes of the builtin
|
|
// dialect.
|
|
return Base::get(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the storage uniquer used for constructing attribute storage
|
|
/// instances. This should not be used directly.
|
|
StorageUniquer &MLIRContext::getAttributeUniquer() {
|
|
return getImpl().attributeUniquer;
|
|
}
|
|
|
|
/// Initialize the given attribute storage instance.
|
|
void AttributeUniquer::initializeAttributeStorage(AttributeStorage *storage,
|
|
MLIRContext *ctx,
|
|
TypeID attrID) {
|
|
storage->initialize(AbstractAttribute::lookup(attrID, ctx));
|
|
|
|
// If the attribute did not provide a type, then default to NoneType.
|
|
if (!storage->getType())
|
|
storage->setType(NoneType::get(ctx));
|
|
}
|
|
|
|
BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
|
|
return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
|
|
}
|
|
|
|
UnitAttr UnitAttr::get(MLIRContext *context) {
|
|
return context->getImpl().unitAttr;
|
|
}
|
|
|
|
Location UnknownLoc::get(MLIRContext *context) {
|
|
return context->getImpl().unknownLocAttr;
|
|
}
|
|
|
|
/// Return empty dictionary.
|
|
DictionaryAttr DictionaryAttr::getEmpty(MLIRContext *context) {
|
|
return context->getImpl().emptyDictionaryAttr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMap uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StorageUniquer &MLIRContext::getAffineUniquer() {
|
|
return getImpl().affineUniquer;
|
|
}
|
|
|
|
AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> results,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto key = std::make_tuple(dimCount, symbolCount, results);
|
|
|
|
// Safely get or create an AffineMap instance.
|
|
return safeGetOrCreate(
|
|
impl.affineMaps, key, impl.affineMutex, impl.threadingIsEnabled, [&] {
|
|
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
|
|
|
|
// Copy the results into the bump pointer.
|
|
results = copyArrayRefInto(impl.affineAllocator, results);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (res)
|
|
detail::AffineMapStorage{dimCount, symbolCount, results, context};
|
|
return AffineMap(res);
|
|
});
|
|
}
|
|
|
|
AffineMap AffineMap::get(MLIRContext *context) {
|
|
return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
|
|
}
|
|
|
|
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
MLIRContext *context) {
|
|
return getImpl(dimCount, symbolCount, /*results=*/{}, context);
|
|
}
|
|
|
|
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
AffineExpr result) {
|
|
return getImpl(dimCount, symbolCount, {result}, result.getContext());
|
|
}
|
|
|
|
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> results, MLIRContext *context) {
|
|
return getImpl(dimCount, symbolCount, results, context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Sets: these are allocated into the bump pointer, and are immutable.
|
|
// Unlike AffineMap's, these are uniqued only if they are small.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> constraints,
|
|
ArrayRef<bool> eqFlags) {
|
|
// The number of constraints can't be zero.
|
|
assert(!constraints.empty());
|
|
assert(constraints.size() == eqFlags.size());
|
|
|
|
auto &impl = constraints[0].getContext()->getImpl();
|
|
|
|
// A utility function to construct a new IntegerSetStorage instance.
|
|
auto constructorFn = [&] {
|
|
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
|
|
|
|
// Copy the results and equality flags into the bump pointer.
|
|
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
|
|
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (res)
|
|
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
|
|
return IntegerSet(res);
|
|
};
|
|
|
|
// If this instance is uniqued, then we handle it separately so that multiple
|
|
// threads may simultaneously access existing instances.
|
|
if (constraints.size() < IntegerSet::kUniquingThreshold) {
|
|
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
|
|
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
|
|
impl.threadingIsEnabled, constructorFn);
|
|
}
|
|
|
|
// Otherwise, acquire a writer-lock so that we can safely create the new
|
|
// instance.
|
|
ScopedWriterLock affineLock(impl.affineMutex, impl.threadingIsEnabled);
|
|
return constructorFn();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StorageUniquerSupport
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Utility method to generate a default location for use when checking the
|
|
/// construction invariants of a storage object. This is defined out-of-line to
|
|
/// avoid the need to include Location.h.
|
|
const AttributeStorage *
|
|
mlir::detail::generateUnknownStorageLocation(MLIRContext *ctx) {
|
|
return reinterpret_cast<const AttributeStorage *>(
|
|
ctx->getImpl().unknownLocAttr.getAsOpaquePointer());
|
|
}
|