llvm-project/mlir/lib/IR/MLIRContext.cpp

949 lines
35 KiB
C++

//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/ThreadLocalCache.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#define DEBUG_TYPE "mlircontext"
using namespace mlir;
using namespace mlir::detail;
using llvm::hash_combine;
using llvm::hash_combine_range;
//===----------------------------------------------------------------------===//
// MLIRContext CommandLine Options
//===----------------------------------------------------------------------===//
namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
/// for global command line options.
struct MLIRContextOptions {
llvm::cl::opt<bool> disableThreading{
"mlir-disable-threading",
llvm::cl::desc("Disabling multi-threading within MLIR")};
llvm::cl::opt<bool> printOpOnDiagnostic{
"mlir-print-op-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
"the operation as an attached note"),
llvm::cl::init(true)};
llvm::cl::opt<bool> printStackTraceOnDiagnostic{
"mlir-print-stacktrace-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
"as an attached note")};
};
} // end anonymous namespace
static llvm::ManagedStatic<MLIRContextOptions> clOptions;
/// Register a set of useful command-line options that can be used to configure
/// various flags within the MLIRContext. These flags are used when constructing
/// an MLIR context for initialization.
void mlir::registerMLIRContextCLOptions() {
// Make sure that the options struct has been initialized.
*clOptions;
}
//===----------------------------------------------------------------------===//
// Locking Utilities
//===----------------------------------------------------------------------===//
namespace {
/// Utility reader lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedReaderLock {
ScopedReaderLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
: mutex(shouldLock ? &mutexParam : nullptr) {
if (mutex)
mutex->lock_shared();
}
~ScopedReaderLock() {
if (mutex)
mutex->unlock_shared();
}
llvm::sys::SmartRWMutex<true> *mutex;
};
/// Utility writer lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedWriterLock {
ScopedWriterLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
: mutex(shouldLock ? &mutexParam : nullptr) {
if (mutex)
mutex->lock();
}
~ScopedWriterLock() {
if (mutex)
mutex->unlock();
}
llvm::sys::SmartRWMutex<true> *mutex;
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// AffineMap and IntegerSet hashing
//===----------------------------------------------------------------------===//
/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
bool threadingIsEnabled,
ConstructorFn &&constructorFn) {
// Check for an existing instance in read-only mode.
if (threadingIsEnabled) {
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find_as(key);
if (it != container.end())
return *it;
}
// Acquire a writer-lock so that we can safely create the new instance.
ScopedWriterLock instanceLock(mutex, threadingIsEnabled);
// Check for an existing instance again here, because another writer thread
// may have already created one. Otherwise, construct a new instance.
auto existing = container.insert_as(ValueT(), key);
if (existing.second)
return *existing.first = constructorFn();
return *existing.first;
}
namespace {
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
// Affine maps are uniqued based on their dim/symbol counts and affine
// expressions.
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
using DenseMapInfo<AffineMap>::isEqual;
static unsigned getHashValue(const AffineMap &key) {
return getHashValue(
KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
}
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getResults());
}
};
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
// Integer sets are uniqued based on their dim/symbol counts, affine
// expressions appearing in the LHS of constraints, and eqFlags.
using KeyTy =
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
using DenseMapInfo<IntegerSet>::isEqual;
static unsigned getHashValue(const IntegerSet &key) {
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
key.getConstraints(), key.getEqFlags()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getConstraints(), rhs.getEqFlags());
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// MLIRContextImpl
//===----------------------------------------------------------------------===//
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
//===--------------------------------------------------------------------===//
// Identifier uniquing
//===--------------------------------------------------------------------===//
// Identifier allocator and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::sys::SmartRWMutex<true> identifierMutex;
//===--------------------------------------------------------------------===//
// Diagnostics
//===--------------------------------------------------------------------===//
DiagnosticEngine diagEngine;
//===--------------------------------------------------------------------===//
// Options
//===--------------------------------------------------------------------===//
/// In most cases, creating operation in unregistered dialect is not desired
/// and indicate a misconfiguration of the compiler. This option enables to
/// detect such use cases
bool allowUnregisteredDialects = false;
/// Enable support for multi-threading within MLIR.
bool threadingIsEnabled = true;
/// Track if we are currently executing in a threaded execution environment
/// (like the pass-manager): this is only a debugging feature to help reducing
/// the chances of data races one some context APIs.
#ifndef NDEBUG
std::atomic<int> multiThreadedExecutionContext{0};
#endif
/// If the operation should be attached to diagnostics printed via the
/// Operation::emit methods.
bool printOpOnDiagnostic = true;
/// If the current stack trace should be attached when emitting diagnostics.
bool printStackTraceOnDiagnostic = false;
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// This is a list of dialects that are created referring to this context.
/// The MLIRContext owns the objects.
DenseMap<StringRef, std::unique_ptr<Dialect>> loadedDialects;
DialectRegistry dialectsRegistry;
/// This is a mapping from operation name to AbstractOperation for registered
/// operations.
llvm::StringMap<AbstractOperation> registeredOperations;
/// Identifiers are uniqued by string value and use the internal string set
/// for storage.
llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;
/// A thread local cache of identifiers to reduce lock contention.
ThreadLocalCache<llvm::StringMap<llvm::StringMapEntry<llvm::NoneType> *>>
localIdentifierCache;
/// An allocator used for AbstractAttribute and AbstractType objects.
llvm::BumpPtrAllocator abstractDialectSymbolAllocator;
//===--------------------------------------------------------------------===//
// Affine uniquing
//===--------------------------------------------------------------------===//
// Affine allocator and mutex for thread safety.
llvm::BumpPtrAllocator affineAllocator;
llvm::sys::SmartRWMutex<true> affineMutex;
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
AffineMapSet affineMaps;
// Integer set uniquing.
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
IntegerSets integerSets;
// Affine expression uniquing.
StorageUniquer affineUniquer;
//===--------------------------------------------------------------------===//
// Type uniquing
//===--------------------------------------------------------------------===//
DenseMap<TypeID, const AbstractType *> registeredTypes;
StorageUniquer typeUniquer;
/// Cached Type Instances.
BFloat16Type bf16Ty;
Float16Type f16Ty;
Float32Type f32Ty;
Float64Type f64Ty;
IndexType indexTy;
IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
NoneType noneType;
//===--------------------------------------------------------------------===//
// Attribute uniquing
//===--------------------------------------------------------------------===//
DenseMap<TypeID, const AbstractAttribute *> registeredAttributes;
StorageUniquer attributeUniquer;
/// Cached Attribute Instances.
BoolAttr falseAttr, trueAttr;
UnitAttr unitAttr;
UnknownLoc unknownLocAttr;
DictionaryAttr emptyDictionaryAttr;
public:
MLIRContextImpl() : identifiers(identifierAllocator) {}
~MLIRContextImpl() {
for (auto typeMapping : registeredTypes)
typeMapping.second->~AbstractType();
for (auto attrMapping : registeredAttributes)
attrMapping.second->~AbstractAttribute();
}
};
} // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
// Initialize values based on the command line flags if they were provided.
if (clOptions.isConstructed()) {
disableMultithreading(clOptions->disableThreading);
printOpOnDiagnostic(clOptions->printOpOnDiagnostic);
printStackTraceOnDiagnostic(clOptions->printStackTraceOnDiagnostic);
}
// Ensure the builtin dialect is always pre-loaded.
getOrLoadDialect<BuiltinDialect>();
// Initialize several common attributes and types to avoid the need to lock
// the context when accessing them.
//// Types.
/// Floating-point Types.
impl->bf16Ty = TypeUniquer::get<BFloat16Type>(this);
impl->f16Ty = TypeUniquer::get<Float16Type>(this);
impl->f32Ty = TypeUniquer::get<Float32Type>(this);
impl->f64Ty = TypeUniquer::get<Float64Type>(this);
/// Index Type.
impl->indexTy = TypeUniquer::get<IndexType>(this);
/// Integer Types.
impl->int1Ty = TypeUniquer::get<IntegerType>(this, 1, IntegerType::Signless);
impl->int8Ty = TypeUniquer::get<IntegerType>(this, 8, IntegerType::Signless);
impl->int16Ty =
TypeUniquer::get<IntegerType>(this, 16, IntegerType::Signless);
impl->int32Ty =
TypeUniquer::get<IntegerType>(this, 32, IntegerType::Signless);
impl->int64Ty =
TypeUniquer::get<IntegerType>(this, 64, IntegerType::Signless);
impl->int128Ty =
TypeUniquer::get<IntegerType>(this, 128, IntegerType::Signless);
/// None Type.
impl->noneType = TypeUniquer::get<NoneType>(this);
//// Attributes.
//// Note: These must be registered after the types as they may generate one
//// of the above types internally.
/// Bool Attributes.
impl->falseAttr = AttributeUniquer::get<IntegerAttr>(
this, impl->int1Ty, APInt(/*numBits=*/1, false))
.cast<BoolAttr>();
impl->trueAttr = AttributeUniquer::get<IntegerAttr>(
this, impl->int1Ty, APInt(/*numBits=*/1, true))
.cast<BoolAttr>();
/// Unit Attribute.
impl->unitAttr = AttributeUniquer::get<UnitAttr>(this);
/// Unknown Location Attribute.
impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(this);
/// The empty dictionary attribute.
impl->emptyDictionaryAttr =
AttributeUniquer::get<DictionaryAttr>(this, ArrayRef<NamedAttribute>());
// Register the affine storage objects with the uniquer.
impl->affineUniquer
.registerParametricStorageType<AffineBinaryOpExprStorage>();
impl->affineUniquer
.registerParametricStorageType<AffineConstantExprStorage>();
impl->affineUniquer.registerParametricStorageType<AffineDimExprStorage>();
}
MLIRContext::~MLIRContext() {}
/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator. This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//
/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//
DialectRegistry &MLIRContext::getDialectRegistry() {
return impl->dialectsRegistry;
}
/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getLoadedDialects() {
std::vector<Dialect *> result;
result.reserve(impl->loadedDialects.size());
for (auto &dialect : impl->loadedDialects)
result.push_back(dialect.second.get());
llvm::array_pod_sort(result.begin(), result.end(),
[](Dialect *const *lhs, Dialect *const *rhs) -> int {
return (*lhs)->getNamespace() < (*rhs)->getNamespace();
});
return result;
}
std::vector<StringRef> MLIRContext::getAvailableDialects() {
std::vector<StringRef> result;
for (auto &dialect : impl->dialectsRegistry)
result.push_back(dialect.first);
return result;
}
/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getLoadedDialect(StringRef name) {
// Dialects are sorted by name, so we can use binary search for lookup.
auto it = impl->loadedDialects.find(name);
return (it != impl->loadedDialects.end()) ? it->second.get() : nullptr;
}
Dialect *MLIRContext::getOrLoadDialect(StringRef name) {
Dialect *dialect = getLoadedDialect(name);
if (dialect)
return dialect;
return impl->dialectsRegistry.loadByName(name, this);
}
/// Get a dialect for the provided namespace and TypeID: abort the program if a
/// dialect exist for this namespace with different TypeID. Returns a pointer to
/// the dialect owned by the context.
Dialect *
MLIRContext::getOrLoadDialect(StringRef dialectNamespace, TypeID dialectID,
function_ref<std::unique_ptr<Dialect>()> ctor) {
auto &impl = getImpl();
// Get the correct insertion position sorted by namespace.
std::unique_ptr<Dialect> &dialect = impl.loadedDialects[dialectNamespace];
if (!dialect) {
LLVM_DEBUG(llvm::dbgs()
<< "Load new dialect in Context " << dialectNamespace << "\n");
#ifndef NDEBUG
if (impl.multiThreadedExecutionContext != 0)
llvm::report_fatal_error(
"Loading a dialect (" + dialectNamespace +
") while in a multi-threaded execution context (maybe "
"the PassManager): this can indicate a "
"missing `dependentDialects` in a pass for example.");
#endif
dialect = ctor();
assert(dialect && "dialect ctor failed");
return dialect.get();
}
// Abort if dialect with namespace has already been registered.
if (dialect->getTypeID() != dialectID)
llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
"' has already been registered");
return dialect.get();
}
bool MLIRContext::allowsUnregisteredDialects() {
return impl->allowUnregisteredDialects;
}
void MLIRContext::allowUnregisteredDialects(bool allowing) {
impl->allowUnregisteredDialects = allowing;
}
/// Return true if multi-threading is disabled by the context.
bool MLIRContext::isMultithreadingEnabled() {
return impl->threadingIsEnabled && llvm::llvm_is_multithreaded();
}
/// Set the flag specifying if multi-threading is disabled by the context.
void MLIRContext::disableMultithreading(bool disable) {
impl->threadingIsEnabled = !disable;
// Update the threading mode for each of the uniquers.
impl->affineUniquer.disableMultithreading(disable);
impl->attributeUniquer.disableMultithreading(disable);
impl->typeUniquer.disableMultithreading(disable);
}
void MLIRContext::enterMultiThreadedExecution() {
#ifndef NDEBUG
++impl->multiThreadedExecutionContext;
#endif
}
void MLIRContext::exitMultiThreadedExecution() {
#ifndef NDEBUG
--impl->multiThreadedExecutionContext;
#endif
}
/// Return true if we should attach the operation to diagnostics emitted via
/// Operation::emit.
bool MLIRContext::shouldPrintOpOnDiagnostic() {
return impl->printOpOnDiagnostic;
}
/// Set the flag specifying if we should attach the operation to diagnostics
/// emitted via Operation::emit.
void MLIRContext::printOpOnDiagnostic(bool enable) {
impl->printOpOnDiagnostic = enable;
}
/// Return true if we should attach the current stacktrace to diagnostics when
/// emitted.
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
return impl->printStackTraceOnDiagnostic;
}
/// Set the flag specifying if we should attach the current stacktrace when
/// emitting diagnostics.
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
impl->printStackTraceOnDiagnostic = enable;
}
/// Return information about all registered operations. This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
// We just have the operations in a non-deterministic hash table order. Dump
// into a temporary array, then sort it by operation name to get a stable
// ordering.
llvm::StringMap<AbstractOperation> &registeredOps =
impl->registeredOperations;
std::vector<AbstractOperation *> result;
result.reserve(registeredOps.size());
for (auto &elt : registeredOps)
result.push_back(&elt.second);
llvm::array_pod_sort(
result.begin(), result.end(),
[](AbstractOperation *const *lhs, AbstractOperation *const *rhs) {
return (*lhs)->name.compare((*rhs)->name);
});
return result;
}
bool MLIRContext::isOperationRegistered(StringRef name) {
return impl->registeredOperations.count(name);
}
void Dialect::addType(TypeID typeID, AbstractType &&typeInfo) {
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new type kind while in a multi-threaded execution "
"context");
auto *newInfo =
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractType>())
AbstractType(std::move(typeInfo));
if (!impl.registeredTypes.insert({typeID, newInfo}).second)
llvm::report_fatal_error("Dialect Type already registered.");
}
void Dialect::addAttribute(TypeID typeID, AbstractAttribute &&attrInfo) {
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new attribute kind while in a multi-threaded execution "
"context");
auto *newInfo =
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractAttribute>())
AbstractAttribute(std::move(attrInfo));
if (!impl.registeredAttributes.insert({typeID, newInfo}).second)
llvm::report_fatal_error("Dialect Attribute already registered.");
}
//===----------------------------------------------------------------------===//
// AbstractAttribute
//===----------------------------------------------------------------------===//
/// Get the dialect that registered the attribute with the provided typeid.
const AbstractAttribute &AbstractAttribute::lookup(TypeID typeID,
MLIRContext *context) {
auto &impl = context->getImpl();
auto it = impl.registeredAttributes.find(typeID);
if (it == impl.registeredAttributes.end())
llvm::report_fatal_error("Trying to create an Attribute that was not "
"registered in this MLIRContext.");
return *it->second;
}
//===----------------------------------------------------------------------===//
// AbstractOperation
//===----------------------------------------------------------------------===//
ParseResult AbstractOperation::parseAssembly(OpAsmParser &parser,
OperationState &result) const {
return parseAssemblyFn(parser, result);
}
/// Look up the specified operation in the operation set and return a pointer
/// to it if present. Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
MLIRContext *context) {
auto &impl = context->getImpl();
auto it = impl.registeredOperations.find(opName);
if (it != impl.registeredOperations.end())
return &it->second;
return nullptr;
}
void AbstractOperation::insert(
StringRef name, Dialect &dialect, OperationProperties opProperties,
TypeID typeID, ParseAssemblyFn parseAssembly, PrintAssemblyFn printAssembly,
VerifyInvariantsFn verifyInvariants, FoldHookFn foldHook,
GetCanonicalizationPatternsFn getCanonicalizationPatterns,
detail::InterfaceMap &&interfaceMap, HasTraitFn hasTrait) {
AbstractOperation opInfo(name, dialect, opProperties, typeID, parseAssembly,
printAssembly, verifyInvariants, foldHook,
getCanonicalizationPatterns, std::move(interfaceMap),
hasTrait);
auto &impl = dialect.getContext()->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new operation kind while in a multi-threaded execution "
"context");
if (!impl.registeredOperations.insert({name, std::move(opInfo)}).second) {
llvm::errs() << "error: operation named '" << name
<< "' is already registered.\n";
abort();
}
}
AbstractOperation::AbstractOperation(
StringRef name, Dialect &dialect, OperationProperties opProperties,
TypeID typeID, ParseAssemblyFn parseAssembly, PrintAssemblyFn printAssembly,
VerifyInvariantsFn verifyInvariants, FoldHookFn foldHook,
GetCanonicalizationPatternsFn getCanonicalizationPatterns,
detail::InterfaceMap &&interfaceMap, HasTraitFn hasTrait)
: name(Identifier::get(name, dialect.getContext())), dialect(dialect),
typeID(typeID), opProperties(opProperties),
interfaceMap(std::move(interfaceMap)), foldHookFn(foldHook),
getCanonicalizationPatternsFn(getCanonicalizationPatterns),
hasTraitFn(hasTrait), parseAssemblyFn(parseAssembly),
printAssemblyFn(printAssembly), verifyInvariantsFn(verifyInvariants) {}
//===----------------------------------------------------------------------===//
// AbstractType
//===----------------------------------------------------------------------===//
const AbstractType &AbstractType::lookup(TypeID typeID, MLIRContext *context) {
auto &impl = context->getImpl();
auto it = impl.registeredTypes.find(typeID);
if (it == impl.registeredTypes.end())
llvm::report_fatal_error(
"Trying to create a Type that was not registered in this MLIRContext.");
return *it->second;
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
// Check invariants after seeing if we already have something in the
// identifier table - if we already had it in the table, then it already
// passed invariant checks.
assert(!str.empty() && "Cannot create an empty identifier");
assert(str.find('\0') == StringRef::npos &&
"Cannot create an identifier with a nul character");
auto &impl = context->getImpl();
if (!context->isMultithreadingEnabled())
return Identifier(&*impl.identifiers.insert(str).first);
// Check for an existing instance in the local cache.
auto *&localEntry = (*impl.localIdentifierCache)[str];
if (localEntry)
return Identifier(localEntry);
// Check for an existing identifier in read-only mode.
{
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end()) {
localEntry = &*it;
return Identifier(localEntry);
}
}
// Acquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.insert(str).first;
localEntry = &*it;
return Identifier(localEntry);
}
//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
BFloat16Type BFloat16Type::get(MLIRContext *context) {
return context->getImpl().bf16Ty;
}
Float16Type Float16Type::get(MLIRContext *context) {
return context->getImpl().f16Ty;
}
Float32Type Float32Type::get(MLIRContext *context) {
return context->getImpl().f32Ty;
}
Float64Type Float64Type::get(MLIRContext *context) {
return context->getImpl().f64Ty;
}
/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
return context->getImpl().indexTy;
}
/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType
getCachedIntegerType(unsigned width,
IntegerType::SignednessSemantics signedness,
MLIRContext *context) {
if (signedness != IntegerType::Signless)
return IntegerType();
switch (width) {
case 1:
return context->getImpl().int1Ty;
case 8:
return context->getImpl().int8Ty;
case 16:
return context->getImpl().int16Ty;
case 32:
return context->getImpl().int32Ty;
case 64:
return context->getImpl().int64Ty;
case 128:
return context->getImpl().int128Ty;
default:
return IntegerType();
}
}
IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
return get(width, IntegerType::Signless, context);
}
IntegerType IntegerType::get(unsigned width,
IntegerType::SignednessSemantics signedness,
MLIRContext *context) {
if (auto cached = getCachedIntegerType(width, signedness, context))
return cached;
return Base::get(context, width, signedness);
}
IntegerType IntegerType::getChecked(unsigned width, Location location) {
return getChecked(width, IntegerType::Signless, location);
}
IntegerType IntegerType::getChecked(unsigned width,
SignednessSemantics signedness,
Location location) {
if (auto cached =
getCachedIntegerType(width, signedness, location->getContext()))
return cached;
return Base::getChecked(location, width, signedness);
}
/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
if (NoneType cachedInst = context->getImpl().noneType)
return cachedInst;
// Note: May happen when initializing the singleton attributes of the builtin
// dialect.
return Base::get(context);
}
//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
return getImpl().attributeUniquer;
}
/// Initialize the given attribute storage instance.
void AttributeUniquer::initializeAttributeStorage(AttributeStorage *storage,
MLIRContext *ctx,
TypeID attrID) {
storage->initialize(AbstractAttribute::lookup(attrID, ctx));
// If the attribute did not provide a type, then default to NoneType.
if (!storage->getType())
storage->setType(NoneType::get(ctx));
}
BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}
UnitAttr UnitAttr::get(MLIRContext *context) {
return context->getImpl().unitAttr;
}
Location UnknownLoc::get(MLIRContext *context) {
return context->getImpl().unknownLocAttr;
}
/// Return empty dictionary.
DictionaryAttr DictionaryAttr::getEmpty(MLIRContext *context) {
return context->getImpl().emptyDictionaryAttr;
}
//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//
StorageUniquer &MLIRContext::getAffineUniquer() {
return getImpl().affineUniquer;
}
AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results,
MLIRContext *context) {
auto &impl = context->getImpl();
auto key = std::make_tuple(dimCount, symbolCount, results);
// Safely get or create an AffineMap instance.
return safeGetOrCreate(
impl.affineMaps, key, impl.affineMutex, impl.threadingIsEnabled, [&] {
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
// Copy the results into the bump pointer.
results = copyArrayRefInto(impl.affineAllocator, results);
// Initialize the memory using placement new.
new (res)
detail::AffineMapStorage{dimCount, symbolCount, results, context};
return AffineMap(res);
});
}
AffineMap AffineMap::get(MLIRContext *context) {
return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
MLIRContext *context) {
return getImpl(dimCount, symbolCount, /*results=*/{}, context);
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
AffineExpr result) {
return getImpl(dimCount, symbolCount, {result}, result.getContext());
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results, MLIRContext *context) {
return getImpl(dimCount, symbolCount, results, context);
}
//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> constraints,
ArrayRef<bool> eqFlags) {
// The number of constraints can't be zero.
assert(!constraints.empty());
assert(constraints.size() == eqFlags.size());
auto &impl = constraints[0].getContext()->getImpl();
// A utility function to construct a new IntegerSetStorage instance.
auto constructorFn = [&] {
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
// Copy the results and equality flags into the bump pointer.
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
// Initialize the memory using placement new.
new (res)
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
return IntegerSet(res);
};
// If this instance is uniqued, then we handle it separately so that multiple
// threads may simultaneously access existing instances.
if (constraints.size() < IntegerSet::kUniquingThreshold) {
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
impl.threadingIsEnabled, constructorFn);
}
// Otherwise, acquire a writer-lock so that we can safely create the new
// instance.
ScopedWriterLock affineLock(impl.affineMutex, impl.threadingIsEnabled);
return constructorFn();
}
//===----------------------------------------------------------------------===//
// StorageUniquerSupport
//===----------------------------------------------------------------------===//
/// Utility method to generate a default location for use when checking the
/// construction invariants of a storage object. This is defined out-of-line to
/// avoid the need to include Location.h.
const AttributeStorage *
mlir::detail::generateUnknownStorageLocation(MLIRContext *ctx) {
return reinterpret_cast<const AttributeStorage *>(
ctx->getImpl().unknownLocAttr.getAsOpaquePointer());
}