llvm-project/lldb/source/Interpreter/Options.cpp

1045 lines
35 KiB
C++

//===-- Options.cpp ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Interpreter/Options.h"
// C Includes
// C++ Includes
#include <algorithm>
#include <bitset>
#include <set>
// Other libraries and framework includes
// Project includes
#include "lldb/Interpreter/CommandObject.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/CommandCompletions.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Target/Target.h"
using namespace lldb;
using namespace lldb_private;
//-------------------------------------------------------------------------
// Options
//-------------------------------------------------------------------------
Options::Options (CommandInterpreter &interpreter) :
m_interpreter (interpreter),
m_getopt_table ()
{
BuildValidOptionSets();
}
Options::~Options ()
{
}
void
Options::NotifyOptionParsingStarting ()
{
m_seen_options.clear();
// Let the subclass reset its option values
OptionParsingStarting ();
}
Error
Options::NotifyOptionParsingFinished ()
{
return OptionParsingFinished ();
}
void
Options::OptionSeen (int option_idx)
{
m_seen_options.insert ((char) option_idx);
}
// Returns true is set_a is a subset of set_b; Otherwise returns false.
bool
Options::IsASubset (const OptionSet& set_a, const OptionSet& set_b)
{
bool is_a_subset = true;
OptionSet::const_iterator pos_a;
OptionSet::const_iterator pos_b;
// set_a is a subset of set_b if every member of set_a is also a member of set_b
for (pos_a = set_a.begin(); pos_a != set_a.end() && is_a_subset; ++pos_a)
{
pos_b = set_b.find(*pos_a);
if (pos_b == set_b.end())
is_a_subset = false;
}
return is_a_subset;
}
// Returns the set difference set_a - set_b, i.e. { x | ElementOf (x, set_a) && !ElementOf (x, set_b) }
size_t
Options::OptionsSetDiff (const OptionSet& set_a, const OptionSet& set_b, OptionSet& diffs)
{
size_t num_diffs = 0;
OptionSet::const_iterator pos_a;
OptionSet::const_iterator pos_b;
for (pos_a = set_a.begin(); pos_a != set_a.end(); ++pos_a)
{
pos_b = set_b.find(*pos_a);
if (pos_b == set_b.end())
{
++num_diffs;
diffs.insert(*pos_a);
}
}
return num_diffs;
}
// Returns the union of set_a and set_b. Does not put duplicate members into the union.
void
Options::OptionsSetUnion (const OptionSet &set_a, const OptionSet &set_b, OptionSet &union_set)
{
OptionSet::const_iterator pos;
OptionSet::iterator pos_union;
// Put all the elements of set_a into the union.
for (pos = set_a.begin(); pos != set_a.end(); ++pos)
union_set.insert(*pos);
// Put all the elements of set_b that are not already there into the union.
for (pos = set_b.begin(); pos != set_b.end(); ++pos)
{
pos_union = union_set.find(*pos);
if (pos_union == union_set.end())
union_set.insert(*pos);
}
}
bool
Options::VerifyOptions (CommandReturnObject &result)
{
bool options_are_valid = false;
int num_levels = GetRequiredOptions().size();
if (num_levels)
{
for (int i = 0; i < num_levels && !options_are_valid; ++i)
{
// This is the correct set of options if: 1). m_seen_options contains all of m_required_options[i]
// (i.e. all the required options at this level are a subset of m_seen_options); AND
// 2). { m_seen_options - m_required_options[i] is a subset of m_options_options[i] (i.e. all the rest of
// m_seen_options are in the set of optional options at this level.
// Check to see if all of m_required_options[i] are a subset of m_seen_options
if (IsASubset (GetRequiredOptions()[i], m_seen_options))
{
// Construct the set difference: remaining_options = {m_seen_options} - {m_required_options[i]}
OptionSet remaining_options;
OptionsSetDiff (m_seen_options, GetRequiredOptions()[i], remaining_options);
// Check to see if remaining_options is a subset of m_optional_options[i]
if (IsASubset (remaining_options, GetOptionalOptions()[i]))
options_are_valid = true;
}
}
}
else
{
options_are_valid = true;
}
if (options_are_valid)
{
result.SetStatus (eReturnStatusSuccessFinishNoResult);
}
else
{
result.AppendError ("invalid combination of options for the given command");
result.SetStatus (eReturnStatusFailed);
}
return options_are_valid;
}
// This is called in the Options constructor, though we could call it lazily if that ends up being
// a performance problem.
void
Options::BuildValidOptionSets ()
{
// Check to see if we already did this.
if (m_required_options.size() != 0)
return;
// Check to see if there are any options.
int num_options = NumCommandOptions ();
if (num_options == 0)
return;
const OptionDefinition *opt_defs = GetDefinitions();
m_required_options.resize(1);
m_optional_options.resize(1);
// First count the number of option sets we've got. Ignore LLDB_ALL_OPTION_SETS...
uint32_t num_option_sets = 0;
for (int i = 0; i < num_options; i++)
{
uint32_t this_usage_mask = opt_defs[i].usage_mask;
if (this_usage_mask == LLDB_OPT_SET_ALL)
{
if (num_option_sets == 0)
num_option_sets = 1;
}
else
{
for (int j = 0; j < LLDB_MAX_NUM_OPTION_SETS; j++)
{
if (this_usage_mask & (1 << j))
{
if (num_option_sets <= j)
num_option_sets = j + 1;
}
}
}
}
if (num_option_sets > 0)
{
m_required_options.resize(num_option_sets);
m_optional_options.resize(num_option_sets);
for (int i = 0; i < num_options; ++i)
{
for (int j = 0; j < num_option_sets; j++)
{
if (opt_defs[i].usage_mask & 1 << j)
{
if (opt_defs[i].required)
m_required_options[j].insert(opt_defs[i].short_option);
else
m_optional_options[j].insert(opt_defs[i].short_option);
}
}
}
}
}
uint32_t
Options::NumCommandOptions ()
{
const OptionDefinition *opt_defs = GetDefinitions ();
if (opt_defs == NULL)
return 0;
int i = 0;
if (opt_defs != NULL)
{
while (opt_defs[i].long_option != NULL)
++i;
}
return i;
}
struct option *
Options::GetLongOptions ()
{
// Check to see if this has already been done.
if (m_getopt_table.empty())
{
// Check to see if there are any options.
const uint32_t num_options = NumCommandOptions();
if (num_options == 0)
return NULL;
uint32_t i;
uint32_t j;
const OptionDefinition *opt_defs = GetDefinitions();
std::bitset<256> option_seen;
m_getopt_table.resize(num_options + 1);
for (i = 0, j = 0; i < num_options; ++i)
{
char short_opt = opt_defs[i].short_option;
if (option_seen.test(short_opt) == false)
{
m_getopt_table[j].name = opt_defs[i].long_option;
m_getopt_table[j].has_arg = opt_defs[i].option_has_arg;
m_getopt_table[j].flag = NULL;
m_getopt_table[j].val = opt_defs[i].short_option;
option_seen.set(short_opt);
++j;
}
}
//getopt_long requires a NULL final entry in the table:
m_getopt_table[j].name = NULL;
m_getopt_table[j].has_arg = 0;
m_getopt_table[j].flag = NULL;
m_getopt_table[j].val = 0;
}
if (m_getopt_table.empty())
return NULL;
return &m_getopt_table.front();
}
// This function takes INDENT, which tells how many spaces to output at the front of each line; SPACES, which is
// a string containing 80 spaces; and TEXT, which is the text that is to be output. It outputs the text, on
// multiple lines if necessary, to RESULT, with INDENT spaces at the front of each line. It breaks lines on spaces,
// tabs or newlines, shortening the line if necessary to not break in the middle of a word. It assumes that each
// output line should contain a maximum of OUTPUT_MAX_COLUMNS characters.
void
Options::OutputFormattedUsageText
(
Stream &strm,
const char *text,
uint32_t output_max_columns
)
{
int len = strlen (text);
// Will it all fit on one line?
if ((len + strm.GetIndentLevel()) < output_max_columns)
{
// Output it as a single line.
strm.Indent (text);
strm.EOL();
}
else
{
// We need to break it up into multiple lines.
int text_width = output_max_columns - strm.GetIndentLevel() - 1;
int start = 0;
int end = start;
int final_end = strlen (text);
int sub_len;
while (end < final_end)
{
// Don't start the 'text' on a space, since we're already outputting the indentation.
while ((start < final_end) && (text[start] == ' '))
start++;
end = start + text_width;
if (end > final_end)
end = final_end;
else
{
// If we're not at the end of the text, make sure we break the line on white space.
while (end > start
&& text[end] != ' ' && text[end] != '\t' && text[end] != '\n')
end--;
}
sub_len = end - start;
if (start != 0)
strm.EOL();
strm.Indent();
assert (start < final_end);
assert (start + sub_len <= final_end);
strm.Write(text + start, sub_len);
start = end + 1;
}
strm.EOL();
}
}
bool
Options::SupportsLongOption (const char *long_option)
{
if (long_option && long_option[0])
{
const OptionDefinition *opt_defs = GetDefinitions ();
if (opt_defs)
{
const char *long_option_name = long_option;
if (long_option[0] == '-' && long_option[1] == '-')
long_option_name += 2;
for (uint32_t i = 0; opt_defs[i].long_option; ++i)
{
if (strcmp(opt_defs[i].long_option, long_option_name) == 0)
return true;
}
}
}
return false;
}
void
Options::GenerateOptionUsage
(
Stream &strm,
CommandObject *cmd
)
{
const uint32_t screen_width = m_interpreter.GetDebugger().GetTerminalWidth();
const OptionDefinition *opt_defs = GetDefinitions();
const uint32_t save_indent_level = strm.GetIndentLevel();
const char *name;
StreamString arguments_str;
if (cmd)
{
name = cmd->GetCommandName();
cmd->GetFormattedCommandArguments (arguments_str);
}
else
name = "";
strm.PutCString ("\nCommand Options Usage:\n");
strm.IndentMore(2);
// First, show each usage level set of options, e.g. <cmd> [options-for-level-0]
// <cmd> [options-for-level-1]
// etc.
const uint32_t num_options = NumCommandOptions();
if (num_options == 0)
return;
int num_option_sets = GetRequiredOptions().size();
uint32_t i;
for (uint32_t opt_set = 0; opt_set < num_option_sets; ++opt_set)
{
uint32_t opt_set_mask;
opt_set_mask = 1 << opt_set;
if (opt_set > 0)
strm.Printf ("\n");
strm.Indent (name);
// Different option sets may require different args.
StreamString args_str;
cmd->GetFormattedCommandArguments(args_str, opt_set_mask);
// First go through and print all options that take no arguments as
// a single string. If a command has "-a" "-b" and "-c", this will show
// up as [-abc]
std::set<char> options;
std::set<char>::const_iterator options_pos, options_end;
bool first;
for (i = 0, first = true; i < num_options; ++i)
{
if (opt_defs[i].usage_mask & opt_set_mask)
{
// Add current option to the end of out_stream.
if (opt_defs[i].required == true &&
opt_defs[i].option_has_arg == no_argument)
{
options.insert (opt_defs[i].short_option);
}
}
}
if (options.empty() == false)
{
// We have some required options with no arguments
strm.PutCString(" -");
for (i=0; i<2; ++i)
for (options_pos = options.begin(), options_end = options.end();
options_pos != options_end;
++options_pos)
{
if (i==0 && ::isupper (*options_pos))
continue;
if (i==1 && ::islower (*options_pos))
continue;
strm << *options_pos;
}
}
for (i = 0, options.clear(); i < num_options; ++i)
{
if (opt_defs[i].usage_mask & opt_set_mask)
{
// Add current option to the end of out_stream.
if (opt_defs[i].required == false &&
opt_defs[i].option_has_arg == no_argument)
{
options.insert (opt_defs[i].short_option);
}
}
}
if (options.empty() == false)
{
// We have some required options with no arguments
strm.PutCString(" [-");
for (i=0; i<2; ++i)
for (options_pos = options.begin(), options_end = options.end();
options_pos != options_end;
++options_pos)
{
if (i==0 && ::isupper (*options_pos))
continue;
if (i==1 && ::islower (*options_pos))
continue;
strm << *options_pos;
}
strm.PutChar(']');
}
// First go through and print the required options (list them up front).
for (i = 0; i < num_options; ++i)
{
if (opt_defs[i].usage_mask & opt_set_mask)
{
// Add current option to the end of out_stream.
CommandArgumentType arg_type = opt_defs[i].argument_type;
if (opt_defs[i].required)
{
if (opt_defs[i].option_has_arg == required_argument)
{
strm.Printf (" -%c <%s>",
opt_defs[i].short_option,
CommandObject::GetArgumentName (arg_type));
}
else if (opt_defs[i].option_has_arg == optional_argument)
{
strm.Printf (" -%c [<%s>]",
opt_defs[i].short_option,
CommandObject::GetArgumentName (arg_type));
}
}
}
}
// Now go through again, and this time only print the optional options.
for (i = 0; i < num_options; ++i)
{
if (opt_defs[i].usage_mask & opt_set_mask)
{
// Add current option to the end of out_stream.
CommandArgumentType arg_type = opt_defs[i].argument_type;
if (! opt_defs[i].required)
{
if (opt_defs[i].option_has_arg == required_argument)
strm.Printf (" [-%c <%s>]", opt_defs[i].short_option,
CommandObject::GetArgumentName (arg_type));
else if (opt_defs[i].option_has_arg == optional_argument)
strm.Printf (" [-%c [<%s>]]", opt_defs[i].short_option,
CommandObject::GetArgumentName (arg_type));
}
}
}
if (args_str.GetSize() > 0)
{
if (cmd->WantsRawCommandString())
strm.Printf(" --");
strm.Printf (" %s", args_str.GetData());
}
}
if (cmd->WantsRawCommandString() &&
arguments_str.GetSize() > 0)
{
strm.PutChar('\n');
strm.Indent(name);
strm.Printf(" %s", arguments_str.GetData());
}
strm.Printf ("\n\n");
// Now print out all the detailed information about the various options: long form, short form and help text:
// --long_name <argument> ( -short <argument> )
// help text
// This variable is used to keep track of which options' info we've printed out, because some options can be in
// more than one usage level, but we only want to print the long form of its information once.
OptionSet options_seen;
OptionSet::iterator pos;
strm.IndentMore (5);
std::vector<char> sorted_options;
// Put the unique command options in a vector & sort it, so we can output them alphabetically (by short_option)
// when writing out detailed help for each option.
for (i = 0; i < num_options; ++i)
{
pos = options_seen.find (opt_defs[i].short_option);
if (pos == options_seen.end())
{
options_seen.insert (opt_defs[i].short_option);
sorted_options.push_back (opt_defs[i].short_option);
}
}
std::sort (sorted_options.begin(), sorted_options.end());
// Go through the unique'd and alphabetically sorted vector of options, find the table entry for each option
// and write out the detailed help information for that option.
int first_option_printed = 1;
size_t end = sorted_options.size();
for (size_t j = 0; j < end; ++j)
{
char option = sorted_options[j];
bool found = false;
for (i = 0; i < num_options && !found; ++i)
{
if (opt_defs[i].short_option == option)
{
found = true;
//Print out the help information for this option.
// Put a newline separation between arguments
if (first_option_printed)
first_option_printed = 0;
else
strm.EOL();
CommandArgumentType arg_type = opt_defs[i].argument_type;
StreamString arg_name_str;
arg_name_str.Printf ("<%s>", CommandObject::GetArgumentName (arg_type));
strm.Indent ();
strm.Printf ("-%c", opt_defs[i].short_option);
if (arg_type != eArgTypeNone)
strm.Printf (" <%s>", CommandObject::GetArgumentName (arg_type));
strm.Printf (" ( --%s", opt_defs[i].long_option);
if (arg_type != eArgTypeNone)
strm.Printf (" <%s>", CommandObject::GetArgumentName (arg_type));
strm.PutCString(" )\n");
strm.IndentMore (5);
if (opt_defs[i].usage_text)
OutputFormattedUsageText (strm,
opt_defs[i].usage_text,
screen_width);
if (opt_defs[i].enum_values != NULL)
{
strm.Indent ();
strm.Printf("Values: ");
for (int k = 0; opt_defs[i].enum_values[k].string_value != NULL; k++)
{
if (k == 0)
strm.Printf("%s", opt_defs[i].enum_values[k].string_value);
else
strm.Printf(" | %s", opt_defs[i].enum_values[k].string_value);
}
strm.EOL();
}
strm.IndentLess (5);
}
}
}
// Restore the indent level
strm.SetIndentLevel (save_indent_level);
}
// This function is called when we have been given a potentially incomplete set of
// options, such as when an alias has been defined (more options might be added at
// at the time the alias is invoked). We need to verify that the options in the set
// m_seen_options are all part of a set that may be used together, but m_seen_options
// may be missing some of the "required" options.
bool
Options::VerifyPartialOptions (CommandReturnObject &result)
{
bool options_are_valid = false;
int num_levels = GetRequiredOptions().size();
if (num_levels)
{
for (int i = 0; i < num_levels && !options_are_valid; ++i)
{
// In this case we are treating all options as optional rather than required.
// Therefore a set of options is correct if m_seen_options is a subset of the
// union of m_required_options and m_optional_options.
OptionSet union_set;
OptionsSetUnion (GetRequiredOptions()[i], GetOptionalOptions()[i], union_set);
if (IsASubset (m_seen_options, union_set))
options_are_valid = true;
}
}
return options_are_valid;
}
bool
Options::HandleOptionCompletion
(
Args &input,
OptionElementVector &opt_element_vector,
int cursor_index,
int char_pos,
int match_start_point,
int max_return_elements,
bool &word_complete,
lldb_private::StringList &matches
)
{
word_complete = true;
// For now we just scan the completions to see if the cursor position is in
// an option or its argument. Otherwise we'll call HandleArgumentCompletion.
// In the future we can use completion to validate options as well if we want.
const OptionDefinition *opt_defs = GetDefinitions();
std::string cur_opt_std_str (input.GetArgumentAtIndex(cursor_index));
cur_opt_std_str.erase(char_pos);
const char *cur_opt_str = cur_opt_std_str.c_str();
for (int i = 0; i < opt_element_vector.size(); i++)
{
int opt_pos = opt_element_vector[i].opt_pos;
int opt_arg_pos = opt_element_vector[i].opt_arg_pos;
int opt_defs_index = opt_element_vector[i].opt_defs_index;
if (opt_pos == cursor_index)
{
// We're completing the option itself.
if (opt_defs_index == OptionArgElement::eBareDash)
{
// We're completing a bare dash. That means all options are open.
// FIXME: We should scan the other options provided and only complete options
// within the option group they belong to.
char opt_str[3] = {'-', 'a', '\0'};
for (int j = 0 ; opt_defs[j].short_option != 0 ; j++)
{
opt_str[1] = opt_defs[j].short_option;
matches.AppendString (opt_str);
}
return true;
}
else if (opt_defs_index == OptionArgElement::eBareDoubleDash)
{
std::string full_name ("--");
for (int j = 0 ; opt_defs[j].short_option != 0 ; j++)
{
full_name.erase(full_name.begin() + 2, full_name.end());
full_name.append (opt_defs[j].long_option);
matches.AppendString (full_name.c_str());
}
return true;
}
else if (opt_defs_index != OptionArgElement::eUnrecognizedArg)
{
// We recognized it, if it an incomplete long option, complete it anyway (getopt_long is
// happy with shortest unique string, but it's still a nice thing to do.) Otherwise return
// The string so the upper level code will know this is a full match and add the " ".
if (cur_opt_str && strlen (cur_opt_str) > 2
&& cur_opt_str[0] == '-' && cur_opt_str[1] == '-'
&& strcmp (opt_defs[opt_defs_index].long_option, cur_opt_str) != 0)
{
std::string full_name ("--");
full_name.append (opt_defs[opt_defs_index].long_option);
matches.AppendString(full_name.c_str());
return true;
}
else
{
matches.AppendString(input.GetArgumentAtIndex(cursor_index));
return true;
}
}
else
{
// FIXME - not handling wrong options yet:
// Check to see if they are writing a long option & complete it.
// I think we will only get in here if the long option table has two elements
// that are not unique up to this point. getopt_long does shortest unique match
// for long options already.
if (cur_opt_str && strlen (cur_opt_str) > 2
&& cur_opt_str[0] == '-' && cur_opt_str[1] == '-')
{
for (int j = 0 ; opt_defs[j].short_option != 0 ; j++)
{
if (strstr(opt_defs[j].long_option, cur_opt_str + 2) == opt_defs[j].long_option)
{
std::string full_name ("--");
full_name.append (opt_defs[j].long_option);
// The options definitions table has duplicates because of the
// way the grouping information is stored, so only add once.
bool duplicate = false;
for (int k = 0; k < matches.GetSize(); k++)
{
if (matches.GetStringAtIndex(k) == full_name)
{
duplicate = true;
break;
}
}
if (!duplicate)
matches.AppendString(full_name.c_str());
}
}
}
return true;
}
}
else if (opt_arg_pos == cursor_index)
{
// Okay the cursor is on the completion of an argument.
// See if it has a completion, otherwise return no matches.
if (opt_defs_index != -1)
{
HandleOptionArgumentCompletion (input,
cursor_index,
strlen (input.GetArgumentAtIndex(cursor_index)),
opt_element_vector,
i,
match_start_point,
max_return_elements,
word_complete,
matches);
return true;
}
else
{
// No completion callback means no completions...
return true;
}
}
else
{
// Not the last element, keep going.
continue;
}
}
return false;
}
bool
Options::HandleOptionArgumentCompletion
(
Args &input,
int cursor_index,
int char_pos,
OptionElementVector &opt_element_vector,
int opt_element_index,
int match_start_point,
int max_return_elements,
bool &word_complete,
lldb_private::StringList &matches
)
{
const OptionDefinition *opt_defs = GetDefinitions();
std::auto_ptr<SearchFilter> filter_ap;
int opt_arg_pos = opt_element_vector[opt_element_index].opt_arg_pos;
int opt_defs_index = opt_element_vector[opt_element_index].opt_defs_index;
// See if this is an enumeration type option, and if so complete it here:
OptionEnumValueElement *enum_values = opt_defs[opt_defs_index].enum_values;
if (enum_values != NULL)
{
bool return_value = false;
std::string match_string(input.GetArgumentAtIndex (opt_arg_pos), input.GetArgumentAtIndex (opt_arg_pos) + char_pos);
for (int i = 0; enum_values[i].string_value != NULL; i++)
{
if (strstr(enum_values[i].string_value, match_string.c_str()) == enum_values[i].string_value)
{
matches.AppendString (enum_values[i].string_value);
return_value = true;
}
}
return return_value;
}
// If this is a source file or symbol type completion, and there is a
// -shlib option somewhere in the supplied arguments, then make a search filter
// for that shared library.
// FIXME: Do we want to also have an "OptionType" so we don't have to match string names?
uint32_t completion_mask = opt_defs[opt_defs_index].completion_type;
if (completion_mask == 0)
{
lldb::CommandArgumentType option_arg_type = opt_defs[opt_defs_index].argument_type;
if (option_arg_type != eArgTypeNone)
{
CommandObject::ArgumentTableEntry *arg_entry = CommandObject::FindArgumentDataByType (opt_defs[opt_defs_index].argument_type);
if (arg_entry)
completion_mask = arg_entry->completion_type;
}
}
if (completion_mask & CommandCompletions::eSourceFileCompletion
|| completion_mask & CommandCompletions::eSymbolCompletion)
{
for (int i = 0; i < opt_element_vector.size(); i++)
{
int cur_defs_index = opt_element_vector[i].opt_defs_index;
int cur_arg_pos = opt_element_vector[i].opt_arg_pos;
const char *cur_opt_name = opt_defs[cur_defs_index].long_option;
// If this is the "shlib" option and there was an argument provided,
// restrict it to that shared library.
if (strcmp(cur_opt_name, "shlib") == 0 && cur_arg_pos != -1)
{
const char *module_name = input.GetArgumentAtIndex(cur_arg_pos);
if (module_name)
{
FileSpec module_spec(module_name, false);
lldb::TargetSP target_sp = m_interpreter.GetDebugger().GetSelectedTarget();
// Search filters require a target...
if (target_sp)
filter_ap.reset (new SearchFilterByModule (target_sp, module_spec));
}
break;
}
}
}
return CommandCompletions::InvokeCommonCompletionCallbacks (m_interpreter,
completion_mask,
input.GetArgumentAtIndex (opt_arg_pos),
match_start_point,
max_return_elements,
filter_ap.get(),
word_complete,
matches);
}
void
OptionGroupOptions::Append (OptionGroup* group)
{
const OptionDefinition* group_option_defs = group->GetDefinitions ();
const uint32_t group_option_count = group->GetNumDefinitions();
for (uint32_t i=0; i<group_option_count; ++i)
{
m_option_infos.push_back (OptionInfo (group, i));
m_option_defs.push_back (group_option_defs[i]);
}
}
void
OptionGroupOptions::Append (OptionGroup* group,
uint32_t src_mask,
uint32_t dst_mask)
{
const OptionDefinition* group_option_defs = group->GetDefinitions ();
const uint32_t group_option_count = group->GetNumDefinitions();
for (uint32_t i=0; i<group_option_count; ++i)
{
if (group_option_defs[i].usage_mask & src_mask)
{
m_option_infos.push_back (OptionInfo (group, i));
m_option_defs.push_back (group_option_defs[i]);
m_option_defs.back().usage_mask = dst_mask;
}
}
}
void
OptionGroupOptions::Finalize ()
{
m_did_finalize = true;
OptionDefinition empty_option_def = { 0, false, NULL, 0, 0, NULL, 0, eArgTypeNone, NULL };
m_option_defs.push_back (empty_option_def);
}
Error
OptionGroupOptions::SetOptionValue (uint32_t option_idx,
const char *option_value)
{
// After calling OptionGroupOptions::Append(...), you must finalize the groups
// by calling OptionGroupOptions::Finlize()
assert (m_did_finalize);
assert (m_option_infos.size() + 1 == m_option_defs.size());
Error error;
if (option_idx < m_option_infos.size())
{
error = m_option_infos[option_idx].option_group->SetOptionValue (m_interpreter,
m_option_infos[option_idx].option_index,
option_value);
}
else
{
error.SetErrorString ("invalid option index"); // Shouldn't happen...
}
return error;
}
void
OptionGroupOptions::OptionParsingStarting ()
{
std::set<OptionGroup*> group_set;
OptionInfos::iterator pos, end = m_option_infos.end();
for (pos = m_option_infos.begin(); pos != end; ++pos)
{
OptionGroup* group = pos->option_group;
if (group_set.find(group) == group_set.end())
{
group->OptionParsingStarting (m_interpreter);
group_set.insert(group);
}
}
}
Error
OptionGroupOptions::OptionParsingFinished ()
{
std::set<OptionGroup*> group_set;
Error error;
OptionInfos::iterator pos, end = m_option_infos.end();
for (pos = m_option_infos.begin(); pos != end; ++pos)
{
OptionGroup* group = pos->option_group;
if (group_set.find(group) == group_set.end())
{
error = group->OptionParsingFinished (m_interpreter);
group_set.insert(group);
if (error.Fail())
return error;
}
}
return error;
}