llvm-project/llvm/utils/TableGen/X86RecognizableInstr.cpp

1227 lines
46 KiB
C++

//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler Emitter.
// It contains the implementation of a single recognizable instruction.
// Documentation for the disassembler emitter in general can be found in
// X86DisassemblerEmitter.h.
//
//===----------------------------------------------------------------------===//
#include "X86RecognizableInstr.h"
#include "X86DisassemblerShared.h"
#include "X86ModRMFilters.h"
#include "llvm/Support/ErrorHandling.h"
#include <string>
using namespace llvm;
using namespace X86Disassembler;
/// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
/// Useful for switch statements and the like.
///
/// @param init - A reference to the BitsInit to be decoded.
/// @return - The field, with the first bit in the BitsInit as the lowest
/// order bit.
static uint8_t byteFromBitsInit(BitsInit &init) {
int width = init.getNumBits();
assert(width <= 8 && "Field is too large for uint8_t!");
int index;
uint8_t mask = 0x01;
uint8_t ret = 0;
for (index = 0; index < width; index++) {
if (cast<BitInit>(init.getBit(index))->getValue())
ret |= mask;
mask <<= 1;
}
return ret;
}
/// byteFromRec - Extract a value at most 8 bits in with from a Record given the
/// name of the field.
///
/// @param rec - The record from which to extract the value.
/// @param name - The name of the field in the record.
/// @return - The field, as translated by byteFromBitsInit().
static uint8_t byteFromRec(const Record* rec, const std::string &name) {
BitsInit* bits = rec->getValueAsBitsInit(name);
return byteFromBitsInit(*bits);
}
RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
const CodeGenInstruction &insn,
InstrUID uid) {
UID = uid;
Rec = insn.TheDef;
Name = std::string(Rec->getName());
Spec = &tables.specForUID(UID);
if (!Rec->isSubClassOf("X86Inst")) {
ShouldBeEmitted = false;
return;
}
OpPrefix = byteFromRec(Rec, "OpPrefixBits");
OpMap = byteFromRec(Rec, "OpMapBits");
Opcode = byteFromRec(Rec, "Opcode");
Form = byteFromRec(Rec, "FormBits");
Encoding = byteFromRec(Rec, "OpEncBits");
OpSize = byteFromRec(Rec, "OpSizeBits");
AdSize = byteFromRec(Rec, "AdSizeBits");
HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
HasVEX_W = Rec->getValueAsBit("HasVEX_W");
IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W");
IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
CD8_Scale = byteFromRec(Rec, "CD8_Scale");
Name = std::string(Rec->getName());
Operands = &insn.Operands.OperandList;
HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L");
EncodeRC = HasEVEX_B &&
(Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
// Check for 64-bit inst which does not require REX
Is32Bit = false;
Is64Bit = false;
// FIXME: Is there some better way to check for In64BitMode?
std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
Predicates[i]->getName().find("In32Bit") != Name.npos) {
Is32Bit = true;
break;
}
if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
Is64Bit = true;
break;
}
}
if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
ShouldBeEmitted = false;
return;
}
// Special case since there is no attribute class for 64-bit and VEX
if (Name == "VMASKMOVDQU64") {
ShouldBeEmitted = false;
return;
}
ShouldBeEmitted = true;
}
void RecognizableInstr::processInstr(DisassemblerTables &tables,
const CodeGenInstruction &insn,
InstrUID uid)
{
// Ignore "asm parser only" instructions.
if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
return;
RecognizableInstr recogInstr(tables, insn, uid);
if (recogInstr.shouldBeEmitted()) {
recogInstr.emitInstructionSpecifier();
recogInstr.emitDecodePath(tables);
}
}
#define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
(HasEVEX_K && HasEVEX_B ? n##_K_B : \
(HasEVEX_KZ ? n##_KZ : \
(HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
InstructionContext RecognizableInstr::insnContext() const {
InstructionContext insnContext;
if (Encoding == X86Local::EVEX) {
if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
}
// VEX_L & VEX_W
if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) {
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L_W_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L_W_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L_W);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (!EncodeRC && HasVEX_LPrefix) {
// VEX_L
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) {
// EVEX_L2 & VEX_W
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L2_W);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (!EncodeRC && HasEVEX_L2Prefix) {
// EVEX_L2
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_L2_XD);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_L2_XS);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_L2);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
}
else if (HasVEX_W) {
// VEX_W
if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_W_XS);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_W_XD);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX_W);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
}
// No L, no W
else if (OpPrefix == X86Local::PD)
insnContext = EVEX_KB(IC_EVEX_OPSIZE);
else if (OpPrefix == X86Local::XD)
insnContext = EVEX_KB(IC_EVEX_XD);
else if (OpPrefix == X86Local::XS)
insnContext = EVEX_KB(IC_EVEX_XS);
else if (OpPrefix == X86Local::PS)
insnContext = EVEX_KB(IC_EVEX);
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
/// eof EVEX
} else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
if (HasVEX_LPrefix && HasVEX_W) {
if (OpPrefix == X86Local::PD)
insnContext = IC_VEX_L_W_OPSIZE;
else if (OpPrefix == X86Local::XS)
insnContext = IC_VEX_L_W_XS;
else if (OpPrefix == X86Local::XD)
insnContext = IC_VEX_L_W_XD;
else if (OpPrefix == X86Local::PS)
insnContext = IC_VEX_L_W;
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
insnContext = IC_VEX_L_OPSIZE;
else if (OpPrefix == X86Local::PD && HasVEX_W)
insnContext = IC_VEX_W_OPSIZE;
else if (OpPrefix == X86Local::PD)
insnContext = IC_VEX_OPSIZE;
else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
insnContext = IC_VEX_L_XS;
else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
insnContext = IC_VEX_L_XD;
else if (HasVEX_W && OpPrefix == X86Local::XS)
insnContext = IC_VEX_W_XS;
else if (HasVEX_W && OpPrefix == X86Local::XD)
insnContext = IC_VEX_W_XD;
else if (HasVEX_W && OpPrefix == X86Local::PS)
insnContext = IC_VEX_W;
else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
insnContext = IC_VEX_L;
else if (OpPrefix == X86Local::XD)
insnContext = IC_VEX_XD;
else if (OpPrefix == X86Local::XS)
insnContext = IC_VEX_XS;
else if (OpPrefix == X86Local::PS)
insnContext = IC_VEX;
else {
errs() << "Instruction does not use a prefix: " << Name << "\n";
llvm_unreachable("Invalid prefix");
}
} else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
insnContext = IC_64BIT_REXW_OPSIZE;
else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
insnContext = IC_64BIT_REXW_ADSIZE;
else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
insnContext = IC_64BIT_XD_OPSIZE;
else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
insnContext = IC_64BIT_XS_OPSIZE;
else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
insnContext = IC_64BIT_OPSIZE_ADSIZE;
else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
insnContext = IC_64BIT_OPSIZE_ADSIZE;
else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
insnContext = IC_64BIT_OPSIZE;
else if (AdSize == X86Local::AdSize32)
insnContext = IC_64BIT_ADSIZE;
else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
insnContext = IC_64BIT_REXW_XS;
else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
insnContext = IC_64BIT_REXW_XD;
else if (OpPrefix == X86Local::XD)
insnContext = IC_64BIT_XD;
else if (OpPrefix == X86Local::XS)
insnContext = IC_64BIT_XS;
else if (HasREX_WPrefix)
insnContext = IC_64BIT_REXW;
else
insnContext = IC_64BIT;
} else {
if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
insnContext = IC_XD_OPSIZE;
else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
insnContext = IC_XS_OPSIZE;
else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
insnContext = IC_XD_ADSIZE;
else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
insnContext = IC_XS_ADSIZE;
else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
insnContext = IC_OPSIZE_ADSIZE;
else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
insnContext = IC_OPSIZE_ADSIZE;
else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
insnContext = IC_OPSIZE;
else if (AdSize == X86Local::AdSize16)
insnContext = IC_ADSIZE;
else if (OpPrefix == X86Local::XD)
insnContext = IC_XD;
else if (OpPrefix == X86Local::XS)
insnContext = IC_XS;
else
insnContext = IC;
}
return insnContext;
}
void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
// The scaling factor for AVX512 compressed displacement encoding is an
// instruction attribute. Adjust the ModRM encoding type to include the
// scale for compressed displacement.
if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB) ||CD8_Scale == 0)
return;
encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
(encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
"Invalid CDisp scaling");
}
void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
unsigned &physicalOperandIndex,
unsigned numPhysicalOperands,
const unsigned *operandMapping,
OperandEncoding (*encodingFromString)
(const std::string&,
uint8_t OpSize)) {
if (optional) {
if (physicalOperandIndex >= numPhysicalOperands)
return;
} else {
assert(physicalOperandIndex < numPhysicalOperands);
}
while (operandMapping[operandIndex] != operandIndex) {
Spec->operands[operandIndex].encoding = ENCODING_DUP;
Spec->operands[operandIndex].type =
(OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
++operandIndex;
}
StringRef typeName = (*Operands)[operandIndex].Rec->getName();
OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
// Adjust the encoding type for an operand based on the instruction.
adjustOperandEncoding(encoding);
Spec->operands[operandIndex].encoding = encoding;
Spec->operands[operandIndex].type =
typeFromString(std::string(typeName), HasREX_WPrefix, OpSize);
++operandIndex;
++physicalOperandIndex;
}
void RecognizableInstr::emitInstructionSpecifier() {
Spec->name = Name;
Spec->insnContext = insnContext();
const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
unsigned numOperands = OperandList.size();
unsigned numPhysicalOperands = 0;
// operandMapping maps from operands in OperandList to their originals.
// If operandMapping[i] != i, then the entry is a duplicate.
unsigned operandMapping[X86_MAX_OPERANDS];
assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
if (!OperandList[operandIndex].Constraints.empty()) {
const CGIOperandList::ConstraintInfo &Constraint =
OperandList[operandIndex].Constraints[0];
if (Constraint.isTied()) {
operandMapping[operandIndex] = operandIndex;
operandMapping[Constraint.getTiedOperand()] = operandIndex;
} else {
++numPhysicalOperands;
operandMapping[operandIndex] = operandIndex;
}
} else {
++numPhysicalOperands;
operandMapping[operandIndex] = operandIndex;
}
}
#define HANDLE_OPERAND(class) \
handleOperand(false, \
operandIndex, \
physicalOperandIndex, \
numPhysicalOperands, \
operandMapping, \
class##EncodingFromString);
#define HANDLE_OPTIONAL(class) \
handleOperand(true, \
operandIndex, \
physicalOperandIndex, \
numPhysicalOperands, \
operandMapping, \
class##EncodingFromString);
// operandIndex should always be < numOperands
unsigned operandIndex = 0;
// physicalOperandIndex should always be < numPhysicalOperands
unsigned physicalOperandIndex = 0;
#ifndef NDEBUG
// Given the set of prefix bits, how many additional operands does the
// instruction have?
unsigned additionalOperands = 0;
if (HasVEX_4V)
++additionalOperands;
if (HasEVEX_K)
++additionalOperands;
#endif
switch (Form) {
default: llvm_unreachable("Unhandled form");
case X86Local::RawFrmSrc:
HANDLE_OPERAND(relocation);
return;
case X86Local::RawFrmDst:
HANDLE_OPERAND(relocation);
return;
case X86Local::RawFrmDstSrc:
HANDLE_OPERAND(relocation);
HANDLE_OPERAND(relocation);
return;
case X86Local::RawFrm:
// Operand 1 (optional) is an address or immediate.
assert(numPhysicalOperands <= 1 &&
"Unexpected number of operands for RawFrm");
HANDLE_OPTIONAL(relocation)
break;
case X86Local::RawFrmMemOffs:
// Operand 1 is an address.
HANDLE_OPERAND(relocation);
break;
case X86Local::AddRegFrm:
// Operand 1 is added to the opcode.
// Operand 2 (optional) is an address.
assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
"Unexpected number of operands for AddRegFrm");
HANDLE_OPERAND(opcodeModifier)
HANDLE_OPTIONAL(relocation)
break;
case X86Local::AddCCFrm:
// Operand 1 (optional) is an address or immediate.
assert(numPhysicalOperands == 2 &&
"Unexpected number of operands for AddCCFrm");
HANDLE_OPERAND(relocation)
HANDLE_OPERAND(opcodeModifier)
break;
case X86Local::MRMDestReg:
// Operand 1 is a register operand in the R/M field.
// - In AVX512 there may be a mask operand here -
// Operand 2 is a register operand in the Reg/Opcode field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
assert(numPhysicalOperands >= 2 + additionalOperands &&
numPhysicalOperands <= 3 + additionalOperands &&
"Unexpected number of operands for MRMDestRegFrm");
HANDLE_OPERAND(rmRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(roRegister)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMDestMem:
// Operand 1 is a memory operand (possibly SIB-extended)
// Operand 2 is a register operand in the Reg/Opcode field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
assert(numPhysicalOperands >= 2 + additionalOperands &&
numPhysicalOperands <= 3 + additionalOperands &&
"Unexpected number of operands for MRMDestMemFrm with VEX_4V");
HANDLE_OPERAND(memory)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(roRegister)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMSrcReg:
// Operand 1 is a register operand in the Reg/Opcode field.
// Operand 2 is a register operand in the R/M field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
// Operand 4 (optional) is an immediate.
assert(numPhysicalOperands >= 2 + additionalOperands &&
numPhysicalOperands <= 4 + additionalOperands &&
"Unexpected number of operands for MRMSrcRegFrm");
HANDLE_OPERAND(roRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(rmRegister)
HANDLE_OPTIONAL(immediate)
HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
break;
case X86Local::MRMSrcReg4VOp3:
assert(numPhysicalOperands == 3 &&
"Unexpected number of operands for MRMSrcReg4VOp3Frm");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(rmRegister)
HANDLE_OPERAND(vvvvRegister)
break;
case X86Local::MRMSrcRegOp4:
assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
"Unexpected number of operands for MRMSrcRegOp4Frm");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(immediate) // Register in imm[7:4]
HANDLE_OPERAND(rmRegister)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMSrcRegCC:
assert(numPhysicalOperands == 3 &&
"Unexpected number of operands for MRMSrcRegCC");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(rmRegister)
HANDLE_OPERAND(opcodeModifier)
break;
case X86Local::MRMSrcMem:
// Operand 1 is a register operand in the Reg/Opcode field.
// Operand 2 is a memory operand (possibly SIB-extended)
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
assert(numPhysicalOperands >= 2 + additionalOperands &&
numPhysicalOperands <= 4 + additionalOperands &&
"Unexpected number of operands for MRMSrcMemFrm");
HANDLE_OPERAND(roRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(memory)
HANDLE_OPTIONAL(immediate)
HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
break;
case X86Local::MRMSrcMem4VOp3:
assert(numPhysicalOperands == 3 &&
"Unexpected number of operands for MRMSrcMem4VOp3Frm");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(memory)
HANDLE_OPERAND(vvvvRegister)
break;
case X86Local::MRMSrcMemOp4:
assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
"Unexpected number of operands for MRMSrcMemOp4Frm");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(vvvvRegister)
HANDLE_OPERAND(immediate) // Register in imm[7:4]
HANDLE_OPERAND(memory)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMSrcMemCC:
assert(numPhysicalOperands == 3 &&
"Unexpected number of operands for MRMSrcMemCC");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(memory)
HANDLE_OPERAND(opcodeModifier)
break;
case X86Local::MRMXrCC:
assert(numPhysicalOperands == 2 &&
"Unexpected number of operands for MRMXrCC");
HANDLE_OPERAND(rmRegister)
HANDLE_OPERAND(opcodeModifier)
break;
case X86Local::MRMXr:
case X86Local::MRM0r:
case X86Local::MRM1r:
case X86Local::MRM2r:
case X86Local::MRM3r:
case X86Local::MRM4r:
case X86Local::MRM5r:
case X86Local::MRM6r:
case X86Local::MRM7r:
// Operand 1 is a register operand in the R/M field.
// Operand 2 (optional) is an immediate or relocation.
// Operand 3 (optional) is an immediate.
assert(numPhysicalOperands >= 0 + additionalOperands &&
numPhysicalOperands <= 3 + additionalOperands &&
"Unexpected number of operands for MRMnr");
if (HasVEX_4V)
HANDLE_OPERAND(vvvvRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
HANDLE_OPTIONAL(rmRegister)
HANDLE_OPTIONAL(relocation)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMXmCC:
assert(numPhysicalOperands == 2 &&
"Unexpected number of operands for MRMXm");
HANDLE_OPERAND(memory)
HANDLE_OPERAND(opcodeModifier)
break;
case X86Local::MRMXm:
case X86Local::MRM0m:
case X86Local::MRM1m:
case X86Local::MRM2m:
case X86Local::MRM3m:
case X86Local::MRM4m:
case X86Local::MRM5m:
case X86Local::MRM6m:
case X86Local::MRM7m:
// Operand 1 is a memory operand (possibly SIB-extended)
// Operand 2 (optional) is an immediate or relocation.
assert(numPhysicalOperands >= 1 + additionalOperands &&
numPhysicalOperands <= 2 + additionalOperands &&
"Unexpected number of operands for MRMnm");
if (HasVEX_4V)
HANDLE_OPERAND(vvvvRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
HANDLE_OPERAND(memory)
HANDLE_OPTIONAL(relocation)
break;
case X86Local::RawFrmImm8:
// operand 1 is a 16-bit immediate
// operand 2 is an 8-bit immediate
assert(numPhysicalOperands == 2 &&
"Unexpected number of operands for X86Local::RawFrmImm8");
HANDLE_OPERAND(immediate)
HANDLE_OPERAND(immediate)
break;
case X86Local::RawFrmImm16:
// operand 1 is a 16-bit immediate
// operand 2 is a 16-bit immediate
HANDLE_OPERAND(immediate)
HANDLE_OPERAND(immediate)
break;
#define MAP(from, to) case X86Local::MRM_##from:
X86_INSTR_MRM_MAPPING
#undef MAP
HANDLE_OPTIONAL(relocation)
break;
}
#undef HANDLE_OPERAND
#undef HANDLE_OPTIONAL
}
void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
// Special cases where the LLVM tables are not complete
#define MAP(from, to) \
case X86Local::MRM_##from:
llvm::Optional<OpcodeType> opcodeType;
switch (OpMap) {
default: llvm_unreachable("Invalid map!");
case X86Local::OB: opcodeType = ONEBYTE; break;
case X86Local::TB: opcodeType = TWOBYTE; break;
case X86Local::T8: opcodeType = THREEBYTE_38; break;
case X86Local::TA: opcodeType = THREEBYTE_3A; break;
case X86Local::XOP8: opcodeType = XOP8_MAP; break;
case X86Local::XOP9: opcodeType = XOP9_MAP; break;
case X86Local::XOPA: opcodeType = XOPA_MAP; break;
case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
}
std::unique_ptr<ModRMFilter> filter;
switch (Form) {
default: llvm_unreachable("Invalid form!");
case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
case X86Local::RawFrm:
case X86Local::AddRegFrm:
case X86Local::RawFrmMemOffs:
case X86Local::RawFrmSrc:
case X86Local::RawFrmDst:
case X86Local::RawFrmDstSrc:
case X86Local::RawFrmImm8:
case X86Local::RawFrmImm16:
case X86Local::AddCCFrm:
filter = std::make_unique<DumbFilter>();
break;
case X86Local::MRMDestReg:
case X86Local::MRMSrcReg:
case X86Local::MRMSrcReg4VOp3:
case X86Local::MRMSrcRegOp4:
case X86Local::MRMSrcRegCC:
case X86Local::MRMXrCC:
case X86Local::MRMXr:
filter = std::make_unique<ModFilter>(true);
break;
case X86Local::MRMDestMem:
case X86Local::MRMSrcMem:
case X86Local::MRMSrcMem4VOp3:
case X86Local::MRMSrcMemOp4:
case X86Local::MRMSrcMemCC:
case X86Local::MRMXmCC:
case X86Local::MRMXm:
filter = std::make_unique<ModFilter>(false);
break;
case X86Local::MRM0r: case X86Local::MRM1r:
case X86Local::MRM2r: case X86Local::MRM3r:
case X86Local::MRM4r: case X86Local::MRM5r:
case X86Local::MRM6r: case X86Local::MRM7r:
filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
break;
case X86Local::MRM0m: case X86Local::MRM1m:
case X86Local::MRM2m: case X86Local::MRM3m:
case X86Local::MRM4m: case X86Local::MRM5m:
case X86Local::MRM6m: case X86Local::MRM7m:
filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
break;
X86_INSTR_MRM_MAPPING
filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
break;
} // switch (Form)
uint8_t opcodeToSet = Opcode;
unsigned AddressSize = 0;
switch (AdSize) {
case X86Local::AdSize16: AddressSize = 16; break;
case X86Local::AdSize32: AddressSize = 32; break;
case X86Local::AdSize64: AddressSize = 64; break;
}
assert(opcodeType && "Opcode type not set");
assert(filter && "Filter not set");
if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16;
assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
uint8_t currentOpcode;
for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count;
++currentOpcode)
tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
UID, Is32Bit, OpPrefix == 0,
IgnoresVEX_L || EncodeRC,
IgnoresVEX_W, AddressSize);
} else {
tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
IgnoresVEX_W, AddressSize);
}
#undef MAP
}
#define TYPE(str, type) if (s == str) return type;
OperandType RecognizableInstr::typeFromString(const std::string &s,
bool hasREX_WPrefix,
uint8_t OpSize) {
if(hasREX_WPrefix) {
// For instructions with a REX_W prefix, a declared 32-bit register encoding
// is special.
TYPE("GR32", TYPE_R32)
}
if(OpSize == X86Local::OpSize16) {
// For OpSize16 instructions, a declared 16-bit register or
// immediate encoding is special.
TYPE("GR16", TYPE_Rv)
} else if(OpSize == X86Local::OpSize32) {
// For OpSize32 instructions, a declared 32-bit register or
// immediate encoding is special.
TYPE("GR32", TYPE_Rv)
}
TYPE("i16mem", TYPE_M)
TYPE("i16imm", TYPE_IMM)
TYPE("i16i8imm", TYPE_IMM)
TYPE("GR16", TYPE_R16)
TYPE("i32mem", TYPE_M)
TYPE("i32imm", TYPE_IMM)
TYPE("i32i8imm", TYPE_IMM)
TYPE("GR32", TYPE_R32)
TYPE("GR32orGR64", TYPE_R32)
TYPE("i64mem", TYPE_M)
TYPE("i64i32imm", TYPE_IMM)
TYPE("i64i8imm", TYPE_IMM)
TYPE("GR64", TYPE_R64)
TYPE("i8mem", TYPE_M)
TYPE("i8imm", TYPE_IMM)
TYPE("u4imm", TYPE_UIMM8)
TYPE("u8imm", TYPE_UIMM8)
TYPE("i16u8imm", TYPE_UIMM8)
TYPE("i32u8imm", TYPE_UIMM8)
TYPE("i64u8imm", TYPE_UIMM8)
TYPE("GR8", TYPE_R8)
TYPE("VR128", TYPE_XMM)
TYPE("VR128X", TYPE_XMM)
TYPE("f128mem", TYPE_M)
TYPE("f256mem", TYPE_M)
TYPE("f512mem", TYPE_M)
TYPE("FR128", TYPE_XMM)
TYPE("FR64", TYPE_XMM)
TYPE("FR64X", TYPE_XMM)
TYPE("f64mem", TYPE_M)
TYPE("sdmem", TYPE_M)
TYPE("FR32", TYPE_XMM)
TYPE("FR32X", TYPE_XMM)
TYPE("f32mem", TYPE_M)
TYPE("ssmem", TYPE_M)
TYPE("RST", TYPE_ST)
TYPE("RSTi", TYPE_ST)
TYPE("i128mem", TYPE_M)
TYPE("i256mem", TYPE_M)
TYPE("i512mem", TYPE_M)
TYPE("i64i32imm_brtarget", TYPE_REL)
TYPE("i16imm_brtarget", TYPE_REL)
TYPE("i32imm_brtarget", TYPE_REL)
TYPE("ccode", TYPE_IMM)
TYPE("AVX512RC", TYPE_IMM)
TYPE("brtarget32", TYPE_REL)
TYPE("brtarget16", TYPE_REL)
TYPE("brtarget8", TYPE_REL)
TYPE("f80mem", TYPE_M)
TYPE("lea64_32mem", TYPE_M)
TYPE("lea64mem", TYPE_M)
TYPE("VR64", TYPE_MM64)
TYPE("i64imm", TYPE_IMM)
TYPE("anymem", TYPE_M)
TYPE("opaquemem", TYPE_M)
TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
TYPE("DEBUG_REG", TYPE_DEBUGREG)
TYPE("CONTROL_REG", TYPE_CONTROLREG)
TYPE("srcidx8", TYPE_SRCIDX)
TYPE("srcidx16", TYPE_SRCIDX)
TYPE("srcidx32", TYPE_SRCIDX)
TYPE("srcidx64", TYPE_SRCIDX)
TYPE("dstidx8", TYPE_DSTIDX)
TYPE("dstidx16", TYPE_DSTIDX)
TYPE("dstidx32", TYPE_DSTIDX)
TYPE("dstidx64", TYPE_DSTIDX)
TYPE("offset16_8", TYPE_MOFFS)
TYPE("offset16_16", TYPE_MOFFS)
TYPE("offset16_32", TYPE_MOFFS)
TYPE("offset32_8", TYPE_MOFFS)
TYPE("offset32_16", TYPE_MOFFS)
TYPE("offset32_32", TYPE_MOFFS)
TYPE("offset32_64", TYPE_MOFFS)
TYPE("offset64_8", TYPE_MOFFS)
TYPE("offset64_16", TYPE_MOFFS)
TYPE("offset64_32", TYPE_MOFFS)
TYPE("offset64_64", TYPE_MOFFS)
TYPE("VR256", TYPE_YMM)
TYPE("VR256X", TYPE_YMM)
TYPE("VR512", TYPE_ZMM)
TYPE("VK1", TYPE_VK)
TYPE("VK1WM", TYPE_VK)
TYPE("VK2", TYPE_VK)
TYPE("VK2WM", TYPE_VK)
TYPE("VK4", TYPE_VK)
TYPE("VK4WM", TYPE_VK)
TYPE("VK8", TYPE_VK)
TYPE("VK8WM", TYPE_VK)
TYPE("VK16", TYPE_VK)
TYPE("VK16WM", TYPE_VK)
TYPE("VK32", TYPE_VK)
TYPE("VK32WM", TYPE_VK)
TYPE("VK64", TYPE_VK)
TYPE("VK64WM", TYPE_VK)
TYPE("VK1Pair", TYPE_VK_PAIR)
TYPE("VK2Pair", TYPE_VK_PAIR)
TYPE("VK4Pair", TYPE_VK_PAIR)
TYPE("VK8Pair", TYPE_VK_PAIR)
TYPE("VK16Pair", TYPE_VK_PAIR)
TYPE("vx64mem", TYPE_MVSIBX)
TYPE("vx128mem", TYPE_MVSIBX)
TYPE("vx256mem", TYPE_MVSIBX)
TYPE("vy128mem", TYPE_MVSIBY)
TYPE("vy256mem", TYPE_MVSIBY)
TYPE("vx64xmem", TYPE_MVSIBX)
TYPE("vx128xmem", TYPE_MVSIBX)
TYPE("vx256xmem", TYPE_MVSIBX)
TYPE("vy128xmem", TYPE_MVSIBY)
TYPE("vy256xmem", TYPE_MVSIBY)
TYPE("vy512xmem", TYPE_MVSIBY)
TYPE("vz256mem", TYPE_MVSIBZ)
TYPE("vz512mem", TYPE_MVSIBZ)
TYPE("BNDR", TYPE_BNDR)
errs() << "Unhandled type string " << s << "\n";
llvm_unreachable("Unhandled type string");
}
#undef TYPE
#define ENCODING(str, encoding) if (s == str) return encoding;
OperandEncoding
RecognizableInstr::immediateEncodingFromString(const std::string &s,
uint8_t OpSize) {
if(OpSize != X86Local::OpSize16) {
// For instructions without an OpSize prefix, a declared 16-bit register or
// immediate encoding is special.
ENCODING("i16imm", ENCODING_IW)
}
ENCODING("i32i8imm", ENCODING_IB)
ENCODING("AVX512RC", ENCODING_IRC)
ENCODING("i16imm", ENCODING_Iv)
ENCODING("i16i8imm", ENCODING_IB)
ENCODING("i32imm", ENCODING_Iv)
ENCODING("i64i32imm", ENCODING_ID)
ENCODING("i64i8imm", ENCODING_IB)
ENCODING("i8imm", ENCODING_IB)
ENCODING("u4imm", ENCODING_IB)
ENCODING("u8imm", ENCODING_IB)
ENCODING("i16u8imm", ENCODING_IB)
ENCODING("i32u8imm", ENCODING_IB)
ENCODING("i64u8imm", ENCODING_IB)
// This is not a typo. Instructions like BLENDVPD put
// register IDs in 8-bit immediates nowadays.
ENCODING("FR32", ENCODING_IB)
ENCODING("FR64", ENCODING_IB)
ENCODING("FR128", ENCODING_IB)
ENCODING("VR128", ENCODING_IB)
ENCODING("VR256", ENCODING_IB)
ENCODING("FR32X", ENCODING_IB)
ENCODING("FR64X", ENCODING_IB)
ENCODING("VR128X", ENCODING_IB)
ENCODING("VR256X", ENCODING_IB)
ENCODING("VR512", ENCODING_IB)
errs() << "Unhandled immediate encoding " << s << "\n";
llvm_unreachable("Unhandled immediate encoding");
}
OperandEncoding
RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("RST", ENCODING_FP)
ENCODING("RSTi", ENCODING_FP)
ENCODING("GR16", ENCODING_RM)
ENCODING("GR32", ENCODING_RM)
ENCODING("GR32orGR64", ENCODING_RM)
ENCODING("GR64", ENCODING_RM)
ENCODING("GR8", ENCODING_RM)
ENCODING("VR128", ENCODING_RM)
ENCODING("VR128X", ENCODING_RM)
ENCODING("FR128", ENCODING_RM)
ENCODING("FR64", ENCODING_RM)
ENCODING("FR32", ENCODING_RM)
ENCODING("FR64X", ENCODING_RM)
ENCODING("FR32X", ENCODING_RM)
ENCODING("VR64", ENCODING_RM)
ENCODING("VR256", ENCODING_RM)
ENCODING("VR256X", ENCODING_RM)
ENCODING("VR512", ENCODING_RM)
ENCODING("VK1", ENCODING_RM)
ENCODING("VK2", ENCODING_RM)
ENCODING("VK4", ENCODING_RM)
ENCODING("VK8", ENCODING_RM)
ENCODING("VK16", ENCODING_RM)
ENCODING("VK32", ENCODING_RM)
ENCODING("VK64", ENCODING_RM)
ENCODING("VK1PAIR", ENCODING_RM)
ENCODING("VK2PAIR", ENCODING_RM)
ENCODING("VK4PAIR", ENCODING_RM)
ENCODING("VK8PAIR", ENCODING_RM)
ENCODING("VK16PAIR", ENCODING_RM)
ENCODING("BNDR", ENCODING_RM)
errs() << "Unhandled R/M register encoding " << s << "\n";
llvm_unreachable("Unhandled R/M register encoding");
}
OperandEncoding
RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("GR16", ENCODING_REG)
ENCODING("GR32", ENCODING_REG)
ENCODING("GR32orGR64", ENCODING_REG)
ENCODING("GR64", ENCODING_REG)
ENCODING("GR8", ENCODING_REG)
ENCODING("VR128", ENCODING_REG)
ENCODING("FR128", ENCODING_REG)
ENCODING("FR64", ENCODING_REG)
ENCODING("FR32", ENCODING_REG)
ENCODING("VR64", ENCODING_REG)
ENCODING("SEGMENT_REG", ENCODING_REG)
ENCODING("DEBUG_REG", ENCODING_REG)
ENCODING("CONTROL_REG", ENCODING_REG)
ENCODING("VR256", ENCODING_REG)
ENCODING("VR256X", ENCODING_REG)
ENCODING("VR128X", ENCODING_REG)
ENCODING("FR64X", ENCODING_REG)
ENCODING("FR32X", ENCODING_REG)
ENCODING("VR512", ENCODING_REG)
ENCODING("VK1", ENCODING_REG)
ENCODING("VK2", ENCODING_REG)
ENCODING("VK4", ENCODING_REG)
ENCODING("VK8", ENCODING_REG)
ENCODING("VK16", ENCODING_REG)
ENCODING("VK32", ENCODING_REG)
ENCODING("VK64", ENCODING_REG)
ENCODING("VK1Pair", ENCODING_REG)
ENCODING("VK2Pair", ENCODING_REG)
ENCODING("VK4Pair", ENCODING_REG)
ENCODING("VK8Pair", ENCODING_REG)
ENCODING("VK16Pair", ENCODING_REG)
ENCODING("VK1WM", ENCODING_REG)
ENCODING("VK2WM", ENCODING_REG)
ENCODING("VK4WM", ENCODING_REG)
ENCODING("VK8WM", ENCODING_REG)
ENCODING("VK16WM", ENCODING_REG)
ENCODING("VK32WM", ENCODING_REG)
ENCODING("VK64WM", ENCODING_REG)
ENCODING("BNDR", ENCODING_REG)
errs() << "Unhandled reg/opcode register encoding " << s << "\n";
llvm_unreachable("Unhandled reg/opcode register encoding");
}
OperandEncoding
RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("GR32", ENCODING_VVVV)
ENCODING("GR64", ENCODING_VVVV)
ENCODING("FR32", ENCODING_VVVV)
ENCODING("FR128", ENCODING_VVVV)
ENCODING("FR64", ENCODING_VVVV)
ENCODING("VR128", ENCODING_VVVV)
ENCODING("VR256", ENCODING_VVVV)
ENCODING("FR32X", ENCODING_VVVV)
ENCODING("FR64X", ENCODING_VVVV)
ENCODING("VR128X", ENCODING_VVVV)
ENCODING("VR256X", ENCODING_VVVV)
ENCODING("VR512", ENCODING_VVVV)
ENCODING("VK1", ENCODING_VVVV)
ENCODING("VK2", ENCODING_VVVV)
ENCODING("VK4", ENCODING_VVVV)
ENCODING("VK8", ENCODING_VVVV)
ENCODING("VK16", ENCODING_VVVV)
ENCODING("VK32", ENCODING_VVVV)
ENCODING("VK64", ENCODING_VVVV)
ENCODING("VK1PAIR", ENCODING_VVVV)
ENCODING("VK2PAIR", ENCODING_VVVV)
ENCODING("VK4PAIR", ENCODING_VVVV)
ENCODING("VK8PAIR", ENCODING_VVVV)
ENCODING("VK16PAIR", ENCODING_VVVV)
errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
llvm_unreachable("Unhandled VEX.vvvv register encoding");
}
OperandEncoding
RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("VK1WM", ENCODING_WRITEMASK)
ENCODING("VK2WM", ENCODING_WRITEMASK)
ENCODING("VK4WM", ENCODING_WRITEMASK)
ENCODING("VK8WM", ENCODING_WRITEMASK)
ENCODING("VK16WM", ENCODING_WRITEMASK)
ENCODING("VK32WM", ENCODING_WRITEMASK)
ENCODING("VK64WM", ENCODING_WRITEMASK)
errs() << "Unhandled mask register encoding " << s << "\n";
llvm_unreachable("Unhandled mask register encoding");
}
OperandEncoding
RecognizableInstr::memoryEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("i16mem", ENCODING_RM)
ENCODING("i32mem", ENCODING_RM)
ENCODING("i64mem", ENCODING_RM)
ENCODING("i8mem", ENCODING_RM)
ENCODING("ssmem", ENCODING_RM)
ENCODING("sdmem", ENCODING_RM)
ENCODING("f128mem", ENCODING_RM)
ENCODING("f256mem", ENCODING_RM)
ENCODING("f512mem", ENCODING_RM)
ENCODING("f64mem", ENCODING_RM)
ENCODING("f32mem", ENCODING_RM)
ENCODING("i128mem", ENCODING_RM)
ENCODING("i256mem", ENCODING_RM)
ENCODING("i512mem", ENCODING_RM)
ENCODING("f80mem", ENCODING_RM)
ENCODING("lea64_32mem", ENCODING_RM)
ENCODING("lea64mem", ENCODING_RM)
ENCODING("anymem", ENCODING_RM)
ENCODING("opaquemem", ENCODING_RM)
ENCODING("vx64mem", ENCODING_VSIB)
ENCODING("vx128mem", ENCODING_VSIB)
ENCODING("vx256mem", ENCODING_VSIB)
ENCODING("vy128mem", ENCODING_VSIB)
ENCODING("vy256mem", ENCODING_VSIB)
ENCODING("vx64xmem", ENCODING_VSIB)
ENCODING("vx128xmem", ENCODING_VSIB)
ENCODING("vx256xmem", ENCODING_VSIB)
ENCODING("vy128xmem", ENCODING_VSIB)
ENCODING("vy256xmem", ENCODING_VSIB)
ENCODING("vy512xmem", ENCODING_VSIB)
ENCODING("vz256mem", ENCODING_VSIB)
ENCODING("vz512mem", ENCODING_VSIB)
errs() << "Unhandled memory encoding " << s << "\n";
llvm_unreachable("Unhandled memory encoding");
}
OperandEncoding
RecognizableInstr::relocationEncodingFromString(const std::string &s,
uint8_t OpSize) {
if(OpSize != X86Local::OpSize16) {
// For instructions without an OpSize prefix, a declared 16-bit register or
// immediate encoding is special.
ENCODING("i16imm", ENCODING_IW)
}
ENCODING("i16imm", ENCODING_Iv)
ENCODING("i16i8imm", ENCODING_IB)
ENCODING("i32imm", ENCODING_Iv)
ENCODING("i32i8imm", ENCODING_IB)
ENCODING("i64i32imm", ENCODING_ID)
ENCODING("i64i8imm", ENCODING_IB)
ENCODING("i8imm", ENCODING_IB)
ENCODING("u8imm", ENCODING_IB)
ENCODING("i16u8imm", ENCODING_IB)
ENCODING("i32u8imm", ENCODING_IB)
ENCODING("i64u8imm", ENCODING_IB)
ENCODING("i64i32imm_brtarget", ENCODING_ID)
ENCODING("i16imm_brtarget", ENCODING_IW)
ENCODING("i32imm_brtarget", ENCODING_ID)
ENCODING("brtarget32", ENCODING_ID)
ENCODING("brtarget16", ENCODING_IW)
ENCODING("brtarget8", ENCODING_IB)
ENCODING("i64imm", ENCODING_IO)
ENCODING("offset16_8", ENCODING_Ia)
ENCODING("offset16_16", ENCODING_Ia)
ENCODING("offset16_32", ENCODING_Ia)
ENCODING("offset32_8", ENCODING_Ia)
ENCODING("offset32_16", ENCODING_Ia)
ENCODING("offset32_32", ENCODING_Ia)
ENCODING("offset32_64", ENCODING_Ia)
ENCODING("offset64_8", ENCODING_Ia)
ENCODING("offset64_16", ENCODING_Ia)
ENCODING("offset64_32", ENCODING_Ia)
ENCODING("offset64_64", ENCODING_Ia)
ENCODING("srcidx8", ENCODING_SI)
ENCODING("srcidx16", ENCODING_SI)
ENCODING("srcidx32", ENCODING_SI)
ENCODING("srcidx64", ENCODING_SI)
ENCODING("dstidx8", ENCODING_DI)
ENCODING("dstidx16", ENCODING_DI)
ENCODING("dstidx32", ENCODING_DI)
ENCODING("dstidx64", ENCODING_DI)
errs() << "Unhandled relocation encoding " << s << "\n";
llvm_unreachable("Unhandled relocation encoding");
}
OperandEncoding
RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
uint8_t OpSize) {
ENCODING("GR32", ENCODING_Rv)
ENCODING("GR64", ENCODING_RO)
ENCODING("GR16", ENCODING_Rv)
ENCODING("GR8", ENCODING_RB)
ENCODING("ccode", ENCODING_CC)
errs() << "Unhandled opcode modifier encoding " << s << "\n";
llvm_unreachable("Unhandled opcode modifier encoding");
}
#undef ENCODING