forked from OSchip/llvm-project
609 lines
20 KiB
C++
609 lines
20 KiB
C++
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
/// The pass tries to use the 32-bit encoding for instructions when possible.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "si-shrink-instructions"
|
|
|
|
STATISTIC(NumInstructionsShrunk,
|
|
"Number of 64-bit instruction reduced to 32-bit.");
|
|
STATISTIC(NumLiteralConstantsFolded,
|
|
"Number of literal constants folded into 32-bit instructions.");
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class SIShrinkInstructions : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
public:
|
|
SIShrinkInstructions() : MachineFunctionPass(ID) {
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override { return "SI Shrink Instructions"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
|
|
"SI Shrink Instructions", false, false)
|
|
|
|
char SIShrinkInstructions::ID = 0;
|
|
|
|
FunctionPass *llvm::createSIShrinkInstructionsPass() {
|
|
return new SIShrinkInstructions();
|
|
}
|
|
|
|
/// This function checks \p MI for operands defined by a move immediate
|
|
/// instruction and then folds the literal constant into the instruction if it
|
|
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
|
|
static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
|
|
MachineRegisterInfo &MRI, bool TryToCommute = true) {
|
|
assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
|
|
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
|
|
|
|
// Try to fold Src0
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
if (Src0.isReg()) {
|
|
unsigned Reg = Src0.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) {
|
|
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
|
|
if (Def && Def->isMoveImmediate()) {
|
|
MachineOperand &MovSrc = Def->getOperand(1);
|
|
bool ConstantFolded = false;
|
|
|
|
if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
|
|
isUInt<32>(MovSrc.getImm()))) {
|
|
// It's possible to have only one component of a super-reg defined by
|
|
// a single mov, so we need to clear any subregister flag.
|
|
Src0.setSubReg(0);
|
|
Src0.ChangeToImmediate(MovSrc.getImm());
|
|
ConstantFolded = true;
|
|
} else if (MovSrc.isFI()) {
|
|
Src0.setSubReg(0);
|
|
Src0.ChangeToFrameIndex(MovSrc.getIndex());
|
|
ConstantFolded = true;
|
|
}
|
|
|
|
if (ConstantFolded) {
|
|
assert(MRI.use_empty(Reg));
|
|
Def->eraseFromParent();
|
|
++NumLiteralConstantsFolded;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We have failed to fold src0, so commute the instruction and try again.
|
|
if (TryToCommute && MI.isCommutable()) {
|
|
if (TII->commuteInstruction(MI)) {
|
|
if (foldImmediates(MI, TII, MRI, false))
|
|
return true;
|
|
|
|
// Commute back.
|
|
TII->commuteInstruction(MI);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
|
|
return isInt<16>(Src.getImm()) &&
|
|
!TII->isInlineConstant(*Src.getParent(),
|
|
Src.getParent()->getOperandNo(&Src));
|
|
}
|
|
|
|
static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
|
|
return isUInt<16>(Src.getImm()) &&
|
|
!TII->isInlineConstant(*Src.getParent(),
|
|
Src.getParent()->getOperandNo(&Src));
|
|
}
|
|
|
|
static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
|
|
const MachineOperand &Src,
|
|
bool &IsUnsigned) {
|
|
if (isInt<16>(Src.getImm())) {
|
|
IsUnsigned = false;
|
|
return !TII->isInlineConstant(Src);
|
|
}
|
|
|
|
if (isUInt<16>(Src.getImm())) {
|
|
IsUnsigned = true;
|
|
return !TII->isInlineConstant(Src);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \returns true if the constant in \p Src should be replaced with a bitreverse
|
|
/// of an inline immediate.
|
|
static bool isReverseInlineImm(const SIInstrInfo *TII,
|
|
const MachineOperand &Src,
|
|
int32_t &ReverseImm) {
|
|
if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
|
|
return false;
|
|
|
|
ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
|
|
return ReverseImm >= -16 && ReverseImm <= 64;
|
|
}
|
|
|
|
/// Copy implicit register operands from specified instruction to this
|
|
/// instruction that are not part of the instruction definition.
|
|
static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
|
|
const MachineInstr &MI) {
|
|
for (unsigned i = MI.getDesc().getNumOperands() +
|
|
MI.getDesc().getNumImplicitUses() +
|
|
MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
|
|
i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
|
|
NewMI.addOperand(MF, MO);
|
|
}
|
|
}
|
|
|
|
static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
|
|
// cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
|
|
// get constants on the RHS.
|
|
if (!MI.getOperand(0).isReg())
|
|
TII->commuteInstruction(MI, false, 0, 1);
|
|
|
|
const MachineOperand &Src1 = MI.getOperand(1);
|
|
if (!Src1.isImm())
|
|
return;
|
|
|
|
int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
|
|
if (SOPKOpc == -1)
|
|
return;
|
|
|
|
// eq/ne is special because the imm16 can be treated as signed or unsigned,
|
|
// and initially selectd to the unsigned versions.
|
|
if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
|
|
bool HasUImm;
|
|
if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
|
|
if (!HasUImm) {
|
|
SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
|
|
AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
|
|
}
|
|
|
|
MI.setDesc(TII->get(SOPKOpc));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
const MCInstrDesc &NewDesc = TII->get(SOPKOpc);
|
|
|
|
if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
|
|
(!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
|
|
MI.setDesc(NewDesc);
|
|
}
|
|
}
|
|
|
|
// This is the same as MachineInstr::readsRegister/modifiesRegister except
|
|
// it takes subregs into account.
|
|
static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R,
|
|
unsigned Reg, unsigned SubReg,
|
|
const SIRegisterInfo &TRI) {
|
|
for (const MachineOperand &MO : R) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
|
|
if (TRI.regsOverlap(Reg, MO.getReg()))
|
|
return true;
|
|
} else if (MO.getReg() == Reg &&
|
|
TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) &
|
|
TRI.getSubRegIndexLaneMask(MO.getSubReg());
|
|
if (Overlap.any())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool instReadsReg(const MachineInstr *MI,
|
|
unsigned Reg, unsigned SubReg,
|
|
const SIRegisterInfo &TRI) {
|
|
return instAccessReg(MI->uses(), Reg, SubReg, TRI);
|
|
}
|
|
|
|
static bool instModifiesReg(const MachineInstr *MI,
|
|
unsigned Reg, unsigned SubReg,
|
|
const SIRegisterInfo &TRI) {
|
|
return instAccessReg(MI->defs(), Reg, SubReg, TRI);
|
|
}
|
|
|
|
static TargetInstrInfo::RegSubRegPair
|
|
getSubRegForIndex(unsigned Reg, unsigned Sub, unsigned I,
|
|
const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) {
|
|
if (TRI.getRegSizeInBits(Reg, MRI) != 32) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I));
|
|
} else {
|
|
LaneBitmask LM = TRI.getSubRegIndexLaneMask(Sub);
|
|
Sub = TRI.getSubRegFromChannel(I + countTrailingZeros(LM.getAsInteger()));
|
|
}
|
|
}
|
|
return TargetInstrInfo::RegSubRegPair(Reg, Sub);
|
|
}
|
|
|
|
// Match:
|
|
// mov t, x
|
|
// mov x, y
|
|
// mov y, t
|
|
//
|
|
// =>
|
|
//
|
|
// mov t, x (t is potentially dead and move eliminated)
|
|
// v_swap_b32 x, y
|
|
//
|
|
// Returns next valid instruction pointer if was able to create v_swap_b32.
|
|
//
|
|
// This shall not be done too early not to prevent possible folding which may
|
|
// remove matched moves, and this should prefereably be done before RA to
|
|
// release saved registers and also possibly after RA which can insert copies
|
|
// too.
|
|
//
|
|
// This is really just a generic peephole that is not a canocical shrinking,
|
|
// although requirements match the pass placement and it reduces code size too.
|
|
static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI,
|
|
const SIInstrInfo *TII) {
|
|
assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
|
|
MovT.getOpcode() == AMDGPU::COPY);
|
|
|
|
unsigned T = MovT.getOperand(0).getReg();
|
|
unsigned Tsub = MovT.getOperand(0).getSubReg();
|
|
MachineOperand &Xop = MovT.getOperand(1);
|
|
|
|
if (!Xop.isReg())
|
|
return nullptr;
|
|
unsigned X = Xop.getReg();
|
|
unsigned Xsub = Xop.getSubReg();
|
|
|
|
unsigned Size = TII->getOpSize(MovT, 0) / 4;
|
|
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
if (!TRI.isVGPR(MRI, X))
|
|
return nullptr;
|
|
|
|
for (MachineOperand &YTop : MRI.use_nodbg_operands(T)) {
|
|
if (YTop.getSubReg() != Tsub)
|
|
continue;
|
|
|
|
MachineInstr &MovY = *YTop.getParent();
|
|
if ((MovY.getOpcode() != AMDGPU::V_MOV_B32_e32 &&
|
|
MovY.getOpcode() != AMDGPU::COPY) ||
|
|
MovY.getOperand(1).getSubReg() != Tsub)
|
|
continue;
|
|
|
|
unsigned Y = MovY.getOperand(0).getReg();
|
|
unsigned Ysub = MovY.getOperand(0).getSubReg();
|
|
|
|
if (!TRI.isVGPR(MRI, Y) || MovT.getParent() != MovY.getParent())
|
|
continue;
|
|
|
|
MachineInstr *MovX = nullptr;
|
|
auto I = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end();
|
|
for (auto IY = MovY.getIterator(); I != E && I != IY; ++I) {
|
|
if (instReadsReg(&*I, X, Xsub, TRI) ||
|
|
instModifiesReg(&*I, Y, Ysub, TRI) ||
|
|
instModifiesReg(&*I, T, Tsub, TRI) ||
|
|
(MovX && instModifiesReg(&*I, X, Xsub, TRI))) {
|
|
MovX = nullptr;
|
|
break;
|
|
}
|
|
if (!instReadsReg(&*I, Y, Ysub, TRI)) {
|
|
if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) {
|
|
MovX = nullptr;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
if (MovX ||
|
|
(I->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
|
|
I->getOpcode() != AMDGPU::COPY) ||
|
|
I->getOperand(0).getReg() != X ||
|
|
I->getOperand(0).getSubReg() != Xsub) {
|
|
MovX = nullptr;
|
|
break;
|
|
}
|
|
MovX = &*I;
|
|
}
|
|
|
|
if (!MovX || I == E)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY);
|
|
|
|
for (unsigned I = 0; I < Size; ++I) {
|
|
TargetInstrInfo::RegSubRegPair X1, Y1;
|
|
X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI);
|
|
Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI);
|
|
BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(),
|
|
TII->get(AMDGPU::V_SWAP_B32))
|
|
.addDef(X1.Reg, 0, X1.SubReg)
|
|
.addDef(Y1.Reg, 0, Y1.SubReg)
|
|
.addReg(Y1.Reg, 0, Y1.SubReg)
|
|
.addReg(X1.Reg, 0, X1.SubReg).getInstr();
|
|
}
|
|
MovX->eraseFromParent();
|
|
MovY.eraseFromParent();
|
|
MachineInstr *Next = &*std::next(MovT.getIterator());
|
|
if (MRI.use_nodbg_empty(T))
|
|
MovT.eraseFromParent();
|
|
else
|
|
Xop.setIsKill(false);
|
|
|
|
return Next;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
std::vector<unsigned> I1Defs;
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
|
|
BI != BE; ++BI) {
|
|
|
|
MachineBasicBlock &MBB = *BI;
|
|
MachineBasicBlock::iterator I, Next;
|
|
for (I = MBB.begin(); I != MBB.end(); I = Next) {
|
|
Next = std::next(I);
|
|
MachineInstr &MI = *I;
|
|
|
|
if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
|
|
// If this has a literal constant source that is the same as the
|
|
// reversed bits of an inline immediate, replace with a bitreverse of
|
|
// that constant. This saves 4 bytes in the common case of materializing
|
|
// sign bits.
|
|
|
|
// Test if we are after regalloc. We only want to do this after any
|
|
// optimizations happen because this will confuse them.
|
|
// XXX - not exactly a check for post-regalloc run.
|
|
MachineOperand &Src = MI.getOperand(1);
|
|
if (Src.isImm() &&
|
|
TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
|
|
int32_t ReverseImm;
|
|
if (isReverseInlineImm(TII, Src, ReverseImm)) {
|
|
MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
|
|
Src.setImm(ReverseImm);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
|
|
MI.getOpcode() == AMDGPU::COPY)) {
|
|
if (auto *NextMI = matchSwap(MI, MRI, TII)) {
|
|
Next = NextMI->getIterator();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Combine adjacent s_nops to use the immediate operand encoding how long
|
|
// to wait.
|
|
//
|
|
// s_nop N
|
|
// s_nop M
|
|
// =>
|
|
// s_nop (N + M)
|
|
if (MI.getOpcode() == AMDGPU::S_NOP &&
|
|
Next != MBB.end() &&
|
|
(*Next).getOpcode() == AMDGPU::S_NOP) {
|
|
|
|
MachineInstr &NextMI = *Next;
|
|
// The instruction encodes the amount to wait with an offset of 1,
|
|
// i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
|
|
// after adding.
|
|
uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
|
|
uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;
|
|
|
|
// Make sure we don't overflow the bounds.
|
|
if (Nop0 + Nop1 <= 8) {
|
|
NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
|
|
MI.eraseFromParent();
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// FIXME: We also need to consider movs of constant operands since
|
|
// immediate operands are not folded if they have more than one use, and
|
|
// the operand folding pass is unaware if the immediate will be free since
|
|
// it won't know if the src == dest constraint will end up being
|
|
// satisfied.
|
|
if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
|
|
MI.getOpcode() == AMDGPU::S_MUL_I32) {
|
|
const MachineOperand *Dest = &MI.getOperand(0);
|
|
MachineOperand *Src0 = &MI.getOperand(1);
|
|
MachineOperand *Src1 = &MI.getOperand(2);
|
|
|
|
if (!Src0->isReg() && Src1->isReg()) {
|
|
if (TII->commuteInstruction(MI, false, 1, 2))
|
|
std::swap(Src0, Src1);
|
|
}
|
|
|
|
// FIXME: This could work better if hints worked with subregisters. If
|
|
// we have a vector add of a constant, we usually don't get the correct
|
|
// allocation due to the subregister usage.
|
|
if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
|
|
Src0->isReg()) {
|
|
MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
|
|
MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
|
|
continue;
|
|
}
|
|
|
|
if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
|
|
if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
|
|
unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
|
|
AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
|
|
|
|
MI.setDesc(TII->get(Opc));
|
|
MI.tieOperands(0, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to use s_cmpk_*
|
|
if (MI.isCompare() && TII->isSOPC(MI)) {
|
|
shrinkScalarCompare(TII, MI);
|
|
continue;
|
|
}
|
|
|
|
// Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
|
|
if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
|
|
const MachineOperand &Dst = MI.getOperand(0);
|
|
MachineOperand &Src = MI.getOperand(1);
|
|
|
|
if (Src.isImm() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) {
|
|
int32_t ReverseImm;
|
|
if (isKImmOperand(TII, Src))
|
|
MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
|
|
else if (isReverseInlineImm(TII, Src, ReverseImm)) {
|
|
MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
|
|
Src.setImm(ReverseImm);
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
|
|
continue;
|
|
|
|
if (!TII->canShrink(MI, MRI)) {
|
|
// Try commuting the instruction and see if that enables us to shrink
|
|
// it.
|
|
if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
|
|
!TII->canShrink(MI, MRI))
|
|
continue;
|
|
}
|
|
|
|
// getVOPe32 could be -1 here if we started with an instruction that had
|
|
// a 32-bit encoding and then commuted it to an instruction that did not.
|
|
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
|
|
continue;
|
|
|
|
int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
|
|
|
|
if (TII->isVOPC(Op32)) {
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
// VOPC instructions can only write to the VCC register. We can't
|
|
// force them to use VCC here, because this is only one register and
|
|
// cannot deal with sequences which would require multiple copies of
|
|
// VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
|
|
//
|
|
// So, instead of forcing the instruction to write to VCC, we provide
|
|
// a hint to the register allocator to use VCC and then we will run
|
|
// this pass again after RA and shrink it if it outputs to VCC.
|
|
MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
if (DstReg != AMDGPU::VCC)
|
|
continue;
|
|
}
|
|
|
|
if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
|
|
// We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
|
|
// instructions.
|
|
const MachineOperand *Src2 =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
if (!Src2->isReg())
|
|
continue;
|
|
unsigned SReg = Src2->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(SReg)) {
|
|
MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
if (SReg != AMDGPU::VCC)
|
|
continue;
|
|
}
|
|
|
|
// Check for the bool flag output for instructions like V_ADD_I32_e64.
|
|
const MachineOperand *SDst = TII->getNamedOperand(MI,
|
|
AMDGPU::OpName::sdst);
|
|
|
|
// Check the carry-in operand for v_addc_u32_e64.
|
|
const MachineOperand *Src2 = TII->getNamedOperand(MI,
|
|
AMDGPU::OpName::src2);
|
|
|
|
if (SDst) {
|
|
if (SDst->getReg() != AMDGPU::VCC) {
|
|
if (TargetRegisterInfo::isVirtualRegister(SDst->getReg()))
|
|
MRI.setRegAllocationHint(SDst->getReg(), 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
|
|
// All of the instructions with carry outs also have an SGPR input in
|
|
// src2.
|
|
if (Src2 && Src2->getReg() != AMDGPU::VCC) {
|
|
if (TargetRegisterInfo::isVirtualRegister(Src2->getReg()))
|
|
MRI.setRegAllocationHint(Src2->getReg(), 0, AMDGPU::VCC);
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We can shrink this instruction
|
|
LLVM_DEBUG(dbgs() << "Shrinking " << MI);
|
|
|
|
MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32);
|
|
++NumInstructionsShrunk;
|
|
|
|
// Copy extra operands not present in the instruction definition.
|
|
copyExtraImplicitOps(*Inst32, MF, MI);
|
|
|
|
MI.eraseFromParent();
|
|
foldImmediates(*Inst32, TII, MRI);
|
|
|
|
LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
|
|
}
|
|
}
|
|
return false;
|
|
}
|