llvm-project/llvm/lib/Target/AMDGPU/SIFixWWMLiveness.cpp

419 lines
16 KiB
C++

//===-- SIFixWWMLiveness.cpp - Fix WWM live intervals ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Computations in WWM can overwrite values in inactive channels for
/// variables that the register allocator thinks are dead. This pass adds fake
/// uses of those variables to their def(s) to make sure that they aren't
/// overwritten.
///
/// As an example, consider this snippet:
/// %vgpr0 = V_MOV_B32_e32 0.0
/// if (...) {
/// %vgpr1 = ...
/// %vgpr2 = WWM killed %vgpr1
/// ... = killed %vgpr2
/// %vgpr0 = V_MOV_B32_e32 1.0
/// }
/// ... = %vgpr0
///
/// The live intervals of %vgpr0 don't overlap with those of %vgpr1. Normally,
/// we can safely allocate %vgpr0 and %vgpr1 in the same register, since
/// writing %vgpr1 would only write to channels that would be clobbered by the
/// second write to %vgpr0 anyways. But if %vgpr1 is written with WWM enabled,
/// it would clobber even the inactive channels for which the if-condition is
/// false, for which %vgpr0 is supposed to be 0. This pass adds an implicit use
/// of %vgpr0 to its def to make sure they aren't allocated to the
/// same register.
///
/// In general, we need to figure out what registers might have their inactive
/// channels which are eventually used accidentally clobbered by a WWM
/// instruction. We do that by spotting three separate cases of registers:
///
/// 1. A "then phi": the value resulting from phi elimination of a phi node at
/// the end of an if..endif. If there is WWM code in the "then", then we
/// make the def at the end of the "then" branch a partial def by adding an
/// implicit use of the register.
///
/// 2. A "loop exit register": a value written inside a loop but used outside the
/// loop, where there is WWM code inside the loop (the case in the example
/// above). We add an implicit_def of the register in the loop pre-header,
/// and make the original def a partial def by adding an implicit use of the
/// register.
///
/// 3. A "loop exit phi": the value resulting from phi elimination of a phi node
/// in a loop header. If there is WWM code inside the loop, then we make all
/// defs inside the loop partial defs by adding an implicit use of the
/// register on each one.
///
/// Note that we do not need to consider an if..else..endif phi. We only need to
/// consider non-uniform control flow, and control flow structurization would
/// have transformed a non-uniform if..else..endif into two if..endifs.
///
/// The analysis to detect these cases relies on a property of the MIR
/// arising from this pass running straight after PHIElimination and before any
/// coalescing: that any virtual register with more than one definition must be
/// the new register added to lower a phi node by PHIElimination.
///
/// FIXME: We should detect whether a register in one of the above categories is
/// already live at the WWM code before deciding to add the implicit uses to
/// synthesize its liveness.
///
/// FIXME: I believe this whole scheme may be flawed due to the possibility of
/// the register allocator doing live interval splitting.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "si-fix-wwm-liveness"
namespace {
class SIFixWWMLiveness : public MachineFunctionPass {
private:
MachineDominatorTree *DomTree;
MachineLoopInfo *LoopInfo;
LiveIntervals *LIS = nullptr;
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
MachineRegisterInfo *MRI;
std::vector<MachineInstr *> WWMs;
std::vector<MachineOperand *> ThenDefs;
std::vector<std::pair<MachineOperand *, MachineLoop *>> LoopExitDefs;
std::vector<std::pair<MachineOperand *, MachineLoop *>> LoopPhiDefs;
public:
static char ID;
SIFixWWMLiveness() : MachineFunctionPass(ID) {
initializeSIFixWWMLivenessPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Fix WWM Liveness"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(MachineDominatorsID);
AU.addRequiredID(MachineLoopInfoID);
// Should preserve the same set that TwoAddressInstructions does.
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreservedID(LiveVariablesID);
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
void processDef(MachineOperand &DefOpnd);
bool processThenDef(MachineOperand *DefOpnd);
bool processLoopExitDef(MachineOperand *DefOpnd, MachineLoop *Loop);
bool processLoopPhiDef(MachineOperand *DefOpnd, MachineLoop *Loop);
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIFixWWMLiveness, DEBUG_TYPE,
"SI fix WWM liveness", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(SIFixWWMLiveness, DEBUG_TYPE,
"SI fix WWM liveness", false, false)
char SIFixWWMLiveness::ID = 0;
char &llvm::SIFixWWMLivenessID = SIFixWWMLiveness::ID;
FunctionPass *llvm::createSIFixWWMLivenessPass() {
return new SIFixWWMLiveness();
}
bool SIFixWWMLiveness::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "SIFixWWMLiveness: function " << MF.getName() << "\n");
bool Modified = false;
// This doesn't actually need LiveIntervals, but we can preserve them.
LIS = getAnalysisIfAvailable<LiveIntervals>();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
DomTree = &getAnalysis<MachineDominatorTree>();
LoopInfo = &getAnalysis<MachineLoopInfo>();
// Scan the function to find the WWM sections and the candidate registers for
// having liveness modified.
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::EXIT_WWM)
WWMs.push_back(&MI);
else {
for (MachineOperand &DefOpnd : MI.defs()) {
if (DefOpnd.isReg()) {
unsigned Reg = DefOpnd.getReg();
if (TRI->isVGPR(*MRI, Reg))
processDef(DefOpnd);
}
}
}
}
}
if (!WWMs.empty()) {
// Synthesize liveness over WWM sections as required.
for (auto ThenDef : ThenDefs)
Modified |= processThenDef(ThenDef);
for (auto LoopExitDef : LoopExitDefs)
Modified |= processLoopExitDef(LoopExitDef.first, LoopExitDef.second);
for (auto LoopPhiDef : LoopPhiDefs)
Modified |= processLoopPhiDef(LoopPhiDef.first, LoopPhiDef.second);
}
WWMs.clear();
ThenDefs.clear();
LoopExitDefs.clear();
LoopPhiDefs.clear();
return Modified;
}
// During the function scan, process an operand that defines a VGPR.
// This categorizes the register and puts it in the appropriate list for later
// use when processing a WWM section.
void SIFixWWMLiveness::processDef(MachineOperand &DefOpnd) {
unsigned Reg = DefOpnd.getReg();
// Get all the defining instructions. For convenience, make Defs[0] the def
// we are on now.
SmallVector<const MachineInstr *, 4> Defs;
Defs.push_back(DefOpnd.getParent());
for (auto &MI : MRI->def_instructions(Reg)) {
if (&MI != DefOpnd.getParent())
Defs.push_back(&MI);
}
// Check whether this def dominates all the others. If not, ignore this def.
// Either it is going to be processed when the scan encounters its other def
// that dominates all defs, or there is no def that dominates all others.
// The latter case is an eliminated phi from an if..else..endif or similar,
// which must be for uniform control flow so can be ignored.
// Because this pass runs shortly after PHIElimination, we assume that any
// multi-def register is a lowered phi, and thus has each def in a separate
// basic block.
for (unsigned I = 1; I != Defs.size(); ++I) {
if (!DomTree->dominates(Defs[0]->getParent(), Defs[I]->getParent()))
return;
}
// Check for the case of an if..endif lowered phi: It has two defs, one
// dominates the other, and there is a single use in a successor of the
// dominant def.
// Later we will spot any WWM code inside
// the "then" clause and turn the second def into a partial def so its
// liveness goes through the WWM code in the "then" clause.
if (Defs.size() == 2) {
auto DomDefBlock = Defs[0]->getParent();
if (DomDefBlock->succ_size() == 2 && MRI->hasOneUse(Reg)) {
auto UseBlock = MRI->use_begin(Reg)->getParent()->getParent();
for (auto Succ : DomDefBlock->successors()) {
if (Succ == UseBlock) {
LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << " is a then phi reg\n");
ThenDefs.push_back(&DefOpnd);
return;
}
}
}
}
// Check for the case of a non-lowered-phi register (single def) that exits
// a loop, that is, it has a use that is outside a loop that the def is
// inside. We find the outermost loop that the def is inside but a use is
// outside. Later we will spot any WWM code inside that loop and then make
// the def a partial def so its liveness goes round the loop and through the
// WWM code.
if (Defs.size() == 1) {
auto Loop = LoopInfo->getLoopFor(Defs[0]->getParent());
if (!Loop)
return;
bool IsLoopExit = false;
for (auto &Use : MRI->use_instructions(Reg)) {
auto UseBlock = Use.getParent();
if (Loop->contains(UseBlock))
continue;
IsLoopExit = true;
while (auto Parent = Loop->getParentLoop()) {
if (Parent->contains(UseBlock))
break;
Loop = Parent;
}
}
if (!IsLoopExit)
return;
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is a loop exit reg with loop header at "
<< "bb." << Loop->getHeader()->getNumber() << "\n");
LoopExitDefs.push_back(std::pair<MachineOperand *, MachineLoop *>(
&DefOpnd, Loop));
return;
}
// Check for the case of a lowered single-preheader-loop phi, that is, a
// multi-def register where the dominating def is in the loop pre-header and
// all other defs are in backedges. Later we will spot any WWM code inside
// that loop and then make the backedge defs partial defs so the liveness
// goes through the WWM code.
// Note that we are ignoring multi-preheader loops on the basis that the
// structurizer does not allow that for non-uniform loops.
// There must be a single use in the loop header.
if (!MRI->hasOneUse(Reg))
return;
auto UseBlock = MRI->use_begin(Reg)->getParent()->getParent();
auto Loop = LoopInfo->getLoopFor(UseBlock);
if (!Loop || Loop->getHeader() != UseBlock
|| Loop->contains(Defs[0]->getParent())) {
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is multi-def but single use not in loop header\n");
return;
}
for (unsigned I = 1; I != Defs.size(); ++I) {
if (!Loop->contains(Defs[I]->getParent()))
return;
}
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is a loop phi reg with loop header at "
<< "bb." << Loop->getHeader()->getNumber() << "\n");
LoopPhiDefs.push_back(
std::pair<MachineOperand *, MachineLoop *>(&DefOpnd, Loop));
}
// Process a then phi def: It has two defs, one dominates the other, and there
// is a single use in a successor of the dominant def. Here we spot any WWM
// code inside the "then" clause and turn the second def into a partial def so
// its liveness goes through the WWM code in the "then" clause.
bool SIFixWWMLiveness::processThenDef(MachineOperand *DefOpnd) {
LLVM_DEBUG(dbgs() << "Processing then def: " << *DefOpnd->getParent());
if (DefOpnd->getParent()->getOpcode() == TargetOpcode::IMPLICIT_DEF) {
// Ignore if dominating def is undef.
LLVM_DEBUG(dbgs() << " ignoring as dominating def is undef\n");
return false;
}
unsigned Reg = DefOpnd->getReg();
// Get the use block, which is the endif block.
auto UseBlock = MRI->use_instr_begin(Reg)->getParent();
// Check whether there is WWM code inside the then branch. The WWM code must
// be dominated by the if but not dominated by the endif.
bool ContainsWWM = false;
for (auto WWM : WWMs) {
if (DomTree->dominates(DefOpnd->getParent()->getParent(), WWM->getParent())
&& !DomTree->dominates(UseBlock, WWM->getParent())) {
LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
ContainsWWM = true;
break;
}
}
if (!ContainsWWM)
return false;
// Get the other def.
MachineInstr *OtherDef = nullptr;
for (auto &MI : MRI->def_instructions(Reg)) {
if (&MI != DefOpnd->getParent())
OtherDef = &MI;
}
// Make it a partial def.
OtherDef->addOperand(MachineOperand::CreateReg(Reg, false, /*isImp=*/true));
LLVM_DEBUG(dbgs() << *OtherDef);
return true;
}
// Process a loop exit def, that is, a register with a single use in a loop
// that has a use outside the loop. Here we spot any WWM code inside that loop
// and then make the def a partial def so its liveness goes round the loop and
// through the WWM code.
bool SIFixWWMLiveness::processLoopExitDef(MachineOperand *DefOpnd,
MachineLoop *Loop) {
LLVM_DEBUG(dbgs() << "Processing loop exit def: " << *DefOpnd->getParent());
// Check whether there is WWM code inside the loop.
bool ContainsWWM = false;
for (auto WWM : WWMs) {
if (Loop->contains(WWM->getParent())) {
LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
ContainsWWM = true;
break;
}
}
if (!ContainsWWM)
return false;
unsigned Reg = DefOpnd->getReg();
// Add a new implicit_def in loop preheader(s).
for (auto Pred : Loop->getHeader()->predecessors()) {
if (!Loop->contains(Pred)) {
auto ImplicitDef = BuildMI(*Pred, Pred->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
LLVM_DEBUG(dbgs() << *ImplicitDef);
(void)ImplicitDef;
}
}
// Make the original def partial.
DefOpnd->getParent()->addOperand(MachineOperand::CreateReg(
Reg, false, /*isImp=*/true));
LLVM_DEBUG(dbgs() << *DefOpnd->getParent());
return true;
}
// Process a loop phi def, that is, a multi-def register where the dominating
// def is in the loop pre-header and all other defs are in backedges. Here we
// spot any WWM code inside that loop and then make the backedge defs partial
// defs so the liveness goes through the WWM code.
bool SIFixWWMLiveness::processLoopPhiDef(MachineOperand *DefOpnd,
MachineLoop *Loop) {
LLVM_DEBUG(dbgs() << "Processing loop phi def: " << *DefOpnd->getParent());
// Check whether there is WWM code inside the loop.
bool ContainsWWM = false;
for (auto WWM : WWMs) {
if (Loop->contains(WWM->getParent())) {
LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
ContainsWWM = true;
break;
}
}
if (!ContainsWWM)
return false;
unsigned Reg = DefOpnd->getReg();
// Remove kill mark from uses.
for (auto &Use : MRI->use_operands(Reg))
Use.setIsKill(false);
// Make all defs except the dominating one partial defs.
SmallVector<MachineInstr *, 4> Defs;
for (auto &Def : MRI->def_instructions(Reg))
Defs.push_back(&Def);
for (auto Def : Defs) {
if (DefOpnd->getParent() == Def)
continue;
Def->addOperand(MachineOperand::CreateReg(Reg, false, /*isImp=*/true));
LLVM_DEBUG(dbgs() << *Def);
}
return true;
}