llvm-project/llvm/lib/IR/Verifier.cpp

4515 lines
170 KiB
C++

//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * A landing pad is defined by a landingpad instruction, and can be jumped to
// only by the unwind edge of an invoke instruction.
// * A landingpad instruction must be the first non-PHI instruction in the
// block.
// * Landingpad instructions must be in a function with a personality function.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Verifier.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
namespace {
struct VerifierSupport {
raw_ostream &OS;
const Module *M;
/// \brief Track the brokenness of the module while recursively visiting.
bool Broken;
explicit VerifierSupport(raw_ostream &OS)
: OS(OS), M(nullptr), Broken(false) {}
private:
template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
Write(&*I);
}
void Write(const Module *M) {
if (!M)
return;
OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
}
void Write(const Value *V) {
if (!V)
return;
if (isa<Instruction>(V)) {
OS << *V << '\n';
} else {
V->printAsOperand(OS, true, M);
OS << '\n';
}
}
void Write(ImmutableCallSite CS) {
Write(CS.getInstruction());
}
void Write(const Metadata *MD) {
if (!MD)
return;
MD->print(OS, M);
OS << '\n';
}
template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
Write(MD.get());
}
void Write(const NamedMDNode *NMD) {
if (!NMD)
return;
NMD->print(OS);
OS << '\n';
}
void Write(Type *T) {
if (!T)
return;
OS << ' ' << *T;
}
void Write(const Comdat *C) {
if (!C)
return;
OS << *C;
}
template <typename T> void Write(ArrayRef<T> Vs) {
for (const T &V : Vs)
Write(V);
}
template <typename T1, typename... Ts>
void WriteTs(const T1 &V1, const Ts &... Vs) {
Write(V1);
WriteTs(Vs...);
}
template <typename... Ts> void WriteTs() {}
public:
/// \brief A check failed, so printout out the condition and the message.
///
/// This provides a nice place to put a breakpoint if you want to see why
/// something is not correct.
void CheckFailed(const Twine &Message) {
OS << Message << '\n';
Broken = true;
}
/// \brief A check failed (with values to print).
///
/// This calls the Message-only version so that the above is easier to set a
/// breakpoint on.
template <typename T1, typename... Ts>
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
CheckFailed(Message);
WriteTs(V1, Vs...);
}
};
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
friend class InstVisitor<Verifier>;
LLVMContext *Context;
DominatorTree DT;
/// \brief When verifying a basic block, keep track of all of the
/// instructions we have seen so far.
///
/// This allows us to do efficient dominance checks for the case when an
/// instruction has an operand that is an instruction in the same block.
SmallPtrSet<Instruction *, 16> InstsInThisBlock;
/// \brief Keep track of the metadata nodes that have been checked already.
SmallPtrSet<const Metadata *, 32> MDNodes;
/// Track all DICompileUnits visited.
SmallPtrSet<const Metadata *, 2> CUVisited;
/// \brief Track unresolved string-based type references.
SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
/// \brief The result type for a landingpad.
Type *LandingPadResultTy;
/// \brief Whether we've seen a call to @llvm.localescape in this function
/// already.
bool SawFrameEscape;
/// Stores the count of how many objects were passed to llvm.localescape for a
/// given function and the largest index passed to llvm.localrecover.
DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
// Maps catchswitches and cleanuppads that unwind to siblings to the
// terminators that indicate the unwind, used to detect cycles therein.
MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
/// Cache of constants visited in search of ConstantExprs.
SmallPtrSet<const Constant *, 32> ConstantExprVisited;
// Verify that this GlobalValue is only used in this module.
// This map is used to avoid visiting uses twice. We can arrive at a user
// twice, if they have multiple operands. In particular for very large
// constant expressions, we can arrive at a particular user many times.
SmallPtrSet<const Value *, 32> GlobalValueVisited;
void checkAtomicMemAccessSize(const Module *M, Type *Ty,
const Instruction *I);
public:
explicit Verifier(raw_ostream &OS)
: VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
SawFrameEscape(false) {}
bool verify(const Function &F) {
M = F.getParent();
Context = &M->getContext();
// First ensure the function is well-enough formed to compute dominance
// information.
if (F.empty()) {
OS << "Function '" << F.getName()
<< "' does not contain an entry block!\n";
return false;
}
for (const BasicBlock &BB : F) {
if (BB.empty() || !BB.back().isTerminator()) {
OS << "Basic Block in function '" << F.getName()
<< "' does not have terminator!\n";
BB.printAsOperand(OS, true);
OS << "\n";
return false;
}
}
// Now directly compute a dominance tree. We don't rely on the pass
// manager to provide this as it isolates us from a potentially
// out-of-date dominator tree and makes it significantly more complex to
// run this code outside of a pass manager.
// FIXME: It's really gross that we have to cast away constness here.
DT.recalculate(const_cast<Function &>(F));
Broken = false;
// FIXME: We strip const here because the inst visitor strips const.
visit(const_cast<Function &>(F));
verifySiblingFuncletUnwinds();
InstsInThisBlock.clear();
LandingPadResultTy = nullptr;
SawFrameEscape = false;
SiblingFuncletInfo.clear();
return !Broken;
}
bool verify(const Module &M) {
this->M = &M;
Context = &M.getContext();
Broken = false;
// Scan through, checking all of the external function's linkage now...
for (const Function &F : M) {
visitGlobalValue(F);
// Check to make sure function prototypes are okay.
if (F.isDeclaration())
visitFunction(F);
}
// Now that we've visited every function, verify that we never asked to
// recover a frame index that wasn't escaped.
verifyFrameRecoverIndices();
for (const GlobalVariable &GV : M.globals())
visitGlobalVariable(GV);
for (const GlobalAlias &GA : M.aliases())
visitGlobalAlias(GA);
for (const NamedMDNode &NMD : M.named_metadata())
visitNamedMDNode(NMD);
for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
visitComdat(SMEC.getValue());
visitModuleFlags(M);
visitModuleIdents(M);
verifyCompileUnits();
// Verify type references last.
verifyTypeRefs();
return !Broken;
}
private:
// Verification methods...
void visitGlobalValue(const GlobalValue &GV);
void visitGlobalVariable(const GlobalVariable &GV);
void visitGlobalAlias(const GlobalAlias &GA);
void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
const GlobalAlias &A, const Constant &C);
void visitNamedMDNode(const NamedMDNode &NMD);
void visitMDNode(const MDNode &MD);
void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
void visitComdat(const Comdat &C);
void visitModuleIdents(const Module &M);
void visitModuleFlags(const Module &M);
void visitModuleFlag(const MDNode *Op,
DenseMap<const MDString *, const MDNode *> &SeenIDs,
SmallVectorImpl<const MDNode *> &Requirements);
void visitFunction(const Function &F);
void visitBasicBlock(BasicBlock &BB);
void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
void visitDIScope(const DIScope &N);
void visitDIVariable(const DIVariable &N);
void visitDILexicalBlockBase(const DILexicalBlockBase &N);
void visitDITemplateParameter(const DITemplateParameter &N);
void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
/// \brief Check for a valid string-based type reference.
///
/// Checks if \c MD is a string-based type reference. If it is, keeps track
/// of it (and its user, \c N) for error messages later.
bool isValidUUID(const MDNode &N, const Metadata *MD);
/// \brief Check for a valid type reference.
///
/// Checks for subclasses of \a DIType, or \a isValidUUID().
bool isTypeRef(const MDNode &N, const Metadata *MD);
/// \brief Check for a valid scope reference.
///
/// Checks for subclasses of \a DIScope, or \a isValidUUID().
bool isScopeRef(const MDNode &N, const Metadata *MD);
/// \brief Check for a valid debug info reference.
///
/// Checks for subclasses of \a DINode, or \a isValidUUID().
bool isDIRef(const MDNode &N, const Metadata *MD);
// InstVisitor overrides...
using InstVisitor<Verifier>::visit;
void visit(Instruction &I);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void verifyDominatesUse(Instruction &I, unsigned i);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitBranchInst(BranchInst &BI);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitIndirectBrInst(IndirectBrInst &BI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
template <class DbgIntrinsicTy>
void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
void visitFenceInst(FenceInst &FI);
void visitAllocaInst(AllocaInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void visitEHPadPredecessors(Instruction &I);
void visitLandingPadInst(LandingPadInst &LPI);
void visitCatchPadInst(CatchPadInst &CPI);
void visitCatchReturnInst(CatchReturnInst &CatchReturn);
void visitCleanupPadInst(CleanupPadInst &CPI);
void visitFuncletPadInst(FuncletPadInst &FPI);
void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
void visitCleanupReturnInst(CleanupReturnInst &CRI);
void verifyCallSite(CallSite CS);
void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
void verifySwiftErrorValue(const Value *SwiftErrorVal);
void verifyMustTailCall(CallInst &CI);
bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
unsigned ArgNo, std::string &Suffix);
bool verifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys);
bool verifyIntrinsicIsVarArg(bool isVarArg,
ArrayRef<Intrinsic::IITDescriptor> &Infos);
bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
const Value *V);
void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
bool isReturnValue, const Value *V);
void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
const Value *V);
void verifyFunctionMetadata(
const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
void visitConstantExprsRecursively(const Constant *EntryC);
void visitConstantExpr(const ConstantExpr *CE);
void verifyStatepoint(ImmutableCallSite CS);
void verifyFrameRecoverIndices();
void verifySiblingFuncletUnwinds();
/// @{
/// Module-level debug info verification...
void verifyTypeRefs();
void verifyCompileUnits();
template <class MapTy>
void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
const MapTy &TypeRefs);
void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
/// @}
};
} // End anonymous namespace
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
void Verifier::visit(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
InstVisitor<Verifier>::visit(I);
}
// Helper to recursively iterate over indirect users. By
// returning false, the callback can ask to stop recursing
// further.
static void forEachUser(const Value *User,
SmallPtrSet<const Value *, 32> &Visited,
llvm::function_ref<bool(const Value *)> Callback) {
if (!Visited.insert(User).second)
return;
for (const Value *TheNextUser : User->materialized_users())
if (Callback(TheNextUser))
forEachUser(TheNextUser, Visited, Callback);
}
void Verifier::visitGlobalValue(const GlobalValue &GV) {
Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
GV.hasExternalWeakLinkage(),
"Global is external, but doesn't have external or weak linkage!", &GV);
Assert(GV.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &GV);
Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
Assert(GVar && GVar->getValueType()->isArrayTy(),
"Only global arrays can have appending linkage!", GVar);
}
if (GV.isDeclarationForLinker())
Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
if (const Instruction *I = dyn_cast<Instruction>(V)) {
if (!I->getParent() || !I->getParent()->getParent())
CheckFailed("Global is referenced by parentless instruction!", &GV,
M, I);
else if (I->getParent()->getParent()->getParent() != M)
CheckFailed("Global is referenced in a different module!", &GV,
M, I, I->getParent()->getParent(),
I->getParent()->getParent()->getParent());
return false;
} else if (const Function *F = dyn_cast<Function>(V)) {
if (F->getParent() != M)
CheckFailed("Global is used by function in a different module", &GV,
M, F, F->getParent());
return false;
}
return true;
});
}
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
if (GV.hasInitializer()) {
Assert(GV.getInitializer()->getType() == GV.getValueType(),
"Global variable initializer type does not match global "
"variable type!",
&GV);
// If the global has common linkage, it must have a zero initializer and
// cannot be constant.
if (GV.hasCommonLinkage()) {
Assert(GV.getInitializer()->isNullValue(),
"'common' global must have a zero initializer!", &GV);
Assert(!GV.isConstant(), "'common' global may not be marked constant!",
&GV);
Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
}
} else {
Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
"invalid linkage type for global declaration", &GV);
}
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
GV.getName() == "llvm.global_dtors")) {
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
// Don't worry about emitting an error for it not being an array,
// visitGlobalValue will complain on appending non-array.
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
StructType *STy = dyn_cast<StructType>(ATy->getElementType());
PointerType *FuncPtrTy =
FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
// FIXME: Reject the 2-field form in LLVM 4.0.
Assert(STy &&
(STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
STy->getTypeAtIndex(1) == FuncPtrTy,
"wrong type for intrinsic global variable", &GV);
if (STy->getNumElements() == 3) {
Type *ETy = STy->getTypeAtIndex(2);
Assert(ETy->isPointerTy() &&
cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
"wrong type for intrinsic global variable", &GV);
}
}
}
if (GV.hasName() && (GV.getName() == "llvm.used" ||
GV.getName() == "llvm.compiler.used")) {
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
Type *GVType = GV.getValueType();
if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
Assert(PTy, "wrong type for intrinsic global variable", &GV);
if (GV.hasInitializer()) {
const Constant *Init = GV.getInitializer();
const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
Assert(InitArray, "wrong initalizer for intrinsic global variable",
Init);
for (Value *Op : InitArray->operands()) {
Value *V = Op->stripPointerCastsNoFollowAliases();
Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
isa<GlobalAlias>(V),
"invalid llvm.used member", V);
Assert(V->hasName(), "members of llvm.used must be named", V);
}
}
}
}
Assert(!GV.hasDLLImportStorageClass() ||
(GV.isDeclaration() && GV.hasExternalLinkage()) ||
GV.hasAvailableExternallyLinkage(),
"Global is marked as dllimport, but not external", &GV);
if (!GV.hasInitializer()) {
visitGlobalValue(GV);
return;
}
// Walk any aggregate initializers looking for bitcasts between address spaces
visitConstantExprsRecursively(GV.getInitializer());
visitGlobalValue(GV);
}
void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
SmallPtrSet<const GlobalAlias*, 4> Visited;
Visited.insert(&GA);
visitAliaseeSubExpr(Visited, GA, C);
}
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
const GlobalAlias &GA, const Constant &C) {
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
&GA);
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
&GA);
} else {
// Only continue verifying subexpressions of GlobalAliases.
// Do not recurse into global initializers.
return;
}
}
if (const auto *CE = dyn_cast<ConstantExpr>(&C))
visitConstantExprsRecursively(CE);
for (const Use &U : C.operands()) {
Value *V = &*U;
if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
else if (const auto *C2 = dyn_cast<Constant>(V))
visitAliaseeSubExpr(Visited, GA, *C2);
}
}
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
"Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!",
&GA);
const Constant *Aliasee = GA.getAliasee();
Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
Assert(GA.getType() == Aliasee->getType(),
"Alias and aliasee types should match!", &GA);
Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
"Aliasee should be either GlobalValue or ConstantExpr", &GA);
visitAliaseeSubExpr(GA, *Aliasee);
visitGlobalValue(GA);
}
void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
for (const MDNode *MD : NMD.operands()) {
if (NMD.getName() == "llvm.dbg.cu") {
Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
}
if (!MD)
continue;
visitMDNode(*MD);
}
}
void Verifier::visitMDNode(const MDNode &MD) {
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
if (!MDNodes.insert(&MD).second)
return;
switch (MD.getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
case Metadata::MDTupleKind:
break;
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
visit##CLASS(cast<CLASS>(MD)); \
break;
#include "llvm/IR/Metadata.def"
}
for (const Metadata *Op : MD.operands()) {
if (!Op)
continue;
Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
&MD, Op);
if (auto *N = dyn_cast<MDNode>(Op)) {
visitMDNode(*N);
continue;
}
if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
visitValueAsMetadata(*V, nullptr);
continue;
}
}
// Check these last, so we diagnose problems in operands first.
Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
}
void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
Assert(MD.getValue(), "Expected valid value", &MD);
Assert(!MD.getValue()->getType()->isMetadataTy(),
"Unexpected metadata round-trip through values", &MD, MD.getValue());
auto *L = dyn_cast<LocalAsMetadata>(&MD);
if (!L)
return;
Assert(F, "function-local metadata used outside a function", L);
// If this was an instruction, bb, or argument, verify that it is in the
// function that we expect.
Function *ActualF = nullptr;
if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
Assert(I->getParent(), "function-local metadata not in basic block", L, I);
ActualF = I->getParent()->getParent();
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
ActualF = BB->getParent();
else if (Argument *A = dyn_cast<Argument>(L->getValue()))
ActualF = A->getParent();
assert(ActualF && "Unimplemented function local metadata case!");
Assert(ActualF == F, "function-local metadata used in wrong function", L);
}
void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
Metadata *MD = MDV.getMetadata();
if (auto *N = dyn_cast<MDNode>(MD)) {
visitMDNode(*N);
return;
}
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
if (!MDNodes.insert(MD).second)
return;
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
visitValueAsMetadata(*V, F);
}
bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
auto *S = dyn_cast<MDString>(MD);
if (!S || S->getString().empty())
return false;
// Keep track of names of types referenced via UUID so we can check that they
// actually exist.
UnresolvedTypeRefs.insert(std::make_pair(S, &N));
return true;
}
/// \brief Check if a value can be a reference to a type.
bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
}
/// \brief Check if a value can be a ScopeRef.
bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
}
/// \brief Check if a value can be a debug info ref.
bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
}
template <class Ty>
bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
for (Metadata *MD : N.operands()) {
if (MD) {
if (!isa<Ty>(MD))
return false;
} else {
if (!AllowNull)
return false;
}
}
return true;
}
template <class Ty>
bool isValidMetadataArray(const MDTuple &N) {
return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
}
template <class Ty>
bool isValidMetadataNullArray(const MDTuple &N) {
return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
}
void Verifier::visitDILocation(const DILocation &N) {
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"location requires a valid scope", &N, N.getRawScope());
if (auto *IA = N.getRawInlinedAt())
Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
}
void Verifier::visitGenericDINode(const GenericDINode &N) {
Assert(N.getTag(), "invalid tag", &N);
}
void Verifier::visitDIScope(const DIScope &N) {
if (auto *F = N.getRawFile())
Assert(isa<DIFile>(F), "invalid file", &N, F);
}
void Verifier::visitDISubrange(const DISubrange &N) {
Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
Assert(N.getCount() >= -1, "invalid subrange count", &N);
}
void Verifier::visitDIEnumerator(const DIEnumerator &N) {
Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}
void Verifier::visitDIBasicType(const DIBasicType &N) {
Assert(N.getTag() == dwarf::DW_TAG_base_type ||
N.getTag() == dwarf::DW_TAG_unspecified_type,
"invalid tag", &N);
}
void Verifier::visitDIDerivedType(const DIDerivedType &N) {
// Common scope checks.
visitDIScope(N);
Assert(N.getTag() == dwarf::DW_TAG_typedef ||
N.getTag() == dwarf::DW_TAG_pointer_type ||
N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
N.getTag() == dwarf::DW_TAG_reference_type ||
N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
N.getTag() == dwarf::DW_TAG_const_type ||
N.getTag() == dwarf::DW_TAG_volatile_type ||
N.getTag() == dwarf::DW_TAG_restrict_type ||
N.getTag() == dwarf::DW_TAG_member ||
N.getTag() == dwarf::DW_TAG_inheritance ||
N.getTag() == dwarf::DW_TAG_friend,
"invalid tag", &N);
if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
N.getExtraData());
}
Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
N.getBaseType());
}
static bool hasConflictingReferenceFlags(unsigned Flags) {
return (Flags & DINode::FlagLValueReference) &&
(Flags & DINode::FlagRValueReference);
}
void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
auto *Params = dyn_cast<MDTuple>(&RawParams);
Assert(Params, "invalid template params", &N, &RawParams);
for (Metadata *Op : Params->operands()) {
Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
Params, Op);
}
}
void Verifier::visitDICompositeType(const DICompositeType &N) {
// Common scope checks.
visitDIScope(N);
Assert(N.getTag() == dwarf::DW_TAG_array_type ||
N.getTag() == dwarf::DW_TAG_structure_type ||
N.getTag() == dwarf::DW_TAG_union_type ||
N.getTag() == dwarf::DW_TAG_enumeration_type ||
N.getTag() == dwarf::DW_TAG_class_type,
"invalid tag", &N);
Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
N.getBaseType());
Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
"invalid composite elements", &N, N.getRawElements());
Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
N.getRawVTableHolder());
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
&N);
if (auto *Params = N.getRawTemplateParams())
visitTemplateParams(N, *Params);
if (N.getTag() == dwarf::DW_TAG_class_type ||
N.getTag() == dwarf::DW_TAG_union_type) {
Assert(N.getFile() && !N.getFile()->getFilename().empty(),
"class/union requires a filename", &N, N.getFile());
}
}
void Verifier::visitDISubroutineType(const DISubroutineType &N) {
Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
if (auto *Types = N.getRawTypeArray()) {
Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
for (Metadata *Ty : N.getTypeArray()->operands()) {
Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
}
}
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
&N);
}
void Verifier::visitDIFile(const DIFile &N) {
Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
}
void Verifier::visitDICompileUnit(const DICompileUnit &N) {
Assert(N.isDistinct(), "compile units must be distinct", &N);
Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
// Don't bother verifying the compilation directory or producer string
// as those could be empty.
Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
N.getRawFile());
Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
N.getFile());
Assert((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
"invalid emission kind", &N);
if (auto *Array = N.getRawEnumTypes()) {
Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
for (Metadata *Op : N.getEnumTypes()->operands()) {
auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
"invalid enum type", &N, N.getEnumTypes(), Op);
}
}
if (auto *Array = N.getRawRetainedTypes()) {
Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
for (Metadata *Op : N.getRetainedTypes()->operands()) {
Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
}
}
if (auto *Array = N.getRawSubprograms()) {
Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
for (Metadata *Op : N.getSubprograms()->operands()) {
Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
}
}
if (auto *Array = N.getRawGlobalVariables()) {
Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
for (Metadata *Op : N.getGlobalVariables()->operands()) {
Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
Op);
}
}
if (auto *Array = N.getRawImportedEntities()) {
Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
for (Metadata *Op : N.getImportedEntities()->operands()) {
Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
Op);
}
}
if (auto *Array = N.getRawMacros()) {
Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
for (Metadata *Op : N.getMacros()->operands()) {
Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
}
}
CUVisited.insert(&N);
}
void Verifier::visitDISubprogram(const DISubprogram &N) {
Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
if (auto *F = N.getRawFile())
Assert(isa<DIFile>(F), "invalid file", &N, F);
if (auto *T = N.getRawType())
Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
N.getRawContainingType());
if (auto *Params = N.getRawTemplateParams())
visitTemplateParams(N, *Params);
if (auto *S = N.getRawDeclaration()) {
Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
"invalid subprogram declaration", &N, S);
}
if (auto *RawVars = N.getRawVariables()) {
auto *Vars = dyn_cast<MDTuple>(RawVars);
Assert(Vars, "invalid variable list", &N, RawVars);
for (Metadata *Op : Vars->operands()) {
Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
Op);
}
}
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
&N);
if (N.isDefinition())
Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
}
void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"invalid local scope", &N, N.getRawScope());
}
void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
visitDILexicalBlockBase(N);
Assert(N.getLine() || !N.getColumn(),
"cannot have column info without line info", &N);
}
void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
visitDILexicalBlockBase(N);
}
void Verifier::visitDINamespace(const DINamespace &N) {
Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
if (auto *S = N.getRawScope())
Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
}
void Verifier::visitDIMacro(const DIMacro &N) {
Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
N.getMacinfoType() == dwarf::DW_MACINFO_undef,
"invalid macinfo type", &N);
Assert(!N.getName().empty(), "anonymous macro", &N);
if (!N.getValue().empty()) {
assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
}
}
void Verifier::visitDIMacroFile(const DIMacroFile &N) {
Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
"invalid macinfo type", &N);
if (auto *F = N.getRawFile())
Assert(isa<DIFile>(F), "invalid file", &N, F);
if (auto *Array = N.getRawElements()) {
Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
for (Metadata *Op : N.getElements()->operands()) {
Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
}
}
}
void Verifier::visitDIModule(const DIModule &N) {
Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
Assert(!N.getName().empty(), "anonymous module", &N);
}
void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
}
void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
visitDITemplateParameter(N);
Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
&N);
}
void Verifier::visitDITemplateValueParameter(
const DITemplateValueParameter &N) {
visitDITemplateParameter(N);
Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
"invalid tag", &N);
}
void Verifier::visitDIVariable(const DIVariable &N) {
if (auto *S = N.getRawScope())
Assert(isa<DIScope>(S), "invalid scope", &N, S);
Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
if (auto *F = N.getRawFile())
Assert(isa<DIFile>(F), "invalid file", &N, F);
}
void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
// Checks common to all variables.
visitDIVariable(N);
Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
Assert(!N.getName().empty(), "missing global variable name", &N);
if (auto *V = N.getRawVariable()) {
Assert(isa<ConstantAsMetadata>(V) &&
!isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
"invalid global varaible ref", &N, V);
visitConstantExprsRecursively(cast<ConstantAsMetadata>(V)->getValue());
}
if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
&N, Member);
}
}
void Verifier::visitDILocalVariable(const DILocalVariable &N) {
// Checks common to all variables.
visitDIVariable(N);
Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"local variable requires a valid scope", &N, N.getRawScope());
}
void Verifier::visitDIExpression(const DIExpression &N) {
Assert(N.isValid(), "invalid expression", &N);
}
void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
if (auto *T = N.getRawType())
Assert(isTypeRef(N, T), "invalid type ref", &N, T);
if (auto *F = N.getRawFile())
Assert(isa<DIFile>(F), "invalid file", &N, F);
}
void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
N.getTag() == dwarf::DW_TAG_imported_declaration,
"invalid tag", &N);
if (auto *S = N.getRawScope())
Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
N.getEntity());
}
void Verifier::visitComdat(const Comdat &C) {
// The Module is invalid if the GlobalValue has private linkage. Entities
// with private linkage don't have entries in the symbol table.
if (const GlobalValue *GV = M->getNamedValue(C.getName()))
Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
GV);
}
void Verifier::visitModuleIdents(const Module &M) {
const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
if (!Idents)
return;
// llvm.ident takes a list of metadata entry. Each entry has only one string.
// Scan each llvm.ident entry and make sure that this requirement is met.
for (const MDNode *N : Idents->operands()) {
Assert(N->getNumOperands() == 1,
"incorrect number of operands in llvm.ident metadata", N);
Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"),
N->getOperand(0));
}
}
void Verifier::visitModuleFlags(const Module &M) {
const NamedMDNode *Flags = M.getModuleFlagsMetadata();
if (!Flags) return;
// Scan each flag, and track the flags and requirements.
DenseMap<const MDString*, const MDNode*> SeenIDs;
SmallVector<const MDNode*, 16> Requirements;
for (const MDNode *MDN : Flags->operands())
visitModuleFlag(MDN, SeenIDs, Requirements);
// Validate that the requirements in the module are valid.
for (const MDNode *Requirement : Requirements) {
const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
const Metadata *ReqValue = Requirement->getOperand(1);
const MDNode *Op = SeenIDs.lookup(Flag);
if (!Op) {
CheckFailed("invalid requirement on flag, flag is not present in module",
Flag);
continue;
}
if (Op->getOperand(2) != ReqValue) {
CheckFailed(("invalid requirement on flag, "
"flag does not have the required value"),
Flag);
continue;
}
}
}
void
Verifier::visitModuleFlag(const MDNode *Op,
DenseMap<const MDString *, const MDNode *> &SeenIDs,
SmallVectorImpl<const MDNode *> &Requirements) {
// Each module flag should have three arguments, the merge behavior (a
// constant int), the flag ID (an MDString), and the value.
Assert(Op->getNumOperands() == 3,
"incorrect number of operands in module flag", Op);
Module::ModFlagBehavior MFB;
if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
Assert(
mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
"invalid behavior operand in module flag (expected constant integer)",
Op->getOperand(0));
Assert(false,
"invalid behavior operand in module flag (unexpected constant)",
Op->getOperand(0));
}
MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
Assert(ID, "invalid ID operand in module flag (expected metadata string)",
Op->getOperand(1));
// Sanity check the values for behaviors with additional requirements.
switch (MFB) {
case Module::Error:
case Module::Warning:
case Module::Override:
// These behavior types accept any value.
break;
case Module::Require: {
// The value should itself be an MDNode with two operands, a flag ID (an
// MDString), and a value.
MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
Assert(Value && Value->getNumOperands() == 2,
"invalid value for 'require' module flag (expected metadata pair)",
Op->getOperand(2));
Assert(isa<MDString>(Value->getOperand(0)),
("invalid value for 'require' module flag "
"(first value operand should be a string)"),
Value->getOperand(0));
// Append it to the list of requirements, to check once all module flags are
// scanned.
Requirements.push_back(Value);
break;
}
case Module::Append:
case Module::AppendUnique: {
// These behavior types require the operand be an MDNode.
Assert(isa<MDNode>(Op->getOperand(2)),
"invalid value for 'append'-type module flag "
"(expected a metadata node)",
Op->getOperand(2));
break;
}
}
// Unless this is a "requires" flag, check the ID is unique.
if (MFB != Module::Require) {
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
Assert(Inserted,
"module flag identifiers must be unique (or of 'require' type)", ID);
}
}
void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
bool isFunction, const Value *V) {
unsigned Slot = ~0U;
for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Idx) {
Slot = I;
break;
}
assert(Slot != ~0U && "Attribute set inconsistency!");
for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
I != E; ++I) {
if (I->isStringAttribute())
continue;
if (I->getKindAsEnum() == Attribute::NoReturn ||
I->getKindAsEnum() == Attribute::NoUnwind ||
I->getKindAsEnum() == Attribute::NoInline ||
I->getKindAsEnum() == Attribute::AlwaysInline ||
I->getKindAsEnum() == Attribute::OptimizeForSize ||
I->getKindAsEnum() == Attribute::StackProtect ||
I->getKindAsEnum() == Attribute::StackProtectReq ||
I->getKindAsEnum() == Attribute::StackProtectStrong ||
I->getKindAsEnum() == Attribute::SafeStack ||
I->getKindAsEnum() == Attribute::NoRedZone ||
I->getKindAsEnum() == Attribute::NoImplicitFloat ||
I->getKindAsEnum() == Attribute::Naked ||
I->getKindAsEnum() == Attribute::InlineHint ||
I->getKindAsEnum() == Attribute::StackAlignment ||
I->getKindAsEnum() == Attribute::UWTable ||
I->getKindAsEnum() == Attribute::NonLazyBind ||
I->getKindAsEnum() == Attribute::ReturnsTwice ||
I->getKindAsEnum() == Attribute::SanitizeAddress ||
I->getKindAsEnum() == Attribute::SanitizeThread ||
I->getKindAsEnum() == Attribute::SanitizeMemory ||
I->getKindAsEnum() == Attribute::MinSize ||
I->getKindAsEnum() == Attribute::NoDuplicate ||
I->getKindAsEnum() == Attribute::Builtin ||
I->getKindAsEnum() == Attribute::NoBuiltin ||
I->getKindAsEnum() == Attribute::Cold ||
I->getKindAsEnum() == Attribute::OptimizeNone ||
I->getKindAsEnum() == Attribute::JumpTable ||
I->getKindAsEnum() == Attribute::Convergent ||
I->getKindAsEnum() == Attribute::ArgMemOnly ||
I->getKindAsEnum() == Attribute::NoRecurse ||
I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
if (!isFunction) {
CheckFailed("Attribute '" + I->getAsString() +
"' only applies to functions!", V);
return;
}
} else if (I->getKindAsEnum() == Attribute::ReadOnly ||
I->getKindAsEnum() == Attribute::ReadNone) {
if (Idx == 0) {
CheckFailed("Attribute '" + I->getAsString() +
"' does not apply to function returns");
return;
}
} else if (isFunction) {
CheckFailed("Attribute '" + I->getAsString() +
"' does not apply to functions!", V);
return;
}
}
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
bool isReturnValue, const Value *V) {
if (!Attrs.hasAttributes(Idx))
return;
verifyAttributeTypes(Attrs, Idx, false, V);
if (isReturnValue)
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) &&
!Attrs.hasAttribute(Idx, Attribute::StructRet) &&
!Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
!Attrs.hasAttribute(Idx, Attribute::Returned) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
!Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&
!Attrs.hasAttribute(Idx, Attribute::SwiftError),
"Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!",
V);
// Check for mutually incompatible attributes. Only inreg is compatible with
// sret.
unsigned AttrCount = 0;
AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
Attrs.hasAttribute(Idx, Attribute::InReg);
AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
"Attributes "
"'inalloca and readonly' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)),
"Attributes "
"'sret and returned' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)),
"Attributes "
"'zeroext and signext' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
"Attributes "
"'readnone and readonly' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
"Attributes "
"'noinline and alwaysinline' are incompatible!",
V);
Assert(!AttrBuilder(Attrs, Idx)
.overlaps(AttributeFuncs::typeIncompatible(Ty)),
"Wrong types for attribute: " +
AttributeSet::get(*Context, Idx,
AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
V);
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
SmallPtrSet<Type*, 4> Visited;
if (!PTy->getElementType()->isSized(&Visited)) {
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca),
"Attributes 'byval' and 'inalloca' do not support unsized types!",
V);
}
if (!isa<PointerType>(PTy->getElementType()))
Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
"Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!",
V);
} else {
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
"Attribute 'byval' only applies to parameters with pointer type!",
V);
Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
"Attribute 'swifterror' only applies to parameters "
"with pointer type!",
V);
}
}
// Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
const Value *V) {
if (Attrs.isEmpty())
return;
bool SawNest = false;
bool SawReturned = false;
bool SawSRet = false;
bool SawSwiftSelf = false;
bool SawSwiftError = false;
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
unsigned Idx = Attrs.getSlotIndex(i);
Type *Ty;
if (Idx == 0)
Ty = FT->getReturnType();
else if (Idx-1 < FT->getNumParams())
Ty = FT->getParamType(Idx-1);
else
break; // VarArgs attributes, verified elsewhere.
verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
if (Idx == 0)
continue;
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
Assert(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
Assert(!SawReturned, "More than one parameter has attribute returned!",
V);
Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
"Incompatible "
"argument and return types for 'returned' attribute",
V);
SawReturned = true;
}
if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
Assert(Idx == 1 || Idx == 2,
"Attribute 'sret' is not on first or second parameter!", V);
SawSRet = true;
}
if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
SawSwiftSelf = true;
}
if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
V);
SawSwiftError = true;
}
if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
V);
}
}
if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
return;
verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
Assert(
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
"Attributes 'readnone and readonly' are incompatible!", V);
Assert(
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::InaccessibleMemOrArgMemOnly)),
"Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
Assert(
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::InaccessibleMemOnly)),
"Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
Assert(
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::AlwaysInline)),
"Attributes 'noinline and alwaysinline' are incompatible!", V);
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeNone)) {
Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
"Attribute 'optnone' requires 'noinline'!", V);
Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize),
"Attributes 'optsize and optnone' are incompatible!", V);
Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
"Attributes 'minsize and optnone' are incompatible!", V);
}
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::JumpTable)) {
const GlobalValue *GV = cast<GlobalValue>(V);
Assert(GV->hasUnnamedAddr(),
"Attribute 'jumptable' requires 'unnamed_addr'", V);
}
}
void Verifier::verifyFunctionMetadata(
const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
if (MDs.empty())
return;
for (const auto &Pair : MDs) {
if (Pair.first == LLVMContext::MD_prof) {
MDNode *MD = Pair.second;
Assert(MD->getNumOperands() == 2,
"!prof annotations should have exactly 2 operands", MD);
// Check first operand.
Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
MD);
Assert(isa<MDString>(MD->getOperand(0)),
"expected string with name of the !prof annotation", MD);
MDString *MDS = cast<MDString>(MD->getOperand(0));
StringRef ProfName = MDS->getString();
Assert(ProfName.equals("function_entry_count"),
"first operand should be 'function_entry_count'", MD);
// Check second operand.
Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
MD);
Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
"expected integer argument to function_entry_count", MD);
}
}
}
void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
if (!ConstantExprVisited.insert(EntryC).second)
return;
SmallVector<const Constant *, 16> Stack;
Stack.push_back(EntryC);
while (!Stack.empty()) {
const Constant *C = Stack.pop_back_val();
// Check this constant expression.
if (const auto *CE = dyn_cast<ConstantExpr>(C))
visitConstantExpr(CE);
if (const auto *GV = dyn_cast<GlobalValue>(C)) {
// Global Values get visited separately, but we do need to make sure
// that the global value is in the correct module
Assert(GV->getParent() == M, "Referencing global in another module!",
EntryC, M, GV, GV->getParent());
continue;
}
// Visit all sub-expressions.
for (const Use &U : C->operands()) {
const auto *OpC = dyn_cast<Constant>(U);
if (!OpC)
continue;
if (!ConstantExprVisited.insert(OpC).second)
continue;
Stack.push_back(OpC);
}
}
}
void Verifier::visitConstantExpr(const ConstantExpr *CE) {
if (CE->getOpcode() != Instruction::BitCast)
return;
Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
CE->getType()),
"Invalid bitcast", CE);
}
bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
if (Attrs.getNumSlots() == 0)
return true;
unsigned LastSlot = Attrs.getNumSlots() - 1;
unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
if (LastIndex <= Params
|| (LastIndex == AttributeSet::FunctionIndex
&& (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
return true;
return false;
}
/// Verify that statepoint intrinsic is well formed.
void Verifier::verifyStatepoint(ImmutableCallSite CS) {
assert(CS.getCalledFunction() &&
CS.getCalledFunction()->getIntrinsicID() ==
Intrinsic::experimental_gc_statepoint);
const Instruction &CI = *CS.getInstruction();
Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
!CS.onlyAccessesArgMemory(),
"gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics",
&CI);
const Value *IDV = CS.getArgument(0);
Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
&CI);
const Value *NumPatchBytesV = CS.getArgument(1);
Assert(isa<ConstantInt>(NumPatchBytesV),
"gc.statepoint number of patchable bytes must be a constant integer",
&CI);
const int64_t NumPatchBytes =
cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
"positive",
&CI);
const Value *Target = CS.getArgument(2);
auto *PT = dyn_cast<PointerType>(Target->getType());
Assert(PT && PT->getElementType()->isFunctionTy(),
"gc.statepoint callee must be of function pointer type", &CI, Target);
FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
const Value *NumCallArgsV = CS.getArgument(3);
Assert(isa<ConstantInt>(NumCallArgsV),
"gc.statepoint number of arguments to underlying call "
"must be constant integer",
&CI);
const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
Assert(NumCallArgs >= 0,
"gc.statepoint number of arguments to underlying call "
"must be positive",
&CI);
const int NumParams = (int)TargetFuncType->getNumParams();
if (TargetFuncType->isVarArg()) {
Assert(NumCallArgs >= NumParams,
"gc.statepoint mismatch in number of vararg call args", &CI);
// TODO: Remove this limitation
Assert(TargetFuncType->getReturnType()->isVoidTy(),
"gc.statepoint doesn't support wrapping non-void "
"vararg functions yet",
&CI);
} else
Assert(NumCallArgs == NumParams,
"gc.statepoint mismatch in number of call args", &CI);
const Value *FlagsV = CS.getArgument(4);
Assert(isa<ConstantInt>(FlagsV),
"gc.statepoint flags must be constant integer", &CI);
const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
"unknown flag used in gc.statepoint flags argument", &CI);
// Verify that the types of the call parameter arguments match
// the type of the wrapped callee.
for (int i = 0; i < NumParams; i++) {
Type *ParamType = TargetFuncType->getParamType(i);
Type *ArgType = CS.getArgument(5 + i)->getType();
Assert(ArgType == ParamType,
"gc.statepoint call argument does not match wrapped "
"function type",
&CI);
}
const int EndCallArgsInx = 4 + NumCallArgs;
const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
Assert(isa<ConstantInt>(NumTransitionArgsV),
"gc.statepoint number of transition arguments "
"must be constant integer",
&CI);
const int NumTransitionArgs =
cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
Assert(NumTransitionArgs >= 0,
"gc.statepoint number of transition arguments must be positive", &CI);
const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
Assert(isa<ConstantInt>(NumDeoptArgsV),
"gc.statepoint number of deoptimization arguments "
"must be constant integer",
&CI);
const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
"must be positive",
&CI);
const int ExpectedNumArgs =
7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
Assert(ExpectedNumArgs <= (int)CS.arg_size(),
"gc.statepoint too few arguments according to length fields", &CI);
// Check that the only uses of this gc.statepoint are gc.result or
// gc.relocate calls which are tied to this statepoint and thus part
// of the same statepoint sequence
for (const User *U : CI.users()) {
const CallInst *Call = dyn_cast<const CallInst>(U);
Assert(Call, "illegal use of statepoint token", &CI, U);
if (!Call) continue;
Assert(isa<GCRelocateInst>(Call) || isGCResult(Call),
"gc.result or gc.relocate are the only value uses"
"of a gc.statepoint",
&CI, U);
if (isGCResult(Call)) {
Assert(Call->getArgOperand(0) == &CI,
"gc.result connected to wrong gc.statepoint", &CI, Call);
} else if (isa<GCRelocateInst>(Call)) {
Assert(Call->getArgOperand(0) == &CI,
"gc.relocate connected to wrong gc.statepoint", &CI, Call);
}
}
// Note: It is legal for a single derived pointer to be listed multiple
// times. It's non-optimal, but it is legal. It can also happen after
// insertion if we strip a bitcast away.
// Note: It is really tempting to check that each base is relocated and
// that a derived pointer is never reused as a base pointer. This turns
// out to be problematic since optimizations run after safepoint insertion
// can recognize equality properties that the insertion logic doesn't know
// about. See example statepoint.ll in the verifier subdirectory
}
void Verifier::verifyFrameRecoverIndices() {
for (auto &Counts : FrameEscapeInfo) {
Function *F = Counts.first;
unsigned EscapedObjectCount = Counts.second.first;
unsigned MaxRecoveredIndex = Counts.second.second;
Assert(MaxRecoveredIndex <= EscapedObjectCount,
"all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function",
F);
}
}
static Instruction *getSuccPad(TerminatorInst *Terminator) {
BasicBlock *UnwindDest;
if (auto *II = dyn_cast<InvokeInst>(Terminator))
UnwindDest = II->getUnwindDest();
else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
UnwindDest = CSI->getUnwindDest();
else
UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
return UnwindDest->getFirstNonPHI();
}
void Verifier::verifySiblingFuncletUnwinds() {
SmallPtrSet<Instruction *, 8> Visited;
SmallPtrSet<Instruction *, 8> Active;
for (const auto &Pair : SiblingFuncletInfo) {
Instruction *PredPad = Pair.first;
if (Visited.count(PredPad))
continue;
Active.insert(PredPad);
TerminatorInst *Terminator = Pair.second;
do {
Instruction *SuccPad = getSuccPad(Terminator);
if (Active.count(SuccPad)) {
// Found a cycle; report error
Instruction *CyclePad = SuccPad;
SmallVector<Instruction *, 8> CycleNodes;
do {
CycleNodes.push_back(CyclePad);
TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
if (CycleTerminator != CyclePad)
CycleNodes.push_back(CycleTerminator);
CyclePad = getSuccPad(CycleTerminator);
} while (CyclePad != SuccPad);
Assert(false, "EH pads can't handle each other's exceptions",
ArrayRef<Instruction *>(CycleNodes));
}
// Don't re-walk a node we've already checked
if (!Visited.insert(SuccPad).second)
break;
// Walk to this successor if it has a map entry.
PredPad = SuccPad;
auto TermI = SiblingFuncletInfo.find(PredPad);
if (TermI == SiblingFuncletInfo.end())
break;
Terminator = TermI->second;
Active.insert(PredPad);
} while (true);
// Each node only has one successor, so we've walked all the active
// nodes' successors.
Active.clear();
}
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
// Check function arguments.
FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert(Context == &F.getContext(),
"Function context does not match Module context!", &F);
Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
Assert(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!", &F,
FT);
Assert(F.getReturnType()->isFirstClassType() ||
F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
"Functions cannot return aggregate values!", &F);
Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
"Invalid struct return type!", &F);
AttributeSet Attrs = F.getAttributes();
Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
"Attribute after last parameter!", &F);
// Check function attributes.
verifyFunctionAttrs(FT, Attrs, &F);
// On function declarations/definitions, we do not support the builtin
// attribute. We do not check this in VerifyFunctionAttrs since that is
// checking for Attributes that can/can not ever be on functions.
Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
"Attribute 'builtin' can only be applied to a callsite.", &F);
// Check that this function meets the restrictions on this calling convention.
// Sometimes varargs is used for perfectly forwarding thunks, so some of these
// restrictions can be lifted.
switch (F.getCallingConv()) {
default:
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::Intel_OCL_BI:
case CallingConv::PTX_Kernel:
case CallingConv::PTX_Device:
Assert(!F.isVarArg(), "Calling convention does not support varargs or "
"perfect forwarding!",
&F);
break;
}
bool isLLVMdotName = F.getName().size() >= 5 &&
F.getName().substr(0, 5) == "llvm.";
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (const Argument &Arg : F.args()) {
Assert(Arg.getType() == FT->getParamType(i),
"Argument value does not match function argument type!", &Arg,
FT->getParamType(i));
Assert(Arg.getType()->isFirstClassType(),
"Function arguments must have first-class types!", &Arg);
if (!isLLVMdotName) {
Assert(!Arg.getType()->isMetadataTy(),
"Function takes metadata but isn't an intrinsic", &Arg, &F);
Assert(!Arg.getType()->isTokenTy(),
"Function takes token but isn't an intrinsic", &Arg, &F);
}
// Check that swifterror argument is only used by loads and stores.
if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
verifySwiftErrorValue(&Arg);
}
++i;
}
if (!isLLVMdotName)
Assert(!F.getReturnType()->isTokenTy(),
"Functions returns a token but isn't an intrinsic", &F);
// Get the function metadata attachments.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F.getAllMetadata(MDs);
assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
verifyFunctionMetadata(MDs);
// Check validity of the personality function
if (F.hasPersonalityFn()) {
auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
if (Per)
Assert(Per->getParent() == F.getParent(),
"Referencing personality function in another module!",
&F, F.getParent(), Per, Per->getParent());
}
if (F.isMaterializable()) {
// Function has a body somewhere we can't see.
Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
MDs.empty() ? nullptr : MDs.front().second);
} else if (F.isDeclaration()) {
Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
"invalid linkage type for function declaration", &F);
Assert(MDs.empty(), "function without a body cannot have metadata", &F,
MDs.empty() ? nullptr : MDs.front().second);
Assert(!F.hasPersonalityFn(),
"Function declaration shouldn't have a personality routine", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
// Check the entry node
const BasicBlock *Entry = &F.getEntryBlock();
Assert(pred_empty(Entry),
"Entry block to function must not have predecessors!", Entry);
// The address of the entry block cannot be taken, unless it is dead.
if (Entry->hasAddressTaken()) {
Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
"blockaddress may not be used with the entry block!", Entry);
}
// Visit metadata attachments.
for (const auto &I : MDs) {
// Verify that the attachment is legal.
switch (I.first) {
default:
break;
case LLVMContext::MD_dbg:
Assert(isa<DISubprogram>(I.second),
"function !dbg attachment must be a subprogram", &F, I.second);
break;
}
// Verify the metadata itself.
visitMDNode(*I.second);
}
}
// If this function is actually an intrinsic, verify that it is only used in
// direct call/invokes, never having its "address taken".
// Only do this if the module is materialized, otherwise we don't have all the
// uses.
if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
const User *U;
if (F.hasAddressTaken(&U))
Assert(0, "Invalid user of intrinsic instruction!", U);
}
Assert(!F.hasDLLImportStorageClass() ||
(F.isDeclaration() && F.hasExternalLinkage()) ||
F.hasAvailableExternallyLinkage(),
"Function is marked as dllimport, but not external.", &F);
auto *N = F.getSubprogram();
if (!N)
return;
// Check that all !dbg attachments lead to back to N (or, at least, another
// subprogram that describes the same function).
//
// FIXME: Check this incrementally while visiting !dbg attachments.
// FIXME: Only check when N is the canonical subprogram for F.
SmallPtrSet<const MDNode *, 32> Seen;
for (auto &BB : F)
for (auto &I : BB) {
// Be careful about using DILocation here since we might be dealing with
// broken code (this is the Verifier after all).
DILocation *DL =
dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
if (!DL)
continue;
if (!Seen.insert(DL).second)
continue;
DILocalScope *Scope = DL->getInlinedAtScope();
if (Scope && !Seen.insert(Scope).second)
continue;
DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
// Scope and SP could be the same MDNode and we don't want to skip
// validation in that case
if (SP && ((Scope != SP) && !Seen.insert(SP).second))
continue;
// FIXME: Once N is canonical, check "SP == &N".
Assert(SP->describes(&F),
"!dbg attachment points at wrong subprogram for function", N, &F,
&I, DL, Scope, SP);
}
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
Assert(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!",
PN);
Assert(PN->getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!",
PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN->getNumIncomingValues());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
PN->getIncomingValue(i)));
std::sort(Values.begin(), Values.end());
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!",
PN, Values[i].first, Values[i].second, Values[i - 1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", PN,
Values[i].first, Preds[i]);
}
}
}
// Check that all instructions have their parent pointers set up correctly.
for (auto &I : BB)
{
Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
}
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) {
Assert(BI.getCondition()->getType()->isIntegerTy(1),
"Branch condition is not 'i1' type!", &BI, BI.getCondition());
}
visitTerminatorInst(BI);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType()->isVoidTy())
Assert(N == 0,
"Found return instr that returns non-void in Function of void "
"return type!",
&RI, F->getReturnType());
else
Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!",
&RI, F->getReturnType());
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
Type *SwitchTy = SI.getCondition()->getType();
SmallPtrSet<ConstantInt*, 32> Constants;
for (auto &Case : SI.cases()) {
Assert(Case.getCaseValue()->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
Assert(Constants.insert(Case.getCaseValue()).second,
"Duplicate integer as switch case", &SI, Case.getCaseValue());
}
visitTerminatorInst(SI);
}
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
Assert(BI.getAddress()->getType()->isPointerTy(),
"Indirectbr operand must have pointer type!", &BI);
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
Assert(BI.getDestination(i)->getType()->isLabelTy(),
"Indirectbr destinations must all have pointer type!", &BI);
visitTerminatorInst(BI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
SI.getOperand(2)),
"Invalid operands for select instruction!", &SI);
Assert(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"trunc source and destination must both be a vector or neither", &I);
Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"zext source and destination must both be a vector or neither", &I);
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"sext source and destination must both be a vector or neither", &I);
Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fptrunc source and destination must both be a vector or neither", &I);
Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fpext source and destination must both be a vector or neither", &I);
Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"UIToFP source and dest must both be vector or scalar", &I);
Assert(SrcTy->isIntOrIntVectorTy(),
"UIToFP source must be integer or integer vector", &I);
Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
&I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
Assert(SrcTy->isIntOrIntVectorTy(),
"SIToFP source must be integer or integer vector", &I);
Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
&I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"FPToUI source and dest must both be vector or scalar", &I);
Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
&I);
Assert(DestTy->isIntOrIntVectorTy(),
"FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"FPToSI source and dest must both be vector or scalar", &I);
Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
&I);
Assert(DestTy->isIntOrIntVectorTy(),
"FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert(SrcTy->getScalarType()->isPointerTy(),
"PtrToInt source must be pointer", &I);
Assert(DestTy->getScalarType()->isIntegerTy(),
"PtrToInt result must be integral", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
&I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
Assert(VSrc->getNumElements() == VDest->getNumElements(),
"PtrToInt Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert(SrcTy->getScalarType()->isIntegerTy(),
"IntToPtr source must be an integral", &I);
Assert(DestTy->getScalarType()->isPointerTy(),
"IntToPtr result must be a pointer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
&I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
Assert(VSrc->getNumElements() == VDest->getNumElements(),
"IntToPtr Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
Assert(
CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
"Invalid bitcast", &I);
visitInstruction(I);
}
void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
&I);
Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
&I);
Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
"AddrSpaceCast must be between different address spaces", &I);
if (SrcTy->isVectorTy())
Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
"AddrSpaceCast vector pointer number of elements mismatch", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert(&PN == &PN.getParent()->front() ||
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
// Check that a PHI doesn't yield a Token.
Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (Value *IncValue : PN.incoming_values()) {
Assert(PN.getType() == IncValue->getType(),
"PHI node operands are not the same type as the result!", &PN);
}
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::verifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
Assert(CS.getCalledValue()->getType()->isPointerTy(),
"Called function must be a pointer!", I);
PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert(FPTy->getElementType()->isFunctionTy(),
"Called function is not pointer to function type!", I);
Assert(FPTy->getElementType() == CS.getFunctionType(),
"Called function is not the same type as the call!", I);
FunctionType *FTy = CS.getFunctionType();
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert(CS.arg_size() >= FTy->getNumParams(),
"Called function requires more parameters than were provided!", I);
else
Assert(CS.arg_size() == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", I);
// Verify that all arguments to the call match the function type.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CS.getArgument(i), FTy->getParamType(i), I);
AttributeSet Attrs = CS.getAttributes();
Assert(verifyAttributeCount(Attrs, CS.arg_size()),
"Attribute after last parameter!", I);
// Verify call attributes.
verifyFunctionAttrs(FTy, Attrs, I);
// Conservatively check the inalloca argument.
// We have a bug if we can find that there is an underlying alloca without
// inalloca.
if (CS.hasInAllocaArgument()) {
Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
Assert(AI->isUsedWithInAlloca(),
"inalloca argument for call has mismatched alloca", AI, I);
}
// For each argument of the callsite, if it has the swifterror argument,
// make sure the underlying alloca has swifterror as well.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
Value *SwiftErrorArg = CS.getArgument(i);
auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets());
Assert(AI, "swifterror argument should come from alloca", AI, I);
if (AI)
Assert(AI->isSwiftError(),
"swifterror argument for call has mismatched alloca", AI, I);
}
if (FTy->isVarArg()) {
// FIXME? is 'nest' even legal here?
bool SawNest = false;
bool SawReturned = false;
for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
if (Attrs.hasAttribute(Idx, Attribute::Nest))
SawNest = true;
if (Attrs.hasAttribute(Idx, Attribute::Returned))
SawReturned = true;
}
// Check attributes on the varargs part.
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
Type *Ty = CS.getArgument(Idx-1)->getType();
verifyParameterAttrs(Attrs, Idx, Ty, false, I);
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
Assert(!SawNest, "More than one parameter has attribute nest!", I);
SawNest = true;
}
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
Assert(!SawReturned, "More than one parameter has attribute returned!",
I);
Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
"Incompatible argument and return types for 'returned' "
"attribute",
I);
SawReturned = true;
}
Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
"Attribute 'sret' cannot be used for vararg call arguments!", I);
if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
}
}
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (CS.getCalledFunction() == nullptr ||
!CS.getCalledFunction()->getName().startswith("llvm.")) {
for (Type *ParamTy : FTy->params()) {
Assert(!ParamTy->isMetadataTy(),
"Function has metadata parameter but isn't an intrinsic", I);
Assert(!ParamTy->isTokenTy(),
"Function has token parameter but isn't an intrinsic", I);
}
}
// Verify that indirect calls don't return tokens.
if (CS.getCalledFunction() == nullptr)
Assert(!FTy->getReturnType()->isTokenTy(),
"Return type cannot be token for indirect call!");
if (Function *F = CS.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicCallSite(ID, CS);
// Verify that a callsite has at most one "deopt", at most one "funclet" and
// at most one "gc-transition" operand bundle.
bool FoundDeoptBundle = false, FoundFuncletBundle = false,
FoundGCTransitionBundle = false;
for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
OperandBundleUse BU = CS.getOperandBundleAt(i);
uint32_t Tag = BU.getTagID();
if (Tag == LLVMContext::OB_deopt) {
Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
FoundDeoptBundle = true;
} else if (Tag == LLVMContext::OB_gc_transition) {
Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
I);
FoundGCTransitionBundle = true;
} else if (Tag == LLVMContext::OB_funclet) {
Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
FoundFuncletBundle = true;
Assert(BU.Inputs.size() == 1,
"Expected exactly one funclet bundle operand", I);
Assert(isa<FuncletPadInst>(BU.Inputs.front()),
"Funclet bundle operands should correspond to a FuncletPadInst",
I);
}
}
visitInstruction(*I);
}
/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
if (L == R)
return true;
PointerType *PL = dyn_cast<PointerType>(L);
PointerType *PR = dyn_cast<PointerType>(R);
if (!PL || !PR)
return false;
return PL->getAddressSpace() == PR->getAddressSpace();
}
static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
static const Attribute::AttrKind ABIAttrs[] = {
Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
Attribute::SwiftError};
AttrBuilder Copy;
for (auto AK : ABIAttrs) {
if (Attrs.hasAttribute(I + 1, AK))
Copy.addAttribute(AK);
}
if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
return Copy;
}
void Verifier::verifyMustTailCall(CallInst &CI) {
Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
// - The caller and callee prototypes must match. Pointer types of
// parameters or return types may differ in pointee type, but not
// address space.
Function *F = CI.getParent()->getParent();
FunctionType *CallerTy = F->getFunctionType();
FunctionType *CalleeTy = CI.getFunctionType();
Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
"cannot guarantee tail call due to mismatched parameter counts", &CI);
Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
"cannot guarantee tail call due to mismatched varargs", &CI);
Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
"cannot guarantee tail call due to mismatched return types", &CI);
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
Assert(
isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
"cannot guarantee tail call due to mismatched parameter types", &CI);
}
// - The calling conventions of the caller and callee must match.
Assert(F->getCallingConv() == CI.getCallingConv(),
"cannot guarantee tail call due to mismatched calling conv", &CI);
// - All ABI-impacting function attributes, such as sret, byval, inreg,
// returned, and inalloca, must match.
AttributeSet CallerAttrs = F->getAttributes();
AttributeSet CalleeAttrs = CI.getAttributes();
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
Assert(CallerABIAttrs == CalleeABIAttrs,
"cannot guarantee tail call due to mismatched ABI impacting "
"function attributes",
&CI, CI.getOperand(I));
}
// - The call must immediately precede a :ref:`ret <i_ret>` instruction,
// or a pointer bitcast followed by a ret instruction.
// - The ret instruction must return the (possibly bitcasted) value
// produced by the call or void.
Value *RetVal = &CI;
Instruction *Next = CI.getNextNode();
// Handle the optional bitcast.
if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
Assert(BI->getOperand(0) == RetVal,
"bitcast following musttail call must use the call", BI);
RetVal = BI;
Next = BI->getNextNode();
}
// Check the return.
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
&CI);
Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
"musttail call result must be returned", Ret);
}
void Verifier::visitCallInst(CallInst &CI) {
verifyCallSite(&CI);
if (CI.isMustTailCall())
verifyMustTailCall(CI);
}
void Verifier::visitInvokeInst(InvokeInst &II) {
verifyCallSite(&II);
// Verify that the first non-PHI instruction of the unwind destination is an
// exception handling instruction.
Assert(
II.getUnwindDest()->isEHPad(),
"The unwind destination does not have an exception handling instruction!",
&II);
visitTerminatorInst(II);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that integer arithmetic operators are only used with
// integral operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
Assert(B.getType()->isIntOrIntVectorTy(),
"Integer arithmetic operators only work with integral types!", &B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Integer arithmetic operators must have same type "
"for operands and result!",
&B);
break;
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
Assert(B.getType()->isFPOrFPVectorTy(),
"Floating-point arithmetic operators only work with "
"floating-point types!",
&B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Floating-point arithmetic operators must have same type "
"for operands and result!",
&B);
break;
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert(B.getType()->isIntOrIntVectorTy(),
"Logical operators only work with integral types!", &B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert(B.getType()->isIntOrIntVectorTy(),
"Shifts only work with integral types!", &B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
break;
default:
llvm_unreachable("Unknown BinaryOperator opcode!");
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst &IC) {
// Check that the operands are the same type
Type *Op0Ty = IC.getOperand(0)->getType();
Type *Op1Ty = IC.getOperand(1)->getType();
Assert(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
"Invalid operand types for ICmp instruction", &IC);
// Check that the predicate is valid.
Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
"Invalid predicate in ICmp instruction!", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst &FC) {
// Check that the operands are the same type
Type *Op0Ty = FC.getOperand(0)->getType();
Type *Op1Ty = FC.getOperand(1)->getType();
Assert(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert(Op0Ty->isFPOrFPVectorTy(),
"Invalid operand types for FCmp instruction", &FC);
// Check that the predicate is valid.
Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
"Invalid predicate in FCmp instruction!", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert(
ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getOperand(2)),
"Invalid shufflevector operands!", &SV);
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
Assert(isa<PointerType>(TargetTy),
"GEP base pointer is not a vector or a vector of pointers", &GEP);
Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert(GEP.getType()->getScalarType()->isPointerTy() &&
GEP.getResultElementType() == ElTy,
"GEP is not of right type for indices!", &GEP, ElTy);
if (GEP.getType()->isVectorTy()) {
// Additional checks for vector GEPs.
unsigned GEPWidth = GEP.getType()->getVectorNumElements();
if (GEP.getPointerOperandType()->isVectorTy())
Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
"Vector GEP result width doesn't match operand's", &GEP);
for (Value *Idx : Idxs) {
Type *IndexTy = Idx->getType();
if (IndexTy->isVectorTy()) {
unsigned IndexWidth = IndexTy->getVectorNumElements();
Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
}
Assert(IndexTy->getScalarType()->isIntegerTy(),
"All GEP indices should be of integer type");
}
}
visitInstruction(GEP);
}
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
void Verifier::visitRangeMetadata(Instruction& I,
MDNode* Range, Type* Ty) {
assert(Range &&
Range == I.getMetadata(LLVMContext::MD_range) &&
"precondition violation");
unsigned NumOperands = Range->getNumOperands();
Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
unsigned NumRanges = NumOperands / 2;
Assert(NumRanges >= 1, "It should have at least one range!", Range);
ConstantRange LastRange(1); // Dummy initial value
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Low =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
Assert(Low, "The lower limit must be an integer!", Low);
ConstantInt *High =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
Assert(High, "The upper limit must be an integer!", High);
Assert(High->getType() == Low->getType() && High->getType() == Ty,
"Range types must match instruction type!", &I);
APInt HighV = High->getValue();
APInt LowV = Low->getValue();
ConstantRange CurRange(LowV, HighV);
Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
"Range must not be empty!", Range);
if (i != 0) {
Assert(CurRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
Range);
Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
Range);
}
LastRange = ConstantRange(LowV, HighV);
}
if (NumRanges > 2) {
APInt FirstLow =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
APInt FirstHigh =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
ConstantRange FirstRange(FirstLow, FirstHigh);
Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
Range);
}
}
void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
const Instruction *I) {
unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
Assert(!(Size & (Size - 1)),
"atomic memory access' operand must have a power-of-two size", Ty, I);
}
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert(PTy, "Load operand must be a pointer.", &LI);
Type *ElTy = LI.getType();
Assert(LI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &LI);
if (LI.isAtomic()) {
Assert(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease,
"Load cannot have Release ordering", &LI);
Assert(LI.getAlignment() != 0,
"Atomic load must specify explicit alignment", &LI);
Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy(),
"atomic load operand must have integer, pointer, or floating point "
"type!",
ElTy, &LI);
checkAtomicMemAccessSize(M, ElTy, &LI);
} else {
Assert(LI.getSynchScope() == CrossThread,
"Non-atomic load cannot have SynchronizationScope specified", &LI);
}
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
Assert(PTy, "Store operand must be a pointer.", &SI);
Type *ElTy = PTy->getElementType();
Assert(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!", &SI, ElTy);
Assert(SI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &SI);
if (SI.isAtomic()) {
Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease,
"Store cannot have Acquire ordering", &SI);
Assert(SI.getAlignment() != 0,
"Atomic store must specify explicit alignment", &SI);
Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy(),
"atomic store operand must have integer, pointer, or floating point "
"type!",
ElTy, &SI);
checkAtomicMemAccessSize(M, ElTy, &SI);
} else {
Assert(SI.getSynchScope() == CrossThread,
"Non-atomic store cannot have SynchronizationScope specified", &SI);
}
visitInstruction(SI);
}
/// Check that SwiftErrorVal is used as a swifterror argument in CS.
void Verifier::verifySwiftErrorCallSite(CallSite CS,
const Value *SwiftErrorVal) {
unsigned Idx = 0;
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I, ++Idx) {
if (*I == SwiftErrorVal) {
Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),
"swifterror value when used in a callsite should be marked "
"with swifterror attribute",
SwiftErrorVal, CS);
}
}
}
void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
// Check that swifterror value is only used by loads, stores, or as
// a swifterror argument.
for (const User *U : SwiftErrorVal->users()) {
Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
isa<InvokeInst>(U),
"swifterror value can only be loaded and stored from, or "
"as a swifterror argument!",
SwiftErrorVal, U);
// If it is used by a store, check it is the second operand.
if (auto StoreI = dyn_cast<StoreInst>(U))
Assert(StoreI->getOperand(1) == SwiftErrorVal,
"swifterror value should be the second operand when used "
"by stores", SwiftErrorVal, U);
if (auto CallI = dyn_cast<CallInst>(U))
verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
if (auto II = dyn_cast<InvokeInst>(U))
verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
}
}
void Verifier::visitAllocaInst(AllocaInst &AI) {
SmallPtrSet<Type*, 4> Visited;
PointerType *PTy = AI.getType();
Assert(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
&AI);
Assert(AI.getAllocatedType()->isSized(&Visited),
"Cannot allocate unsized type", &AI);
Assert(AI.getArraySize()->getType()->isIntegerTy(),
"Alloca array size must have integer type", &AI);
Assert(AI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &AI);
if (AI.isSwiftError()) {
verifySwiftErrorValue(&AI);
}
visitInstruction(AI);
}
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
// FIXME: more conditions???
Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
"cmpxchg instructions failure argument shall be no stronger than the "
"success argument",
&CXI);
Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
"cmpxchg failure ordering cannot include release semantics", &CXI);
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
Type *ElTy = PTy->getElementType();
Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
"cmpxchg operand must have integer or pointer type",
ElTy, &CXI);
checkAtomicMemAccessSize(M, ElTy, &CXI);
Assert(ElTy == CXI.getOperand(1)->getType(),
"Expected value type does not match pointer operand type!", &CXI,
ElTy);
Assert(ElTy == CXI.getOperand(2)->getType(),
"Stored value type does not match pointer operand type!", &CXI, ElTy);
visitInstruction(CXI);
}
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
"atomicrmw instructions must be atomic.", &RMWI);
Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
"atomicrmw instructions cannot be unordered.", &RMWI);
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
Type *ElTy = PTy->getElementType();
Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
&RMWI, ElTy);
checkAtomicMemAccessSize(M, ElTy, &RMWI);
Assert(ElTy == RMWI.getOperand(1)->getType(),
"Argument value type does not match pointer operand type!", &RMWI,
ElTy);
Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
"Invalid binary operation!", &RMWI);
visitInstruction(RMWI);
}
void Verifier::visitFenceInst(FenceInst &FI) {
const AtomicOrdering Ordering = FI.getOrdering();
Assert(Ordering == AtomicOrdering::Acquire ||
Ordering == AtomicOrdering::Release ||
Ordering == AtomicOrdering::AcquireRelease ||
Ordering == AtomicOrdering::SequentiallyConsistent,
"fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.",
&FI);
visitInstruction(FI);
}
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
EVI.getIndices()) == EVI.getType(),
"Invalid ExtractValueInst operands!", &EVI);
visitInstruction(EVI);
}
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
IVI.getIndices()) ==
IVI.getOperand(1)->getType(),
"Invalid InsertValueInst operands!", &IVI);
visitInstruction(IVI);
}
static Value *getParentPad(Value *EHPad) {
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
return FPI->getParentPad();
return cast<CatchSwitchInst>(EHPad)->getParentPad();
}
void Verifier::visitEHPadPredecessors(Instruction &I) {
assert(I.isEHPad());
BasicBlock *BB = I.getParent();
Function *F = BB->getParent();
Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
// The landingpad instruction defines its parent as a landing pad block. The
// landing pad block may be branched to only by the unwind edge of an
// invoke.
for (BasicBlock *PredBB : predecessors(BB)) {
const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
"Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.",
LPI);
}
return;
}
if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
if (!pred_empty(BB))
Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
"Block containg CatchPadInst must be jumped to "
"only by its catchswitch.",
CPI);
Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
"Catchswitch cannot unwind to one of its catchpads",
CPI->getCatchSwitch(), CPI);
return;
}
// Verify that each pred has a legal terminator with a legal to/from EH
// pad relationship.
Instruction *ToPad = &I;
Value *ToPadParent = getParentPad(ToPad);
for (BasicBlock *PredBB : predecessors(BB)) {
TerminatorInst *TI = PredBB->getTerminator();
Value *FromPad;
if (auto *II = dyn_cast<InvokeInst>(TI)) {
Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
"EH pad must be jumped to via an unwind edge", ToPad, II);
if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
FromPad = Bundle->Inputs[0];
else
FromPad = ConstantTokenNone::get(II->getContext());
} else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
FromPad = CRI->getOperand(0);
Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
FromPad = CSI;
} else {
Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
}
// The edge may exit from zero or more nested pads.
SmallSet<Value *, 8> Seen;
for (;; FromPad = getParentPad(FromPad)) {
Assert(FromPad != ToPad,
"EH pad cannot handle exceptions raised within it", FromPad, TI);
if (FromPad == ToPadParent) {
// This is a legal unwind edge.
break;
}
Assert(!isa<ConstantTokenNone>(FromPad),
"A single unwind edge may only enter one EH pad", TI);
Assert(Seen.insert(FromPad).second,
"EH pad jumps through a cycle of pads", FromPad);
}
}
}
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
// The landingpad instruction is ill-formed if it doesn't have any clauses and
// isn't a cleanup.
Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
visitEHPadPredecessors(LPI);
if (!LandingPadResultTy)
LandingPadResultTy = LPI.getType();
else
Assert(LandingPadResultTy == LPI.getType(),
"The landingpad instruction should have a consistent result type "
"inside a function.",
&LPI);
Function *F = LPI.getParent()->getParent();
Assert(F->hasPersonalityFn(),
"LandingPadInst needs to be in a function with a personality.", &LPI);
// The landingpad instruction must be the first non-PHI instruction in the
// block.
Assert(LPI.getParent()->getLandingPadInst() == &LPI,
"LandingPadInst not the first non-PHI instruction in the block.",
&LPI);
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
Constant *Clause = LPI.getClause(i);
if (LPI.isCatch(i)) {
Assert(isa<PointerType>(Clause->getType()),
"Catch operand does not have pointer type!", &LPI);
} else {
Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
"Filter operand is not an array of constants!", &LPI);
}
}
visitInstruction(LPI);
}
void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
BasicBlock *BB = CPI.getParent();
Function *F = BB->getParent();
Assert(F->hasPersonalityFn(),
"CatchPadInst needs to be in a function with a personality.", &CPI);
Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
"CatchPadInst needs to be directly nested in a CatchSwitchInst.",
CPI.getParentPad());
// The catchpad instruction must be the first non-PHI instruction in the
// block.
Assert(BB->getFirstNonPHI() == &CPI,
"CatchPadInst not the first non-PHI instruction in the block.", &CPI);
visitEHPadPredecessors(CPI);
visitFuncletPadInst(CPI);
}
void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
"CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
CatchReturn.getOperand(0));
visitTerminatorInst(CatchReturn);
}
void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
BasicBlock *BB = CPI.getParent();
Function *F = BB->getParent();
Assert(F->hasPersonalityFn(),
"CleanupPadInst needs to be in a function with a personality.", &CPI);
// The cleanuppad instruction must be the first non-PHI instruction in the
// block.
Assert(BB->getFirstNonPHI() == &CPI,
"CleanupPadInst not the first non-PHI instruction in the block.",
&CPI);
auto *ParentPad = CPI.getParentPad();
Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
"CleanupPadInst has an invalid parent.", &CPI);
visitEHPadPredecessors(CPI);
visitFuncletPadInst(CPI);
}
void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
User *FirstUser = nullptr;
Value *FirstUnwindPad = nullptr;
SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
SmallSet<FuncletPadInst *, 8> Seen;
while (!Worklist.empty()) {
FuncletPadInst *CurrentPad = Worklist.pop_back_val();
Assert(Seen.insert(CurrentPad).second,
"FuncletPadInst must not be nested within itself", CurrentPad);
Value *UnresolvedAncestorPad = nullptr;
for (User *U : CurrentPad->users()) {
BasicBlock *UnwindDest;
if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
UnwindDest = CRI->getUnwindDest();
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
// We allow catchswitch unwind to caller to nest
// within an outer pad that unwinds somewhere else,
// because catchswitch doesn't have a nounwind variant.
// See e.g. SimplifyCFGOpt::SimplifyUnreachable.
if (CSI->unwindsToCaller())
continue;
UnwindDest = CSI->getUnwindDest();
} else if (auto *II = dyn_cast<InvokeInst>(U)) {
UnwindDest = II->getUnwindDest();
} else if (isa<CallInst>(U)) {
// Calls which don't unwind may be found inside funclet
// pads that unwind somewhere else. We don't *require*
// such calls to be annotated nounwind.
continue;
} else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
// The unwind dest for a cleanup can only be found by
// recursive search. Add it to the worklist, and we'll
// search for its first use that determines where it unwinds.
Worklist.push_back(CPI);
continue;
} else {
Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
continue;
}
Value *UnwindPad;
bool ExitsFPI;
if (UnwindDest) {
UnwindPad = UnwindDest->getFirstNonPHI();
if (!cast<Instruction>(UnwindPad)->isEHPad())
continue;
Value *UnwindParent = getParentPad(UnwindPad);
// Ignore unwind edges that don't exit CurrentPad.
if (UnwindParent == CurrentPad)
continue;
// Determine whether the original funclet pad is exited,
// and if we are scanning nested pads determine how many
// of them are exited so we can stop searching their
// children.
Value *ExitedPad = CurrentPad;
ExitsFPI = false;
do {
if (ExitedPad == &FPI) {
ExitsFPI = true;
// Now we can resolve any ancestors of CurrentPad up to
// FPI, but not including FPI since we need to make sure
// to check all direct users of FPI for consistency.
UnresolvedAncestorPad = &FPI;
break;
}
Value *ExitedParent = getParentPad(ExitedPad);
if (ExitedParent == UnwindParent) {
// ExitedPad is the ancestor-most pad which this unwind
// edge exits, so we can resolve up to it, meaning that
// ExitedParent is the first ancestor still unresolved.
UnresolvedAncestorPad = ExitedParent;
break;
}
ExitedPad = ExitedParent;
} while (!isa<ConstantTokenNone>(ExitedPad));
} else {
// Unwinding to caller exits all pads.
UnwindPad = ConstantTokenNone::get(FPI.getContext());
ExitsFPI = true;
UnresolvedAncestorPad = &FPI;
}
if (ExitsFPI) {
// This unwind edge exits FPI. Make sure it agrees with other
// such edges.
if (FirstUser) {
Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
"pad must have the same unwind "
"dest",
&FPI, U, FirstUser);
} else {
FirstUser = U;
FirstUnwindPad = UnwindPad;
// Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
getParentPad(UnwindPad) == getParentPad(&FPI))
SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
}
}
// Make sure we visit all uses of FPI, but for nested pads stop as
// soon as we know where they unwind to.
if (CurrentPad != &FPI)
break;
}
if (UnresolvedAncestorPad) {
if (CurrentPad == UnresolvedAncestorPad) {
// When CurrentPad is FPI itself, we don't mark it as resolved even if
// we've found an unwind edge that exits it, because we need to verify
// all direct uses of FPI.
assert(CurrentPad == &FPI);
continue;
}
// Pop off the worklist any nested pads that we've found an unwind
// destination for. The pads on the worklist are the uncles,
// great-uncles, etc. of CurrentPad. We've found an unwind destination
// for all ancestors of CurrentPad up to but not including
// UnresolvedAncestorPad.
Value *ResolvedPad = CurrentPad;
while (!Worklist.empty()) {
Value *UnclePad = Worklist.back();
Value *AncestorPad = getParentPad(UnclePad);
// Walk ResolvedPad up the ancestor list until we either find the
// uncle's parent or the last resolved ancestor.
while (ResolvedPad != AncestorPad) {
Value *ResolvedParent = getParentPad(ResolvedPad);
if (ResolvedParent == UnresolvedAncestorPad) {
break;
}
ResolvedPad = ResolvedParent;
}
// If the resolved ancestor search didn't find the uncle's parent,
// then the uncle is not yet resolved.
if (ResolvedPad != AncestorPad)
break;
// This uncle is resolved, so pop it from the worklist.
Worklist.pop_back();
}
}
}
if (FirstUnwindPad) {
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
Value *SwitchUnwindPad;
if (SwitchUnwindDest)
SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
else
SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
Assert(SwitchUnwindPad == FirstUnwindPad,
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch",
&FPI, FirstUser, CatchSwitch);
}
}
visitInstruction(FPI);
}
void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
BasicBlock *BB = CatchSwitch.getParent();
Function *F = BB->getParent();
Assert(F->hasPersonalityFn(),
"CatchSwitchInst needs to be in a function with a personality.",
&CatchSwitch);
// The catchswitch instruction must be the first non-PHI instruction in the
// block.
Assert(BB->getFirstNonPHI() == &CatchSwitch,
"CatchSwitchInst not the first non-PHI instruction in the block.",
&CatchSwitch);
auto *ParentPad = CatchSwitch.getParentPad();
Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
"CatchSwitchInst has an invalid parent.", ParentPad);
if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
Instruction *I = UnwindDest->getFirstNonPHI();
Assert(I->isEHPad() && !isa<LandingPadInst>(I),
"CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.",
&CatchSwitch);
// Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
if (getParentPad(I) == ParentPad)
SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
}
Assert(CatchSwitch.getNumHandlers() != 0,
"CatchSwitchInst cannot have empty handler list", &CatchSwitch);
for (BasicBlock *Handler : CatchSwitch.handlers()) {
Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
"CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
}
visitEHPadPredecessors(CatchSwitch);
visitTerminatorInst(CatchSwitch);
}
void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
"CleanupReturnInst needs to be provided a CleanupPad", &CRI,
CRI.getOperand(0));
if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
Instruction *I = UnwindDest->getFirstNonPHI();
Assert(I->isEHPad() && !isa<LandingPadInst>(I),
"CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.",
&CRI);
}
visitTerminatorInst(CRI);
}
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
Instruction *Op = cast<Instruction>(I.getOperand(i));
// If the we have an invalid invoke, don't try to compute the dominance.
// We already reject it in the invoke specific checks and the dominance
// computation doesn't handle multiple edges.
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
if (II->getNormalDest() == II->getUnwindDest())
return;
}
// Quick check whether the def has already been encountered in the same block.
// PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
// uses are defined to happen on the incoming edge, not at the instruction.
//
// FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
// wrapping an SSA value, assert that we've already encountered it. See
// related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
return;
const Use &U = I.getOperandUse(i);
Assert(DT.dominates(Op, U),
"Instruction does not dominate all uses!", Op, &I);
}
void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I);
Assert(isa<LoadInst>(I),
"dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I);
Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
"take one operand!", &I);
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
"dereferenceable_or_null metadata value must be an i64!", &I);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (User *U : I.users()) {
Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
"Only PHI nodes may reference their own value!", &I);
}
}
// Check that void typed values don't have names
Assert(!I.getType()->isVoidTy() || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
"Instruction returns a non-scalar type!", &I);
// Check that the instruction doesn't produce metadata. Calls are already
// checked against the callee type.
Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
"Invalid use of metadata!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (Use &U : I.uses()) {
if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
Assert(Used->getParent() != nullptr,
"Instruction referencing"
" instruction not embedded in a basic block!",
&I, Used);
else {
CheckFailed("Use of instruction is not an instruction!", U);
return;
}
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
Assert(0, "Instruction operands must be first-class values!", &I);
}
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert(
!F->isIntrinsic() ||
i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
"Cannot take the address of an intrinsic!", &I);
Assert(
!F->isIntrinsic() || isa<CallInst>(I) ||
F->getIntrinsicID() == Intrinsic::donothing ||
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
"Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint",
&I);
Assert(F->getParent() == M, "Referencing function in another module!",
&I, M, F, F->getParent());
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
} else if (isa<Instruction>(I.getOperand(i))) {
verifyDominatesUse(I, i);
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert((i + 1 == e && isa<CallInst>(I)) ||
(i + 3 == e && isa<InvokeInst>(I)),
"Cannot take the address of an inline asm!", &I);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
if (CE->getType()->isPtrOrPtrVectorTy()) {
// If we have a ConstantExpr pointer, we need to see if it came from an
// illegal bitcast (inttoptr <constant int> )
visitConstantExprsRecursively(CE);
}
}
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
Assert(I.getType()->isFPOrFPVectorTy(),
"fpmath requires a floating point result!", &I);
Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
if (ConstantFP *CFP0 =
mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
APFloat Accuracy = CFP0->getValueAPF();
Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I);
} else {
Assert(false, "invalid fpmath accuracy!", &I);
}
}
if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
"Ranges are only for loads, calls and invokes!", &I);
visitRangeMetadata(I, Range, I.getType());
}
if (I.getMetadata(LLVMContext::MD_nonnull)) {
Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
&I);
Assert(isa<LoadInst>(I),
"nonnull applies only to load instructions, use attributes"
" for calls or invokes",
&I);
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
visitDereferenceableMetadata(I, MD);
if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
visitDereferenceableMetadata(I, MD);
if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
&I);
Assert(isa<LoadInst>(I), "align applies only to load instructions, "
"use attributes for calls or invokes", &I);
Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
Assert(CI && CI->getType()->isIntegerTy(64),
"align metadata value must be an i64!", &I);
uint64_t Align = CI->getZExtValue();
Assert(isPowerOf2_64(Align),
"align metadata value must be a power of 2!", &I);
Assert(Align <= Value::MaximumAlignment,
"alignment is larger that implementation defined limit", &I);
}
if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
visitMDNode(*N);
}
InstsInThisBlock.insert(&I);
}
/// Verify that the specified type (which comes from an intrinsic argument or
/// return value) matches the type constraints specified by the .td file (e.g.
/// an "any integer" argument really is an integer).
///
/// This returns true on error but does not print a message.
bool Verifier::verifyIntrinsicType(Type *Ty,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type*> &ArgTys) {
using namespace Intrinsic;
// If we ran out of descriptors, there are too many arguments.
if (Infos.empty()) return true;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return !Ty->isVoidTy();
case IITDescriptor::VarArg: return true;
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
case IITDescriptor::Token: return !Ty->isTokenTy();
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
case IITDescriptor::Half: return !Ty->isHalfTy();
case IITDescriptor::Float: return !Ty->isFloatTy();
case IITDescriptor::Double: return !Ty->isDoubleTy();
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
case IITDescriptor::Vector: {
VectorType *VT = dyn_cast<VectorType>(Ty);
return !VT || VT->getNumElements() != D.Vector_Width ||
verifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
}
case IITDescriptor::Pointer: {
PointerType *PT = dyn_cast<PointerType>(Ty);
return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
verifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
}
case IITDescriptor::Struct: {
StructType *ST = dyn_cast<StructType>(Ty);
if (!ST || ST->getNumElements() != D.Struct_NumElements)
return true;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
if (verifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
return true;
return false;
}
case IITDescriptor::Argument:
// Two cases here - If this is the second occurrence of an argument, verify
// that the later instance matches the previous instance.
if (D.getArgumentNumber() < ArgTys.size())
return Ty != ArgTys[D.getArgumentNumber()];
// Otherwise, if this is the first instance of an argument, record it and
// verify the "Any" kind.
assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
ArgTys.push_back(Ty);
switch (D.getArgumentKind()) {
case IITDescriptor::AK_Any: return false; // Success
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
}
llvm_unreachable("all argument kinds not covered");
case IITDescriptor::ExtendArgument: {
// This may only be used when referring to a previous vector argument.
if (D.getArgumentNumber() >= ArgTys.size())
return true;
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getExtendedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
else
return true;
return Ty != NewTy;
}
case IITDescriptor::TruncArgument: {
// This may only be used when referring to a previous vector argument.
if (D.getArgumentNumber() >= ArgTys.size())
return true;
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getTruncatedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
else
return true;
return Ty != NewTy;
}
case IITDescriptor::HalfVecArgument:
// This may only be used when referring to a previous vector argument.
return D.getArgumentNumber() >= ArgTys.size() ||
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
case IITDescriptor::SameVecWidthArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return true;
VectorType * ReferenceType =
dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
if (!ThisArgType || !ReferenceType ||
(ReferenceType->getVectorNumElements() !=
ThisArgType->getVectorNumElements()))
return true;
return verifyIntrinsicType(ThisArgType->getVectorElementType(),
Infos, ArgTys);
}
case IITDescriptor::PtrToArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return true;
Type * ReferenceType = ArgTys[D.getArgumentNumber()];
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
}
case IITDescriptor::VecOfPtrsToElt: {
if (D.getArgumentNumber() >= ArgTys.size())
return true;
VectorType * ReferenceType =
dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType ||
(ReferenceType->getVectorNumElements() !=
ThisArgVecTy->getVectorNumElements()))
return true;
PointerType *ThisArgEltTy =
dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
if (!ThisArgEltTy)
return true;
return ThisArgEltTy->getElementType() !=
ReferenceType->getVectorElementType();
}
}
llvm_unreachable("unhandled");
}
/// Verify if the intrinsic has variable arguments. This method is intended to
/// be called after all the fixed arguments have been verified first.
///
/// This method returns true on error and does not print an error message.
bool
Verifier::verifyIntrinsicIsVarArg(bool isVarArg,
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
using namespace Intrinsic;
// If there are no descriptors left, then it can't be a vararg.
if (Infos.empty())
return isVarArg;
// There should be only one descriptor remaining at this point.
if (Infos.size() != 1)
return true;
// Check and verify the descriptor.
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
if (D.Kind == IITDescriptor::VarArg)
return !isVarArg;
return true;
}
/// Allow intrinsics to be verified in different ways.
void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
Function *IF = CS.getCalledFunction();
Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
// Verify that the intrinsic prototype lines up with what the .td files
// describe.
FunctionType *IFTy = IF->getFunctionType();
bool IsVarArg = IFTy->isVarArg();
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
SmallVector<Type *, 4> ArgTys;
Assert(!verifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
"Intrinsic has incorrect return type!", IF);
for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
Assert(!verifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
"Intrinsic has incorrect argument type!", IF);
// Verify if the intrinsic call matches the vararg property.
if (IsVarArg)
Assert(!verifyIntrinsicIsVarArg(IsVarArg, TableRef),
"Intrinsic was not defined with variable arguments!", IF);
else
Assert(!verifyIntrinsicIsVarArg(IsVarArg, TableRef),
"Callsite was not defined with variable arguments!", IF);
// All descriptors should be absorbed by now.
Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
// Now that we have the intrinsic ID and the actual argument types (and we
// know they are legal for the intrinsic!) get the intrinsic name through the
// usual means. This allows us to verify the mangling of argument types into
// the name.
const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
Assert(ExpectedName == IF->getName(),
"Intrinsic name not mangled correctly for type arguments! "
"Should be: " +
ExpectedName,
IF);
// If the intrinsic takes MDNode arguments, verify that they are either global
// or are local to *this* function.
for (Value *V : CS.args())
if (auto *MD = dyn_cast<MetadataAsValue>(V))
visitMetadataAsValue(*MD, CS.getCaller());
switch (ID) {
default:
break;
case Intrinsic::ctlz: // llvm.ctlz
case Intrinsic::cttz: // llvm.cttz
Assert(isa<ConstantInt>(CS.getArgOperand(1)),
"is_zero_undef argument of bit counting intrinsics must be a "
"constant int",
CS);
break;
case Intrinsic::dbg_declare: // llvm.dbg.declare
Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
"invalid llvm.dbg.declare intrinsic call 1", CS);
visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
break;
case Intrinsic::dbg_value: // llvm.dbg.value
visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset: {
ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
Assert(AlignCI,
"alignment argument of memory intrinsics must be a constant int",
CS);
const APInt &AlignVal = AlignCI->getValue();
Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
"alignment argument of memory intrinsics must be a power of 2", CS);
Assert(isa<ConstantInt>(CS.getArgOperand(4)),
"isvolatile argument of memory intrinsics must be a constant int",
CS);
break;
}
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread:
if (ID == Intrinsic::gcroot) {
AllocaInst *AI =
dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
Assert(isa<Constant>(CS.getArgOperand(1)),
"llvm.gcroot parameter #2 must be a constant.", CS);
if (!AI->getAllocatedType()->isPointerTy()) {
Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
"llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.",
CS);
}
}
Assert(CS.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", CS);
break;
case Intrinsic::init_trampoline:
Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
"llvm.init_trampoline parameter #2 must resolve to a function.",
CS);
break;
case Intrinsic::prefetch:
Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) &&
cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
"invalid arguments to llvm.prefetch", CS);
break;
case Intrinsic::stackprotector:
Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
"llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
Assert(isa<ConstantInt>(CS.getArgOperand(0)),
"size argument of memory use markers must be a constant integer",
CS);
break;
case Intrinsic::invariant_end:
Assert(isa<ConstantInt>(CS.getArgOperand(1)),
"llvm.invariant.end parameter #2 must be a constant integer", CS);
break;
case Intrinsic::localescape: {
BasicBlock *BB = CS.getParent();
Assert(BB == &BB->getParent()->front(),
"llvm.localescape used outside of entry block", CS);
Assert(!SawFrameEscape,
"multiple calls to llvm.localescape in one function", CS);
for (Value *Arg : CS.args()) {
if (isa<ConstantPointerNull>(Arg))
continue; // Null values are allowed as placeholders.
auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
Assert(AI && AI->isStaticAlloca(),
"llvm.localescape only accepts static allocas", CS);
}
FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
SawFrameEscape = true;
break;
}
case Intrinsic::localrecover: {
Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
Function *Fn = dyn_cast<Function>(FnArg);
Assert(Fn && !Fn->isDeclaration(),
"llvm.localrecover first "
"argument must be function defined in this module",
CS);
auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
CS);
auto &Entry = FrameEscapeInfo[Fn];
Entry.second = unsigned(
std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
break;
}
case Intrinsic::experimental_gc_statepoint:
Assert(!CS.isInlineAsm(),
"gc.statepoint support for inline assembly unimplemented", CS);
Assert(CS.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", CS);
verifyStatepoint(CS);
break;
case Intrinsic::experimental_gc_result: {
Assert(CS.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", CS);
// Are we tied to a statepoint properly?
CallSite StatepointCS(CS.getArgOperand(0));
const Function *StatepointFn =
StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
Assert(StatepointFn && StatepointFn->isDeclaration() &&
StatepointFn->getIntrinsicID() ==
Intrinsic::experimental_gc_statepoint,
"gc.result operand #1 must be from a statepoint", CS,
CS.getArgOperand(0));
// Assert that result type matches wrapped callee.
const Value *Target = StatepointCS.getArgument(2);
auto *PT = cast<PointerType>(Target->getType());
auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
Assert(CS.getType() == TargetFuncType->getReturnType(),
"gc.result result type does not match wrapped callee", CS);
break;
}
case Intrinsic::experimental_gc_relocate: {
Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
Assert(isa<PointerType>(CS.getType()->getScalarType()),
"gc.relocate must return a pointer or a vector of pointers", CS);
// Check that this relocate is correctly tied to the statepoint
// This is case for relocate on the unwinding path of an invoke statepoint
if (LandingPadInst *LandingPad =
dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
const BasicBlock *InvokeBB =
LandingPad->getParent()->getUniquePredecessor();
// Landingpad relocates should have only one predecessor with invoke
// statepoint terminator
Assert(InvokeBB, "safepoints should have unique landingpads",
LandingPad->getParent());
Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
InvokeBB);
Assert(isStatepoint(InvokeBB->getTerminator()),
"gc relocate should be linked to a statepoint", InvokeBB);
}
else {
// In all other cases relocate should be tied to the statepoint directly.
// This covers relocates on a normal return path of invoke statepoint and
// relocates of a call statepoint.
auto Token = CS.getArgOperand(0);
Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
"gc relocate is incorrectly tied to the statepoint", CS, Token);
}
// Verify rest of the relocate arguments.
ImmutableCallSite StatepointCS(
cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
// Both the base and derived must be piped through the safepoint.
Value* Base = CS.getArgOperand(1);
Assert(isa<ConstantInt>(Base),
"gc.relocate operand #2 must be integer offset", CS);
Value* Derived = CS.getArgOperand(2);
Assert(isa<ConstantInt>(Derived),
"gc.relocate operand #3 must be integer offset", CS);
const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
// Check the bounds
Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
"gc.relocate: statepoint base index out of bounds", CS);
Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
"gc.relocate: statepoint derived index out of bounds", CS);
// Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
// section of the statepoint's argument.
Assert(StatepointCS.arg_size() > 0,
"gc.statepoint: insufficient arguments");
Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
"gc.statement: number of call arguments must be constant integer");
const unsigned NumCallArgs =
cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
Assert(StatepointCS.arg_size() > NumCallArgs + 5,
"gc.statepoint: mismatch in number of call arguments");
Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
"gc.statepoint: number of transition arguments must be "
"a constant integer");
const int NumTransitionArgs =
cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
->getZExtValue();
const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
"gc.statepoint: number of deoptimization arguments must be "
"a constant integer");
const int NumDeoptArgs =
cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
->getZExtValue();
const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
const int GCParamArgsEnd = StatepointCS.arg_size();
Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
"gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call",
CS);
Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
"gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call",
CS);
// Relocated value must be either a pointer type or vector-of-pointer type,
// but gc_relocate does not need to return the same pointer type as the
// relocated pointer. It can be casted to the correct type later if it's
// desired. However, they must have the same address space and 'vectorness'
GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
"gc.relocate: relocated value must be a gc pointer", CS);
auto ResultType = CS.getType();
auto DerivedType = Relocate.getDerivedPtr()->getType();
Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
"gc.relocate: vector relocates to vector and pointer to pointer",
CS);
Assert(
ResultType->getPointerAddressSpace() ==
DerivedType->getPointerAddressSpace(),
"gc.relocate: relocating a pointer shouldn't change its address space",
CS);
break;
}
case Intrinsic::eh_exceptioncode:
case Intrinsic::eh_exceptionpointer: {
Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
"eh.exceptionpointer argument must be a catchpad", CS);
break;
}
case Intrinsic::masked_load: {
Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
Value *Ptr = CS.getArgOperand(0);
//Value *Alignment = CS.getArgOperand(1);
Value *Mask = CS.getArgOperand(2);
Value *PassThru = CS.getArgOperand(3);
Assert(Mask->getType()->isVectorTy(),
"masked_load: mask must be vector", CS);
// DataTy is the overloaded type
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
Assert(DataTy == CS.getType(),
"masked_load: return must match pointer type", CS);
Assert(PassThru->getType() == DataTy,
"masked_load: pass through and data type must match", CS);
Assert(Mask->getType()->getVectorNumElements() ==
DataTy->getVectorNumElements(),
"masked_load: vector mask must be same length as data", CS);
break;
}
case Intrinsic::masked_store: {
Value *Val = CS.getArgOperand(0);
Value *Ptr = CS.getArgOperand(1);
//Value *Alignment = CS.getArgOperand(2);
Value *Mask = CS.getArgOperand(3);
Assert(Mask->getType()->isVectorTy(),
"masked_store: mask must be vector", CS);
// DataTy is the overloaded type
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
Assert(DataTy == Val->getType(),
"masked_store: storee must match pointer type", CS);
Assert(Mask->getType()->getVectorNumElements() ==
DataTy->getVectorNumElements(),
"masked_store: vector mask must be same length as data", CS);
break;
}
case Intrinsic::experimental_guard: {
Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
"experimental_guard must have exactly one "
"\"deopt\" operand bundle");
break;
}
case Intrinsic::experimental_deoptimize: {
Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
"experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle");
Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
"experimental_deoptimize return type must match caller return type");
if (CS.isCall()) {
auto *DeoptCI = CS.getInstruction();
auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
Assert(RI,
"calls to experimental_deoptimize must be followed by a return");
if (!CS.getType()->isVoidTy() && RI)
Assert(RI->getReturnValue() == DeoptCI,
"calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize");
}
break;
}
};
}
/// \brief Carefully grab the subprogram from a local scope.
///
/// This carefully grabs the subprogram from a local scope, avoiding the
/// built-in assertions that would typically fire.
static DISubprogram *getSubprogram(Metadata *LocalScope) {
if (!LocalScope)
return nullptr;
if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
return SP;
if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
return getSubprogram(LB->getRawScope());
// Just return null; broken scope chains are checked elsewhere.
assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
return nullptr;
}
template <class DbgIntrinsicTy>
void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
Assert(isa<ValueAsMetadata>(MD) ||
(isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
"invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
Assert(isa<DILocalVariable>(DII.getRawVariable()),
"invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
DII.getRawVariable());
Assert(isa<DIExpression>(DII.getRawExpression()),
"invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
DII.getRawExpression());
// Ignore broken !dbg attachments; they're checked elsewhere.
if (MDNode *N = DII.getDebugLoc().getAsMDNode())
if (!isa<DILocation>(N))
return;
BasicBlock *BB = DII.getParent();
Function *F = BB ? BB->getParent() : nullptr;
// The scopes for variables and !dbg attachments must agree.
DILocalVariable *Var = DII.getVariable();
DILocation *Loc = DII.getDebugLoc();
Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
&DII, BB, F);
DISubprogram *VarSP = getSubprogram(Var->getRawScope());
DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
if (!VarSP || !LocSP)
return; // Broken scope chains are checked elsewhere.
Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
" variable and !dbg attachment",
&DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
Loc->getScope()->getSubprogram());
}
template <class MapTy>
static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
// Be careful of broken types (checked elsewhere).
const Metadata *RawType = V.getRawType();
while (RawType) {
// Try to get the size directly.
if (auto *T = dyn_cast<DIType>(RawType))
if (uint64_t Size = T->getSizeInBits())
return Size;
if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
// Look at the base type.
RawType = DT->getRawBaseType();
continue;
}
if (auto *S = dyn_cast<MDString>(RawType)) {
// Don't error on missing types (checked elsewhere).
RawType = Map.lookup(S);
continue;
}
// Missing type or size.
break;
}
// Fail gracefully.
return 0;
}
template <class MapTy>
void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
const MapTy &TypeRefs) {
DILocalVariable *V;
DIExpression *E;
if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
} else {
auto *DDI = cast<DbgDeclareInst>(&I);
V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
}
// We don't know whether this intrinsic verified correctly.
if (!V || !E || !E->isValid())
return;
// Nothing to do if this isn't a bit piece expression.
if (!E->isBitPiece())
return;
// The frontend helps out GDB by emitting the members of local anonymous
// unions as artificial local variables with shared storage. When SROA splits
// the storage for artificial local variables that are smaller than the entire
// union, the overhang piece will be outside of the allotted space for the
// variable and this check fails.
// FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
if (V->isArtificial())
return;
// If there's no size, the type is broken, but that should be checked
// elsewhere.
uint64_t VarSize = getVariableSize(*V, TypeRefs);
if (!VarSize)
return;
unsigned PieceSize = E->getBitPieceSize();
unsigned PieceOffset = E->getBitPieceOffset();
Assert(PieceSize + PieceOffset <= VarSize,
"piece is larger than or outside of variable", &I, V, E);
Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
}
void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
// This is in its own function so we get an error for each bad type ref (not
// just the first).
Assert(false, "unresolved type ref", S, N);
}
void Verifier::verifyCompileUnits() {
auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
SmallPtrSet<const Metadata *, 2> Listed;
if (CUs)
Listed.insert(CUs->op_begin(), CUs->op_end());
Assert(
std::all_of(CUVisited.begin(), CUVisited.end(),
[&Listed](const Metadata *CU) { return Listed.count(CU); }),
"All DICompileUnits must be listed in llvm.dbg.cu");
CUVisited.clear();
}
void Verifier::verifyTypeRefs() {
auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
if (!CUs)
return;
// Visit all the compile units again to map the type references.
SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
for (auto *MD : CUs->operands()) {
auto *CU = dyn_cast<DICompileUnit>(MD);
if (!CU)
continue;
auto *Array = CU->getRawRetainedTypes();
if (!Array || !isa<MDTuple>(Array))
continue;
for (DIType *Op : CU->getRetainedTypes())
if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
if (auto *S = T->getRawIdentifier()) {
UnresolvedTypeRefs.erase(S);
TypeRefs.insert(std::make_pair(S, T));
}
}
// Verify debug info intrinsic bit piece expressions. This needs a second
// pass through the intructions, since we haven't built TypeRefs yet when
// verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
// later/now would queue up some that could be later deleted.
for (const Function &F : *M)
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
verifyBitPieceExpression(*DII, TypeRefs);
// Return early if all typerefs were resolved.
if (UnresolvedTypeRefs.empty())
return;
// Sort the unresolved references by name so the output is deterministic.
typedef std::pair<const MDString *, const MDNode *> TypeRef;
SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
UnresolvedTypeRefs.end());
std::sort(Unresolved.begin(), Unresolved.end(),
[](const TypeRef &LHS, const TypeRef &RHS) {
return LHS.first->getString() < RHS.first->getString();
});
// Visit the unresolved refs (printing out the errors).
for (const TypeRef &TR : Unresolved)
visitUnresolvedTypeRef(TR.first, TR.second);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
Function &F = const_cast<Function &>(f);
assert(!F.isDeclaration() && "Cannot verify external functions");
raw_null_ostream NullStr;
Verifier V(OS ? *OS : NullStr);
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
return !V.verify(F);
}
bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
raw_null_ostream NullStr;
Verifier V(OS ? *OS : NullStr);
bool Broken = false;
for (const Function &F : M)
if (!F.isDeclaration() && !F.isMaterializable())
Broken |= !V.verify(F);
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
return !V.verify(M) || Broken;
}
namespace {
struct VerifierLegacyPass : public FunctionPass {
static char ID;
Verifier V;
bool FatalErrors;
VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
explicit VerifierLegacyPass(bool FatalErrors)
: FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!V.verify(F) && FatalErrors)
report_fatal_error("Broken function found, compilation aborted!");
return false;
}
bool doFinalization(Module &M) override {
if (!V.verify(M) && FatalErrors)
report_fatal_error("Broken module found, compilation aborted!");
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
}
char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
return new VerifierLegacyPass(FatalErrors);
}
PreservedAnalyses VerifierPass::run(Module &M) {
if (verifyModule(M, &dbgs()) && FatalErrors)
report_fatal_error("Broken module found, compilation aborted!");
return PreservedAnalyses::all();
}
PreservedAnalyses VerifierPass::run(Function &F) {
if (verifyFunction(F, &dbgs()) && FatalErrors)
report_fatal_error("Broken function found, compilation aborted!");
return PreservedAnalyses::all();
}