llvm-project/llgo/irgen/cabi.go

680 lines
19 KiB
Go

//===- cabi.go - C ABI abstraction layer ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an abstraction layer for the platform's C ABI (currently
// supports only Linux/x86_64).
//
//===----------------------------------------------------------------------===//
package irgen
import (
"llvm.org/llgo/third_party/gotools/go/types"
"llvm.org/llvm/bindings/go/llvm"
)
type abiArgInfo int
const (
AIK_Direct = abiArgInfo(iota)
AIK_Indirect
)
type backendType interface {
ToLLVM(llvm.Context) llvm.Type
}
type ptrBType struct {
}
func (t ptrBType) ToLLVM(c llvm.Context) llvm.Type {
return llvm.PointerType(c.Int8Type(), 0)
}
type intBType struct {
width int
signed bool
}
func (t intBType) ToLLVM(c llvm.Context) llvm.Type {
return c.IntType(t.width * 8)
}
type floatBType struct {
isDouble bool
}
func (t floatBType) ToLLVM(c llvm.Context) llvm.Type {
if t.isDouble {
return c.DoubleType()
} else {
return c.FloatType()
}
}
type structBType struct {
fields []backendType
}
func (t structBType) ToLLVM(c llvm.Context) llvm.Type {
var lfields []llvm.Type
for _, f := range t.fields {
lfields = append(lfields, f.ToLLVM(c))
}
return c.StructType(lfields, false)
}
type arrayBType struct {
length uint64
elem backendType
}
func (t arrayBType) ToLLVM(c llvm.Context) llvm.Type {
return llvm.ArrayType(t.elem.ToLLVM(c), int(t.length))
}
// align returns the smallest y >= x such that y % a == 0.
func align(x, a int64) int64 {
y := x + a - 1
return y - y%a
}
func (tm *llvmTypeMap) sizeofStruct(fields ...types.Type) int64 {
var o int64
for _, f := range fields {
a := tm.Alignof(f)
o = align(o, a)
o += tm.Sizeof(f)
}
return o
}
// This decides whether the x86_64 classification algorithm produces MEMORY for
// the given type. Given the subset of types that Go supports, this is exactly
// equivalent to testing the type's size. See in particular the first step of
// the algorithm and its footnote.
func (tm *llvmTypeMap) classify(t ...types.Type) abiArgInfo {
if tm.sizeofStruct(t...) > 16 {
return AIK_Indirect
}
return AIK_Direct
}
func (tm *llvmTypeMap) sliceBackendType() backendType {
i8ptr := &ptrBType{}
uintptr := &intBType{tm.target.PointerSize(), false}
return &structBType{[]backendType{i8ptr, uintptr, uintptr}}
}
func (tm *llvmTypeMap) getBackendType(t types.Type) backendType {
switch t := t.(type) {
case *types.Named:
return tm.getBackendType(t.Underlying())
case *types.Basic:
switch t.Kind() {
case types.Bool, types.Uint8:
return &intBType{1, false}
case types.Int8:
return &intBType{1, true}
case types.Uint16:
return &intBType{2, false}
case types.Int16:
return &intBType{2, true}
case types.Uint32:
return &intBType{4, false}
case types.Int32:
return &intBType{4, true}
case types.Uint64:
return &intBType{8, false}
case types.Int64:
return &intBType{8, true}
case types.Uint, types.Uintptr:
return &intBType{tm.target.PointerSize(), false}
case types.Int:
return &intBType{tm.target.PointerSize(), true}
case types.Float32:
return &floatBType{false}
case types.Float64:
return &floatBType{true}
case types.UnsafePointer:
return &ptrBType{}
case types.Complex64:
f32 := &floatBType{false}
return &structBType{[]backendType{f32, f32}}
case types.Complex128:
f64 := &floatBType{true}
return &structBType{[]backendType{f64, f64}}
case types.String:
return &structBType{[]backendType{&ptrBType{}, &intBType{tm.target.PointerSize(), false}}}
}
case *types.Struct:
var fields []backendType
for i := 0; i != t.NumFields(); i++ {
f := t.Field(i)
fields = append(fields, tm.getBackendType(f.Type()))
}
return &structBType{fields}
case *types.Pointer, *types.Signature, *types.Map, *types.Chan:
return &ptrBType{}
case *types.Interface:
i8ptr := &ptrBType{}
return &structBType{[]backendType{i8ptr, i8ptr}}
case *types.Slice:
return tm.sliceBackendType()
case *types.Array:
return &arrayBType{uint64(t.Len()), tm.getBackendType(t.Elem())}
}
panic("unhandled type: " + t.String())
}
type offsetedType struct {
typ backendType
offset uint64
}
func (tm *llvmTypeMap) getBackendOffsets(bt backendType) (offsets []offsetedType) {
switch bt := bt.(type) {
case *structBType:
t := bt.ToLLVM(tm.ctx)
for i, f := range bt.fields {
offset := tm.target.ElementOffset(t, i)
fieldOffsets := tm.getBackendOffsets(f)
for _, fo := range fieldOffsets {
offsets = append(offsets, offsetedType{fo.typ, offset + fo.offset})
}
}
case *arrayBType:
size := tm.target.TypeAllocSize(bt.elem.ToLLVM(tm.ctx))
fieldOffsets := tm.getBackendOffsets(bt.elem)
for i := uint64(0); i != bt.length; i++ {
for _, fo := range fieldOffsets {
offsets = append(offsets, offsetedType{fo.typ, i*size + fo.offset})
}
}
default:
offsets = []offsetedType{offsetedType{bt, 0}}
}
return
}
func (tm *llvmTypeMap) classifyEightbyte(offsets []offsetedType, numInt, numSSE *int) llvm.Type {
if len(offsets) == 1 {
if _, ok := offsets[0].typ.(*floatBType); ok {
*numSSE++
} else {
*numInt++
}
return offsets[0].typ.ToLLVM(tm.ctx)
}
// This implements classification for the basic types and step 4 of the
// classification algorithm. At this point, the only two possible
// classifications are SSE (floats) and INTEGER (everything else).
sse := true
for _, ot := range offsets {
if _, ok := ot.typ.(*floatBType); !ok {
sse = false
break
}
}
if sse {
// This can only be (float, float), which uses an SSE vector.
*numSSE++
return llvm.VectorType(tm.ctx.FloatType(), 2)
} else {
*numInt++
width := offsets[len(offsets)-1].offset + tm.target.TypeAllocSize(offsets[len(offsets)-1].typ.ToLLVM(tm.ctx)) - offsets[0].offset
return tm.ctx.IntType(int(width) * 8)
}
}
func (tm *llvmTypeMap) expandType(argTypes []llvm.Type, argAttrs []llvm.Attribute, bt backendType) ([]llvm.Type, []llvm.Attribute, int, int) {
var numInt, numSSE int
var argAttr llvm.Attribute
switch bt := bt.(type) {
case *structBType, *arrayBType:
bo := tm.getBackendOffsets(bt)
sp := 0
for sp != len(bo) && bo[sp].offset < 8 {
sp++
}
eb1 := bo[0:sp]
eb2 := bo[sp:]
if len(eb2) > 0 {
argTypes = append(argTypes, tm.classifyEightbyte(eb1, &numInt, &numSSE), tm.classifyEightbyte(eb2, &numInt, &numSSE))
argAttrs = append(argAttrs, 0, 0)
} else {
argTypes = append(argTypes, tm.classifyEightbyte(eb1, &numInt, &numSSE))
argAttrs = append(argAttrs, 0)
}
return argTypes, argAttrs, numInt, numSSE
case *intBType:
if bt.width < 4 {
if bt.signed {
argAttr = llvm.SExtAttribute
} else {
argAttr = llvm.ZExtAttribute
}
}
}
argTypes = append(argTypes, tm.classifyEightbyte([]offsetedType{{bt, 0}}, &numInt, &numSSE))
argAttrs = append(argAttrs, argAttr)
return argTypes, argAttrs, numInt, numSSE
}
type argInfo interface {
// Emit instructions to builder to ABI encode val and store result to args.
encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, args []llvm.Value, val llvm.Value)
// Emit instructions to builder to ABI decode and return the resulting Value.
decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder) llvm.Value
}
type retInfo interface {
// Prepare args to receive a value. allocaBuilder refers to a builder in the entry block.
prepare(ctx llvm.Context, allocaBuilder llvm.Builder, args []llvm.Value)
// Emit instructions to builder to ABI decode the return value(s), if any. call is the
// call instruction. Must be called after prepare().
decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, call llvm.Value) []llvm.Value
// Emit instructions to builder to ABI encode the return value(s), if any, and return.
encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, vals []llvm.Value)
}
type directArgInfo struct {
argOffset int
argTypes []llvm.Type
valType llvm.Type
}
func directEncode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, argTypes []llvm.Type, args []llvm.Value, val llvm.Value) {
valType := val.Type()
switch len(argTypes) {
case 0:
// do nothing
case 1:
if argTypes[0].C == valType.C {
args[0] = val
return
}
alloca := allocaBuilder.CreateAlloca(valType, "")
bitcast := builder.CreateBitCast(alloca, llvm.PointerType(argTypes[0], 0), "")
builder.CreateStore(val, alloca)
args[0] = builder.CreateLoad(bitcast, "")
case 2:
encodeType := llvm.StructType(argTypes, false)
alloca := allocaBuilder.CreateAlloca(valType, "")
bitcast := builder.CreateBitCast(alloca, llvm.PointerType(encodeType, 0), "")
builder.CreateStore(val, alloca)
args[0] = builder.CreateLoad(builder.CreateStructGEP(bitcast, 0, ""), "")
args[1] = builder.CreateLoad(builder.CreateStructGEP(bitcast, 1, ""), "")
default:
panic("unexpected argTypes size")
}
}
func (ai *directArgInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, args []llvm.Value, val llvm.Value) {
directEncode(ctx, allocaBuilder, builder, ai.argTypes, args[ai.argOffset:ai.argOffset+len(ai.argTypes)], val)
}
func directDecode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, valType llvm.Type, args []llvm.Value) llvm.Value {
var alloca llvm.Value
switch len(args) {
case 0:
return llvm.ConstNull(ctx.StructType(nil, false))
case 1:
if args[0].Type().C == valType.C {
return args[0]
}
alloca = allocaBuilder.CreateAlloca(valType, "")
bitcast := builder.CreateBitCast(alloca, llvm.PointerType(args[0].Type(), 0), "")
builder.CreateStore(args[0], bitcast)
case 2:
alloca = allocaBuilder.CreateAlloca(valType, "")
var argTypes []llvm.Type
for _, a := range args {
argTypes = append(argTypes, a.Type())
}
encodeType := ctx.StructType(argTypes, false)
bitcast := builder.CreateBitCast(alloca, llvm.PointerType(encodeType, 0), "")
builder.CreateStore(args[0], builder.CreateStructGEP(bitcast, 0, ""))
builder.CreateStore(args[1], builder.CreateStructGEP(bitcast, 1, ""))
default:
panic("unexpected argTypes size")
}
return builder.CreateLoad(alloca, "")
}
func (ai *directArgInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder) llvm.Value {
var args []llvm.Value
fn := builder.GetInsertBlock().Parent()
for i, _ := range ai.argTypes {
args = append(args, fn.Param(ai.argOffset+i))
}
return directDecode(ctx, allocaBuilder, builder, ai.valType, args)
}
type indirectArgInfo struct {
argOffset int
}
func (ai *indirectArgInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, args []llvm.Value, val llvm.Value) {
alloca := allocaBuilder.CreateAlloca(val.Type(), "")
builder.CreateStore(val, alloca)
args[ai.argOffset] = alloca
}
func (ai *indirectArgInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder) llvm.Value {
fn := builder.GetInsertBlock().Parent()
return builder.CreateLoad(fn.Param(ai.argOffset), "")
}
type directRetInfo struct {
numResults int
retTypes []llvm.Type
resultsType llvm.Type
}
func (ri *directRetInfo) prepare(ctx llvm.Context, allocaBuilder llvm.Builder, args []llvm.Value) {
}
func (ri *directRetInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, call llvm.Value) []llvm.Value {
var args []llvm.Value
switch len(ri.retTypes) {
case 0:
return nil
case 1:
args = []llvm.Value{call}
default:
args = make([]llvm.Value, len(ri.retTypes))
for i := 0; i != len(ri.retTypes); i++ {
args[i] = builder.CreateExtractValue(call, i, "")
}
}
d := directDecode(ctx, allocaBuilder, builder, ri.resultsType, args)
if ri.numResults == 1 {
return []llvm.Value{d}
} else {
results := make([]llvm.Value, ri.numResults)
for i := 0; i != ri.numResults; i++ {
results[i] = builder.CreateExtractValue(d, i, "")
}
return results
}
}
func (ri *directRetInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, vals []llvm.Value) {
if len(ri.retTypes) == 0 {
builder.CreateRetVoid()
return
}
var val llvm.Value
switch ri.numResults {
case 1:
val = vals[0]
default:
val = llvm.Undef(ri.resultsType)
for i, v := range vals {
val = builder.CreateInsertValue(val, v, i, "")
}
}
args := make([]llvm.Value, len(ri.retTypes))
directEncode(ctx, allocaBuilder, builder, ri.retTypes, args, val)
var retval llvm.Value
switch len(ri.retTypes) {
case 1:
retval = args[0]
default:
retval = llvm.Undef(ctx.StructType(ri.retTypes, false))
for i, a := range args {
retval = builder.CreateInsertValue(retval, a, i, "")
}
}
builder.CreateRet(retval)
}
type indirectRetInfo struct {
numResults int
sretSlot llvm.Value
resultsType llvm.Type
}
func (ri *indirectRetInfo) prepare(ctx llvm.Context, allocaBuilder llvm.Builder, args []llvm.Value) {
ri.sretSlot = allocaBuilder.CreateAlloca(ri.resultsType, "")
args[0] = ri.sretSlot
}
func (ri *indirectRetInfo) decode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, call llvm.Value) []llvm.Value {
if ri.numResults == 1 {
return []llvm.Value{builder.CreateLoad(ri.sretSlot, "")}
} else {
vals := make([]llvm.Value, ri.numResults)
for i, _ := range vals {
vals[i] = builder.CreateLoad(builder.CreateStructGEP(ri.sretSlot, i, ""), "")
}
return vals
}
}
func (ri *indirectRetInfo) encode(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, vals []llvm.Value) {
fn := builder.GetInsertBlock().Parent()
sretSlot := fn.Param(0)
if ri.numResults == 1 {
builder.CreateStore(vals[0], sretSlot)
} else {
for i, v := range vals {
builder.CreateStore(v, builder.CreateStructGEP(sretSlot, i, ""))
}
}
builder.CreateRetVoid()
}
type functionTypeInfo struct {
functionType llvm.Type
argAttrs []llvm.Attribute
retAttr llvm.Attribute
argInfos []argInfo
retInf retInfo
chainIndex int
}
func (fi *functionTypeInfo) declare(m llvm.Module, name string) llvm.Value {
fn := llvm.AddFunction(m, name, fi.functionType)
fn.AddFunctionAttr(fi.retAttr)
for i, a := range fi.argAttrs {
if a != 0 {
fn.Param(i).AddAttribute(a)
}
}
return fn
}
func (fi *functionTypeInfo) call(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, callee llvm.Value, chain llvm.Value, args []llvm.Value) []llvm.Value {
callArgs := make([]llvm.Value, len(fi.argAttrs))
if chain.C == nil {
chain = llvm.Undef(llvm.PointerType(ctx.Int8Type(), 0))
}
callArgs[fi.chainIndex] = chain
for i, a := range args {
fi.argInfos[i].encode(ctx, allocaBuilder, builder, callArgs, a)
}
fi.retInf.prepare(ctx, allocaBuilder, callArgs)
typedCallee := builder.CreateBitCast(callee, llvm.PointerType(fi.functionType, 0), "")
call := builder.CreateCall(typedCallee, callArgs, "")
call.AddInstrAttribute(0, fi.retAttr)
for i, a := range fi.argAttrs {
call.AddInstrAttribute(i+1, a)
}
return fi.retInf.decode(ctx, allocaBuilder, builder, call)
}
func (fi *functionTypeInfo) invoke(ctx llvm.Context, allocaBuilder llvm.Builder, builder llvm.Builder, callee llvm.Value, chain llvm.Value, args []llvm.Value, cont, lpad llvm.BasicBlock) []llvm.Value {
callArgs := make([]llvm.Value, len(fi.argAttrs))
if chain.C == nil {
chain = llvm.Undef(llvm.PointerType(ctx.Int8Type(), 0))
}
callArgs[fi.chainIndex] = chain
for i, a := range args {
fi.argInfos[i].encode(ctx, allocaBuilder, builder, callArgs, a)
}
fi.retInf.prepare(ctx, allocaBuilder, callArgs)
typedCallee := builder.CreateBitCast(callee, llvm.PointerType(fi.functionType, 0), "")
call := builder.CreateInvoke(typedCallee, callArgs, cont, lpad, "")
call.AddInstrAttribute(0, fi.retAttr)
for i, a := range fi.argAttrs {
call.AddInstrAttribute(i+1, a)
}
builder.SetInsertPointAtEnd(cont)
return fi.retInf.decode(ctx, allocaBuilder, builder, call)
}
func (tm *llvmTypeMap) getFunctionTypeInfo(args []types.Type, results []types.Type) (fi functionTypeInfo) {
var returnType llvm.Type
var argTypes []llvm.Type
if len(results) == 0 {
returnType = llvm.VoidType()
fi.retInf = &directRetInfo{}
} else {
aik := tm.classify(results...)
var resultsType llvm.Type
if len(results) == 1 {
resultsType = tm.ToLLVM(results[0])
} else {
elements := make([]llvm.Type, len(results))
for i := range elements {
elements[i] = tm.ToLLVM(results[i])
}
resultsType = tm.ctx.StructType(elements, false)
}
switch aik {
case AIK_Direct:
var retFields []backendType
for _, t := range results {
retFields = append(retFields, tm.getBackendType(t))
}
bt := &structBType{retFields}
retTypes, retAttrs, _, _ := tm.expandType(nil, nil, bt)
switch len(retTypes) {
case 0: // e.g., empty struct
returnType = llvm.VoidType()
case 1:
returnType = retTypes[0]
fi.retAttr = retAttrs[0]
case 2:
returnType = llvm.StructType(retTypes, false)
default:
panic("unexpected expandType result")
}
fi.retInf = &directRetInfo{numResults: len(results), retTypes: retTypes, resultsType: resultsType}
case AIK_Indirect:
returnType = llvm.VoidType()
argTypes = []llvm.Type{llvm.PointerType(resultsType, 0)}
fi.argAttrs = []llvm.Attribute{llvm.StructRetAttribute}
fi.retInf = &indirectRetInfo{numResults: len(results), resultsType: resultsType}
}
}
// Allocate an argument for the call chain.
fi.chainIndex = len(argTypes)
argTypes = append(argTypes, llvm.PointerType(tm.ctx.Int8Type(), 0))
fi.argAttrs = append(fi.argAttrs, llvm.NestAttribute)
// Keep track of the number of INTEGER/SSE class registers remaining.
remainingInt := 6
remainingSSE := 8
for _, arg := range args {
aik := tm.classify(arg)
isDirect := aik == AIK_Direct
if isDirect {
bt := tm.getBackendType(arg)
directArgTypes, directArgAttrs, numInt, numSSE := tm.expandType(argTypes, fi.argAttrs, bt)
// Check if the argument can fit into the remaining registers, or if
// it would just occupy one register (which pushes the whole argument
// onto the stack anyway).
if numInt <= remainingInt && numSSE <= remainingSSE || numInt+numSSE == 1 {
remainingInt -= numInt
remainingSSE -= numSSE
argInfo := &directArgInfo{argOffset: len(argTypes), valType: bt.ToLLVM(tm.ctx)}
fi.argInfos = append(fi.argInfos, argInfo)
argTypes = directArgTypes
fi.argAttrs = directArgAttrs
argInfo.argTypes = argTypes[argInfo.argOffset:len(argTypes)]
} else {
// No remaining registers; pass on the stack.
isDirect = false
}
}
if !isDirect {
fi.argInfos = append(fi.argInfos, &indirectArgInfo{len(argTypes)})
argTypes = append(argTypes, llvm.PointerType(tm.ToLLVM(arg), 0))
fi.argAttrs = append(fi.argAttrs, llvm.ByValAttribute)
}
}
fi.functionType = llvm.FunctionType(returnType, argTypes, false)
return
}
func (tm *llvmTypeMap) getSignatureInfo(sig *types.Signature) functionTypeInfo {
var args, results []types.Type
if sig.Recv() != nil {
recvtype := sig.Recv().Type()
if _, ok := recvtype.Underlying().(*types.Pointer); !ok && recvtype != types.Typ[types.UnsafePointer] {
recvtype = types.NewPointer(recvtype)
}
args = []types.Type{recvtype}
}
for i := 0; i != sig.Params().Len(); i++ {
args = append(args, sig.Params().At(i).Type())
}
for i := 0; i != sig.Results().Len(); i++ {
results = append(results, sig.Results().At(i).Type())
}
return tm.getFunctionTypeInfo(args, results)
}