forked from OSchip/llvm-project
864 lines
33 KiB
C++
864 lines
33 KiB
C++
//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the Sanitizer Allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SANITIZER_ALLOCATOR_H
|
|
#error This file must be included inside sanitizer_allocator.h
|
|
#endif
|
|
|
|
template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
|
|
|
|
// SizeClassAllocator64 -- allocator for 64-bit address space.
|
|
// The template parameter Params is a class containing the actual parameters.
|
|
//
|
|
// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
|
|
// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
|
|
// Otherwise SpaceBeg=kSpaceBeg (fixed address).
|
|
// kSpaceSize is a power of two.
|
|
// At the beginning the entire space is mprotect-ed, then small parts of it
|
|
// are mapped on demand.
|
|
//
|
|
// Region: a part of Space dedicated to a single size class.
|
|
// There are kNumClasses Regions of equal size.
|
|
//
|
|
// UserChunk: a piece of memory returned to user.
|
|
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
|
|
|
|
// FreeArray is an array free-d chunks (stored as 4-byte offsets)
|
|
//
|
|
// A Region looks like this:
|
|
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
|
|
|
|
struct SizeClassAllocator64FlagMasks { // Bit masks.
|
|
enum {
|
|
kRandomShuffleChunks = 1,
|
|
};
|
|
};
|
|
|
|
template <class Params>
|
|
class SizeClassAllocator64 {
|
|
public:
|
|
using AddressSpaceView = typename Params::AddressSpaceView;
|
|
static const uptr kSpaceBeg = Params::kSpaceBeg;
|
|
static const uptr kSpaceSize = Params::kSpaceSize;
|
|
static const uptr kMetadataSize = Params::kMetadataSize;
|
|
typedef typename Params::SizeClassMap SizeClassMap;
|
|
typedef typename Params::MapUnmapCallback MapUnmapCallback;
|
|
|
|
static const bool kRandomShuffleChunks =
|
|
Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
|
|
|
|
typedef SizeClassAllocator64<Params> ThisT;
|
|
typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
|
|
|
|
// When we know the size class (the region base) we can represent a pointer
|
|
// as a 4-byte integer (offset from the region start shifted right by 4).
|
|
typedef u32 CompactPtrT;
|
|
static const uptr kCompactPtrScale = 4;
|
|
CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
|
|
return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
|
|
}
|
|
uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
|
|
return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
|
|
}
|
|
|
|
void Init(s32 release_to_os_interval_ms) {
|
|
uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
|
|
if (kUsingConstantSpaceBeg) {
|
|
CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
|
|
CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
|
|
PrimaryAllocatorName, kSpaceBeg));
|
|
} else {
|
|
// Combined allocator expects that an 2^N allocation is always aligned to
|
|
// 2^N. For this to work, the start of the space needs to be aligned as
|
|
// high as the largest size class (which also needs to be a power of 2).
|
|
NonConstSpaceBeg = address_range.InitAligned(
|
|
TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
|
|
CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
|
|
}
|
|
SetReleaseToOSIntervalMs(release_to_os_interval_ms);
|
|
MapWithCallbackOrDie(SpaceEnd(), AdditionalSize(),
|
|
"SizeClassAllocator: region info");
|
|
// Check that the RegionInfo array is aligned on the CacheLine size.
|
|
DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
|
|
}
|
|
|
|
s32 ReleaseToOSIntervalMs() const {
|
|
return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
|
|
}
|
|
|
|
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
|
|
atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
|
|
memory_order_relaxed);
|
|
}
|
|
|
|
void ForceReleaseToOS() {
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
|
|
MaybeReleaseToOS(class_id, true /*force*/);
|
|
}
|
|
}
|
|
|
|
static bool CanAllocate(uptr size, uptr alignment) {
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
}
|
|
|
|
NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
|
|
const CompactPtrT *chunks, uptr n_chunks) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
|
|
BlockingMutexLock l(®ion->mutex);
|
|
uptr old_num_chunks = region->num_freed_chunks;
|
|
uptr new_num_freed_chunks = old_num_chunks + n_chunks;
|
|
// Failure to allocate free array space while releasing memory is non
|
|
// recoverable.
|
|
if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
|
|
new_num_freed_chunks))) {
|
|
Report("FATAL: Internal error: %s's allocator exhausted the free list "
|
|
"space for size class %zd (%zd bytes).\n", SanitizerToolName,
|
|
class_id, ClassIdToSize(class_id));
|
|
Die();
|
|
}
|
|
for (uptr i = 0; i < n_chunks; i++)
|
|
free_array[old_num_chunks + i] = chunks[i];
|
|
region->num_freed_chunks = new_num_freed_chunks;
|
|
region->stats.n_freed += n_chunks;
|
|
|
|
MaybeReleaseToOS(class_id, false /*force*/);
|
|
}
|
|
|
|
NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
|
|
CompactPtrT *chunks, uptr n_chunks) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
|
|
BlockingMutexLock l(®ion->mutex);
|
|
if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
|
|
if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
|
|
n_chunks - region->num_freed_chunks)))
|
|
return false;
|
|
CHECK_GE(region->num_freed_chunks, n_chunks);
|
|
}
|
|
region->num_freed_chunks -= n_chunks;
|
|
uptr base_idx = region->num_freed_chunks;
|
|
for (uptr i = 0; i < n_chunks; i++)
|
|
chunks[i] = free_array[base_idx + i];
|
|
region->stats.n_allocated += n_chunks;
|
|
return true;
|
|
}
|
|
|
|
bool PointerIsMine(const void *p) const {
|
|
uptr P = reinterpret_cast<uptr>(p);
|
|
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
|
|
return P / kSpaceSize == kSpaceBeg / kSpaceSize;
|
|
return P >= SpaceBeg() && P < SpaceEnd();
|
|
}
|
|
|
|
uptr GetRegionBegin(const void *p) {
|
|
if (kUsingConstantSpaceBeg)
|
|
return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
|
|
uptr space_beg = SpaceBeg();
|
|
return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
|
|
space_beg;
|
|
}
|
|
|
|
uptr GetRegionBeginBySizeClass(uptr class_id) const {
|
|
return SpaceBeg() + kRegionSize * class_id;
|
|
}
|
|
|
|
uptr GetSizeClass(const void *p) {
|
|
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
|
|
return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
|
|
return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
|
|
kNumClassesRounded;
|
|
}
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = ClassIdToSize(class_id);
|
|
if (!size) return nullptr;
|
|
uptr chunk_idx = GetChunkIdx((uptr)p, size);
|
|
uptr reg_beg = GetRegionBegin(p);
|
|
uptr beg = chunk_idx * size;
|
|
uptr next_beg = beg + size;
|
|
if (class_id >= kNumClasses) return nullptr;
|
|
const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
|
|
if (region->mapped_user >= next_beg)
|
|
return reinterpret_cast<void*>(reg_beg + beg);
|
|
return nullptr;
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
return ClassIdToSize(GetSizeClass(p));
|
|
}
|
|
|
|
static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
void *GetMetaData(const void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = ClassIdToSize(class_id);
|
|
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
|
|
uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
|
|
(1 + chunk_idx) * kMetadataSize);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < kNumClasses; i++)
|
|
res += GetRegionInfo(i)->allocated_user;
|
|
return res;
|
|
}
|
|
|
|
// Test-only.
|
|
void TestOnlyUnmap() {
|
|
UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
|
|
}
|
|
|
|
static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
|
|
uptr stats_size) {
|
|
for (uptr class_id = 0; class_id < stats_size; class_id++)
|
|
if (stats[class_id] == start)
|
|
stats[class_id] = rss;
|
|
}
|
|
|
|
void PrintStats(uptr class_id, uptr rss) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
if (region->mapped_user == 0) return;
|
|
uptr in_use = region->stats.n_allocated - region->stats.n_freed;
|
|
uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
|
|
Printf(
|
|
"%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
|
|
"num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
|
|
"last released: %6zdK region: 0x%zx\n",
|
|
region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
|
|
region->mapped_user >> 10, region->stats.n_allocated,
|
|
region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
|
|
rss >> 10, region->rtoi.num_releases,
|
|
region->rtoi.last_released_bytes >> 10,
|
|
SpaceBeg() + kRegionSize * class_id);
|
|
}
|
|
|
|
void PrintStats() {
|
|
uptr rss_stats[kNumClasses];
|
|
for (uptr class_id = 0; class_id < kNumClasses; class_id++)
|
|
rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
|
|
GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
|
|
|
|
uptr total_mapped = 0;
|
|
uptr total_rss = 0;
|
|
uptr n_allocated = 0;
|
|
uptr n_freed = 0;
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
if (region->mapped_user != 0) {
|
|
total_mapped += region->mapped_user;
|
|
total_rss += rss_stats[class_id];
|
|
}
|
|
n_allocated += region->stats.n_allocated;
|
|
n_freed += region->stats.n_freed;
|
|
}
|
|
|
|
Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
|
|
"%zd allocations; remains %zd\n", total_mapped >> 20,
|
|
total_rss >> 20, n_allocated, n_allocated - n_freed);
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++)
|
|
PrintStats(class_id, rss_stats[class_id]);
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() {
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
GetRegionInfo(i)->mutex.Lock();
|
|
}
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
for (int i = (int)kNumClasses - 1; i >= 0; i--) {
|
|
GetRegionInfo(i)->mutex.Unlock();
|
|
}
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr chunk_size = ClassIdToSize(class_id);
|
|
uptr region_beg = SpaceBeg() + class_id * kRegionSize;
|
|
uptr region_allocated_user_size =
|
|
AddressSpaceView::Load(region)->allocated_user;
|
|
for (uptr chunk = region_beg;
|
|
chunk < region_beg + region_allocated_user_size;
|
|
chunk += chunk_size) {
|
|
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
|
|
callback(chunk, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uptr ClassIdToSize(uptr class_id) {
|
|
return SizeClassMap::Size(class_id);
|
|
}
|
|
|
|
static uptr AdditionalSize() {
|
|
return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
|
|
GetPageSizeCached());
|
|
}
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses;
|
|
static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
|
|
|
|
// A packed array of counters. Each counter occupies 2^n bits, enough to store
|
|
// counter's max_value. Ctor will try to allocate the required buffer via
|
|
// mapper->MapPackedCounterArrayBuffer and the caller is expected to check
|
|
// whether the initialization was successful by checking IsAllocated() result.
|
|
// For the performance sake, none of the accessors check the validity of the
|
|
// arguments, it is assumed that index is always in [0, n) range and the value
|
|
// is not incremented past max_value.
|
|
template<class MemoryMapperT>
|
|
class PackedCounterArray {
|
|
public:
|
|
PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
|
|
: n(num_counters), memory_mapper(mapper) {
|
|
CHECK_GT(num_counters, 0);
|
|
CHECK_GT(max_value, 0);
|
|
constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
|
|
// Rounding counter storage size up to the power of two allows for using
|
|
// bit shifts calculating particular counter's index and offset.
|
|
uptr counter_size_bits =
|
|
RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
|
|
CHECK_LE(counter_size_bits, kMaxCounterBits);
|
|
counter_size_bits_log = Log2(counter_size_bits);
|
|
counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
|
|
|
|
uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
|
|
CHECK_GT(packing_ratio, 0);
|
|
packing_ratio_log = Log2(packing_ratio);
|
|
bit_offset_mask = packing_ratio - 1;
|
|
|
|
buffer_size =
|
|
(RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
|
|
sizeof(*buffer);
|
|
buffer = reinterpret_cast<u64*>(
|
|
memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
|
|
}
|
|
~PackedCounterArray() {
|
|
if (buffer) {
|
|
memory_mapper->UnmapPackedCounterArrayBuffer(
|
|
reinterpret_cast<uptr>(buffer), buffer_size);
|
|
}
|
|
}
|
|
|
|
bool IsAllocated() const {
|
|
return !!buffer;
|
|
}
|
|
|
|
u64 GetCount() const {
|
|
return n;
|
|
}
|
|
|
|
uptr Get(uptr i) const {
|
|
DCHECK_LT(i, n);
|
|
uptr index = i >> packing_ratio_log;
|
|
uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
|
|
return (buffer[index] >> bit_offset) & counter_mask;
|
|
}
|
|
|
|
void Inc(uptr i) const {
|
|
DCHECK_LT(Get(i), counter_mask);
|
|
uptr index = i >> packing_ratio_log;
|
|
uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
|
|
buffer[index] += 1ULL << bit_offset;
|
|
}
|
|
|
|
void IncRange(uptr from, uptr to) const {
|
|
DCHECK_LE(from, to);
|
|
for (uptr i = from; i <= to; i++)
|
|
Inc(i);
|
|
}
|
|
|
|
private:
|
|
const u64 n;
|
|
u64 counter_size_bits_log;
|
|
u64 counter_mask;
|
|
u64 packing_ratio_log;
|
|
u64 bit_offset_mask;
|
|
|
|
MemoryMapperT* const memory_mapper;
|
|
u64 buffer_size;
|
|
u64* buffer;
|
|
};
|
|
|
|
template<class MemoryMapperT>
|
|
class FreePagesRangeTracker {
|
|
public:
|
|
explicit FreePagesRangeTracker(MemoryMapperT* mapper)
|
|
: memory_mapper(mapper),
|
|
page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
|
|
in_the_range(false), current_page(0), current_range_start_page(0) {}
|
|
|
|
void NextPage(bool freed) {
|
|
if (freed) {
|
|
if (!in_the_range) {
|
|
current_range_start_page = current_page;
|
|
in_the_range = true;
|
|
}
|
|
} else {
|
|
CloseOpenedRange();
|
|
}
|
|
current_page++;
|
|
}
|
|
|
|
void Done() {
|
|
CloseOpenedRange();
|
|
}
|
|
|
|
private:
|
|
void CloseOpenedRange() {
|
|
if (in_the_range) {
|
|
memory_mapper->ReleasePageRangeToOS(
|
|
current_range_start_page << page_size_scaled_log,
|
|
current_page << page_size_scaled_log);
|
|
in_the_range = false;
|
|
}
|
|
}
|
|
|
|
MemoryMapperT* const memory_mapper;
|
|
const uptr page_size_scaled_log;
|
|
bool in_the_range;
|
|
uptr current_page;
|
|
uptr current_range_start_page;
|
|
};
|
|
|
|
// Iterates over the free_array to identify memory pages containing freed
|
|
// chunks only and returns these pages back to OS.
|
|
// allocated_pages_count is the total number of pages allocated for the
|
|
// current bucket.
|
|
template<class MemoryMapperT>
|
|
static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
|
|
uptr free_array_count, uptr chunk_size,
|
|
uptr allocated_pages_count,
|
|
MemoryMapperT *memory_mapper) {
|
|
const uptr page_size = GetPageSizeCached();
|
|
|
|
// Figure out the number of chunks per page and whether we can take a fast
|
|
// path (the number of chunks per page is the same for all pages).
|
|
uptr full_pages_chunk_count_max;
|
|
bool same_chunk_count_per_page;
|
|
if (chunk_size <= page_size && page_size % chunk_size == 0) {
|
|
// Same number of chunks per page, no cross overs.
|
|
full_pages_chunk_count_max = page_size / chunk_size;
|
|
same_chunk_count_per_page = true;
|
|
} else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
|
|
chunk_size % (page_size % chunk_size) == 0) {
|
|
// Some chunks are crossing page boundaries, which means that the page
|
|
// contains one or two partial chunks, but all pages contain the same
|
|
// number of chunks.
|
|
full_pages_chunk_count_max = page_size / chunk_size + 1;
|
|
same_chunk_count_per_page = true;
|
|
} else if (chunk_size <= page_size) {
|
|
// Some chunks are crossing page boundaries, which means that the page
|
|
// contains one or two partial chunks.
|
|
full_pages_chunk_count_max = page_size / chunk_size + 2;
|
|
same_chunk_count_per_page = false;
|
|
} else if (chunk_size > page_size && chunk_size % page_size == 0) {
|
|
// One chunk covers multiple pages, no cross overs.
|
|
full_pages_chunk_count_max = 1;
|
|
same_chunk_count_per_page = true;
|
|
} else if (chunk_size > page_size) {
|
|
// One chunk covers multiple pages, Some chunks are crossing page
|
|
// boundaries. Some pages contain one chunk, some contain two.
|
|
full_pages_chunk_count_max = 2;
|
|
same_chunk_count_per_page = false;
|
|
} else {
|
|
UNREACHABLE("All chunk_size/page_size ratios must be handled.");
|
|
}
|
|
|
|
PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
|
|
full_pages_chunk_count_max,
|
|
memory_mapper);
|
|
if (!counters.IsAllocated())
|
|
return;
|
|
|
|
const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
|
|
const uptr page_size_scaled = page_size >> kCompactPtrScale;
|
|
const uptr page_size_scaled_log = Log2(page_size_scaled);
|
|
|
|
// Iterate over free chunks and count how many free chunks affect each
|
|
// allocated page.
|
|
if (chunk_size <= page_size && page_size % chunk_size == 0) {
|
|
// Each chunk affects one page only.
|
|
for (uptr i = 0; i < free_array_count; i++)
|
|
counters.Inc(free_array[i] >> page_size_scaled_log);
|
|
} else {
|
|
// In all other cases chunks might affect more than one page.
|
|
for (uptr i = 0; i < free_array_count; i++) {
|
|
counters.IncRange(
|
|
free_array[i] >> page_size_scaled_log,
|
|
(free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
|
|
}
|
|
}
|
|
|
|
// Iterate over pages detecting ranges of pages with chunk counters equal
|
|
// to the expected number of chunks for the particular page.
|
|
FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
|
|
if (same_chunk_count_per_page) {
|
|
// Fast path, every page has the same number of chunks affecting it.
|
|
for (uptr i = 0; i < counters.GetCount(); i++)
|
|
range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
|
|
} else {
|
|
// Show path, go through the pages keeping count how many chunks affect
|
|
// each page.
|
|
const uptr pn =
|
|
chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
|
|
const uptr pnc = pn * chunk_size_scaled;
|
|
// The idea is to increment the current page pointer by the first chunk
|
|
// size, middle portion size (the portion of the page covered by chunks
|
|
// except the first and the last one) and then the last chunk size, adding
|
|
// up the number of chunks on the current page and checking on every step
|
|
// whether the page boundary was crossed.
|
|
uptr prev_page_boundary = 0;
|
|
uptr current_boundary = 0;
|
|
for (uptr i = 0; i < counters.GetCount(); i++) {
|
|
uptr page_boundary = prev_page_boundary + page_size_scaled;
|
|
uptr chunks_per_page = pn;
|
|
if (current_boundary < page_boundary) {
|
|
if (current_boundary > prev_page_boundary)
|
|
chunks_per_page++;
|
|
current_boundary += pnc;
|
|
if (current_boundary < page_boundary) {
|
|
chunks_per_page++;
|
|
current_boundary += chunk_size_scaled;
|
|
}
|
|
}
|
|
prev_page_boundary = page_boundary;
|
|
|
|
range_tracker.NextPage(counters.Get(i) == chunks_per_page);
|
|
}
|
|
}
|
|
range_tracker.Done();
|
|
}
|
|
|
|
private:
|
|
friend class MemoryMapper;
|
|
|
|
ReservedAddressRange address_range;
|
|
|
|
static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
|
|
// FreeArray is the array of free-d chunks (stored as 4-byte offsets).
|
|
// In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
|
|
// elements, but in reality this will not happen. For simplicity we
|
|
// dedicate 1/8 of the region's virtual space to FreeArray.
|
|
static const uptr kFreeArraySize = kRegionSize / 8;
|
|
|
|
static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
|
|
uptr NonConstSpaceBeg;
|
|
uptr SpaceBeg() const {
|
|
return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
|
|
}
|
|
uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
|
|
// kRegionSize must be >= 2^32.
|
|
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
|
|
// kRegionSize must be <= 2^36, see CompactPtrT.
|
|
COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
|
|
// Call mmap for user memory with at least this size.
|
|
static const uptr kUserMapSize = 1 << 16;
|
|
// Call mmap for metadata memory with at least this size.
|
|
static const uptr kMetaMapSize = 1 << 16;
|
|
// Call mmap for free array memory with at least this size.
|
|
static const uptr kFreeArrayMapSize = 1 << 16;
|
|
|
|
atomic_sint32_t release_to_os_interval_ms_;
|
|
|
|
struct Stats {
|
|
uptr n_allocated;
|
|
uptr n_freed;
|
|
};
|
|
|
|
struct ReleaseToOsInfo {
|
|
uptr n_freed_at_last_release;
|
|
uptr num_releases;
|
|
u64 last_release_at_ns;
|
|
u64 last_released_bytes;
|
|
};
|
|
|
|
struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
|
|
BlockingMutex mutex;
|
|
uptr num_freed_chunks; // Number of elements in the freearray.
|
|
uptr mapped_free_array; // Bytes mapped for freearray.
|
|
uptr allocated_user; // Bytes allocated for user memory.
|
|
uptr allocated_meta; // Bytes allocated for metadata.
|
|
uptr mapped_user; // Bytes mapped for user memory.
|
|
uptr mapped_meta; // Bytes mapped for metadata.
|
|
u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
|
|
bool exhausted; // Whether region is out of space for new chunks.
|
|
Stats stats;
|
|
ReleaseToOsInfo rtoi;
|
|
};
|
|
COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
|
|
|
|
RegionInfo *GetRegionInfo(uptr class_id) const {
|
|
DCHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
|
|
return ®ions[class_id];
|
|
}
|
|
|
|
uptr GetMetadataEnd(uptr region_beg) const {
|
|
return region_beg + kRegionSize - kFreeArraySize;
|
|
}
|
|
|
|
uptr GetChunkIdx(uptr chunk, uptr size) const {
|
|
if (!kUsingConstantSpaceBeg)
|
|
chunk -= SpaceBeg();
|
|
|
|
uptr offset = chunk % kRegionSize;
|
|
// Here we divide by a non-constant. This is costly.
|
|
// size always fits into 32-bits. If the offset fits too, use 32-bit div.
|
|
if (offset >> (SANITIZER_WORDSIZE / 2))
|
|
return offset / size;
|
|
return (u32)offset / (u32)size;
|
|
}
|
|
|
|
CompactPtrT *GetFreeArray(uptr region_beg) const {
|
|
return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
|
|
}
|
|
|
|
bool MapWithCallback(uptr beg, uptr size, const char *name) {
|
|
uptr mapped = address_range.Map(beg, size, name);
|
|
if (UNLIKELY(!mapped))
|
|
return false;
|
|
CHECK_EQ(beg, mapped);
|
|
MapUnmapCallback().OnMap(beg, size);
|
|
return true;
|
|
}
|
|
|
|
void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
|
|
CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
|
|
MapUnmapCallback().OnMap(beg, size);
|
|
}
|
|
|
|
void UnmapWithCallbackOrDie(uptr beg, uptr size) {
|
|
MapUnmapCallback().OnUnmap(beg, size);
|
|
address_range.Unmap(beg, size);
|
|
}
|
|
|
|
bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
|
|
uptr num_freed_chunks) {
|
|
uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
|
|
if (region->mapped_free_array < needed_space) {
|
|
uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
|
|
CHECK_LE(new_mapped_free_array, kFreeArraySize);
|
|
uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
|
|
region->mapped_free_array;
|
|
uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
|
|
if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
|
|
"SizeClassAllocator: freearray")))
|
|
return false;
|
|
region->mapped_free_array = new_mapped_free_array;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check whether this size class is exhausted.
|
|
bool IsRegionExhausted(RegionInfo *region, uptr class_id,
|
|
uptr additional_map_size) {
|
|
if (LIKELY(region->mapped_user + region->mapped_meta +
|
|
additional_map_size <= kRegionSize - kFreeArraySize))
|
|
return false;
|
|
if (!region->exhausted) {
|
|
region->exhausted = true;
|
|
Printf("%s: Out of memory. ", SanitizerToolName);
|
|
Printf("The process has exhausted %zuMB for size class %zu.\n",
|
|
kRegionSize >> 20, ClassIdToSize(class_id));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
|
|
RegionInfo *region, uptr requested_count) {
|
|
// region->mutex is held.
|
|
const uptr region_beg = GetRegionBeginBySizeClass(class_id);
|
|
const uptr size = ClassIdToSize(class_id);
|
|
|
|
const uptr total_user_bytes =
|
|
region->allocated_user + requested_count * size;
|
|
// Map more space for chunks, if necessary.
|
|
if (LIKELY(total_user_bytes > region->mapped_user)) {
|
|
if (UNLIKELY(region->mapped_user == 0)) {
|
|
if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
|
|
// The random state is initialized from ASLR.
|
|
region->rand_state = static_cast<u32>(region_beg >> 12);
|
|
// Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
|
|
// preventing just allocated memory from being released sooner than
|
|
// necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
|
|
// for short lived processes.
|
|
// Do it only when the feature is turned on, to avoid a potentially
|
|
// extraneous syscall.
|
|
if (ReleaseToOSIntervalMs() >= 0)
|
|
region->rtoi.last_release_at_ns = MonotonicNanoTime();
|
|
}
|
|
// Do the mmap for the user memory.
|
|
const uptr user_map_size =
|
|
RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
|
|
if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
|
|
return false;
|
|
if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
|
|
user_map_size,
|
|
"SizeClassAllocator: region data")))
|
|
return false;
|
|
stat->Add(AllocatorStatMapped, user_map_size);
|
|
region->mapped_user += user_map_size;
|
|
}
|
|
const uptr new_chunks_count =
|
|
(region->mapped_user - region->allocated_user) / size;
|
|
|
|
if (kMetadataSize) {
|
|
// Calculate the required space for metadata.
|
|
const uptr total_meta_bytes =
|
|
region->allocated_meta + new_chunks_count * kMetadataSize;
|
|
const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
|
|
RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
|
|
// Map more space for metadata, if necessary.
|
|
if (meta_map_size) {
|
|
if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
|
|
return false;
|
|
if (UNLIKELY(!MapWithCallback(
|
|
GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
|
|
meta_map_size, "SizeClassAllocator: region metadata")))
|
|
return false;
|
|
region->mapped_meta += meta_map_size;
|
|
}
|
|
}
|
|
|
|
// If necessary, allocate more space for the free array and populate it with
|
|
// newly allocated chunks.
|
|
const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
|
|
if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
|
|
return false;
|
|
CompactPtrT *free_array = GetFreeArray(region_beg);
|
|
for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
|
|
i++, chunk += size)
|
|
free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
|
|
if (kRandomShuffleChunks)
|
|
RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
|
|
®ion->rand_state);
|
|
|
|
// All necessary memory is mapped and now it is safe to advance all
|
|
// 'allocated_*' counters.
|
|
region->num_freed_chunks += new_chunks_count;
|
|
region->allocated_user += new_chunks_count * size;
|
|
CHECK_LE(region->allocated_user, region->mapped_user);
|
|
region->allocated_meta += new_chunks_count * kMetadataSize;
|
|
CHECK_LE(region->allocated_meta, region->mapped_meta);
|
|
region->exhausted = false;
|
|
|
|
// TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
|
|
// MaybeReleaseToOS from releasing just allocated pages or protect these
|
|
// not yet used chunks some other way.
|
|
|
|
return true;
|
|
}
|
|
|
|
class MemoryMapper {
|
|
public:
|
|
MemoryMapper(const ThisT& base_allocator, uptr class_id)
|
|
: allocator(base_allocator),
|
|
region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
|
|
released_ranges_count(0),
|
|
released_bytes(0) {
|
|
}
|
|
|
|
uptr GetReleasedRangesCount() const {
|
|
return released_ranges_count;
|
|
}
|
|
|
|
uptr GetReleasedBytes() const {
|
|
return released_bytes;
|
|
}
|
|
|
|
uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
|
|
// TODO(alekseyshl): The idea to explore is to check if we have enough
|
|
// space between num_freed_chunks*sizeof(CompactPtrT) and
|
|
// mapped_free_array to fit buffer_size bytes and use that space instead
|
|
// of mapping a temporary one.
|
|
return reinterpret_cast<uptr>(
|
|
MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
|
|
}
|
|
|
|
void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
|
|
UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
|
|
}
|
|
|
|
// Releases [from, to) range of pages back to OS.
|
|
void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
|
|
const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
|
|
const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
|
|
ReleaseMemoryPagesToOS(from_page, to_page);
|
|
released_ranges_count++;
|
|
released_bytes += to_page - from_page;
|
|
}
|
|
|
|
private:
|
|
const ThisT& allocator;
|
|
const uptr region_base;
|
|
uptr released_ranges_count;
|
|
uptr released_bytes;
|
|
};
|
|
|
|
// Attempts to release RAM occupied by freed chunks back to OS. The region is
|
|
// expected to be locked.
|
|
void MaybeReleaseToOS(uptr class_id, bool force) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
const uptr chunk_size = ClassIdToSize(class_id);
|
|
const uptr page_size = GetPageSizeCached();
|
|
|
|
uptr n = region->num_freed_chunks;
|
|
if (n * chunk_size < page_size)
|
|
return; // No chance to release anything.
|
|
if ((region->stats.n_freed -
|
|
region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
|
|
return; // Nothing new to release.
|
|
}
|
|
|
|
if (!force) {
|
|
s32 interval_ms = ReleaseToOSIntervalMs();
|
|
if (interval_ms < 0)
|
|
return;
|
|
|
|
if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
|
|
MonotonicNanoTime()) {
|
|
return; // Memory was returned recently.
|
|
}
|
|
}
|
|
|
|
MemoryMapper memory_mapper(*this, class_id);
|
|
|
|
ReleaseFreeMemoryToOS<MemoryMapper>(
|
|
GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
|
|
RoundUpTo(region->allocated_user, page_size) / page_size,
|
|
&memory_mapper);
|
|
|
|
if (memory_mapper.GetReleasedRangesCount() > 0) {
|
|
region->rtoi.n_freed_at_last_release = region->stats.n_freed;
|
|
region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
|
|
region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
|
|
}
|
|
region->rtoi.last_release_at_ns = MonotonicNanoTime();
|
|
}
|
|
};
|