llvm-project/llvm/lib/Target/SystemZ/SystemZInstrFormats.td

4852 lines
167 KiB
TableGen

//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Basic SystemZ instruction definition
//===----------------------------------------------------------------------===//
class InstSystemZ<int size, dag outs, dag ins, string asmstr,
list<dag> pattern> : Instruction {
let Namespace = "SystemZ";
dag OutOperandList = outs;
dag InOperandList = ins;
let Size = size;
let Pattern = pattern;
let AsmString = asmstr;
// Some instructions come in pairs, one having a 12-bit displacement
// and the other having a 20-bit displacement. Both instructions in
// the pair have the same DispKey and their DispSizes are "12" and "20"
// respectively.
string DispKey = "";
string DispSize = "none";
// Many register-based <INSN>R instructions have a memory-based <INSN>
// counterpart. OpKey uniquely identifies <INSN>R, while OpType is
// "reg" for <INSN>R and "mem" for <INSN>.
string OpKey = "";
string OpType = "none";
// Many distinct-operands instructions have older 2-operand equivalents.
// NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
// with NumOpsValue being "2" or "3" as appropriate.
string NumOpsKey = "";
string NumOpsValue = "none";
// True if this instruction is a simple D(X,B) load of a register
// (with no sign or zero extension).
bit SimpleBDXLoad = 0;
// True if this instruction is a simple D(X,B) store of a register
// (with no truncation).
bit SimpleBDXStore = 0;
// True if this instruction has a 20-bit displacement field.
bit Has20BitOffset = 0;
// True if addresses in this instruction have an index register.
bit HasIndex = 0;
// True if this is a 128-bit pseudo instruction that combines two 64-bit
// operations.
bit Is128Bit = 0;
// The access size of all memory operands in bytes, or 0 if not known.
bits<5> AccessBytes = 0;
// If the instruction sets CC to a useful value, this gives the mask
// of all possible CC results. The mask has the same form as
// SystemZ::CCMASK_*.
bits<4> CCValues = 0;
// The subset of CCValues that have the same meaning as they would after
// a comparison of the first operand against zero.
bits<4> CompareZeroCCMask = 0;
// True if the instruction is conditional and if the CC mask operand
// comes first (as for BRC, etc.).
bit CCMaskFirst = 0;
// Similar, but true if the CC mask operand comes last (as for LOC, etc.).
bit CCMaskLast = 0;
// True if the instruction is the "logical" rather than "arithmetic" form,
// in cases where a distinction exists.
bit IsLogical = 0;
let TSFlags{0} = SimpleBDXLoad;
let TSFlags{1} = SimpleBDXStore;
let TSFlags{2} = Has20BitOffset;
let TSFlags{3} = HasIndex;
let TSFlags{4} = Is128Bit;
let TSFlags{9-5} = AccessBytes;
let TSFlags{13-10} = CCValues;
let TSFlags{17-14} = CompareZeroCCMask;
let TSFlags{18} = CCMaskFirst;
let TSFlags{19} = CCMaskLast;
let TSFlags{20} = IsLogical;
}
//===----------------------------------------------------------------------===//
// Mappings between instructions
//===----------------------------------------------------------------------===//
// Return the version of an instruction that has an unsigned 12-bit
// displacement.
def getDisp12Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["DispKey"];
let ColFields = ["DispSize"];
let KeyCol = ["20"];
let ValueCols = [["12"]];
}
// Return the version of an instruction that has a signed 20-bit displacement.
def getDisp20Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["DispKey"];
let ColFields = ["DispSize"];
let KeyCol = ["12"];
let ValueCols = [["20"]];
}
// Return the memory form of a register instruction.
def getMemOpcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["OpKey"];
let ColFields = ["OpType"];
let KeyCol = ["reg"];
let ValueCols = [["mem"]];
}
// Return the 3-operand form of a 2-operand instruction.
def getThreeOperandOpcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["NumOpsKey"];
let ColFields = ["NumOpsValue"];
let KeyCol = ["2"];
let ValueCols = [["3"]];
}
//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
//
// Formats are specified using operand field declarations of the form:
//
// bits<4> Rn : register input or output for operand n
// bits<5> Vn : vector register input or output for operand n
// bits<m> In : immediate value of width m for operand n
// bits<4> BDn : address operand n, which has a base and a displacement
// bits<m> XBDn : address operand n, which has an index, a base and a
// displacement
// bits<m> VBDn : address operand n, which has a vector index, a base and a
// displacement
// bits<4> Xn : index register for address operand n
// bits<4> Mn : mode value for operand n
//
// The operand numbers ("n" in the list above) follow the architecture manual.
// Assembly operands sometimes have a different order; in particular, R3 often
// is often written between operands 1 and 2.
//
//===----------------------------------------------------------------------===//
class InstE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<2, outs, ins, asmstr, pattern> {
field bits<16> Inst;
field bits<16> SoftFail = 0;
let Inst = op;
}
class InstI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<2, outs, ins, asmstr, pattern> {
field bits<16> Inst;
field bits<16> SoftFail = 0;
bits<8> I1;
let Inst{15-8} = op;
let Inst{7-0} = I1;
}
class InstIE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> I1;
bits<4> I2;
let Inst{31-16} = op;
let Inst{15-8} = 0;
let Inst{7-4} = I1;
let Inst{3-0} = I2;
}
class InstMII<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> M1;
bits<12> RI2;
bits<24> RI3;
let Inst{47-40} = op;
let Inst{39-36} = M1;
let Inst{35-24} = RI2;
let Inst{23-0} = RI3;
}
class InstRIa<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<16> I2;
let Inst{31-24} = op{11-4};
let Inst{23-20} = R1;
let Inst{19-16} = op{3-0};
let Inst{15-0} = I2;
}
class InstRIb<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<16> RI2;
let Inst{31-24} = op{11-4};
let Inst{23-20} = R1;
let Inst{19-16} = op{3-0};
let Inst{15-0} = RI2;
}
class InstRIc<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> M1;
bits<16> RI2;
let Inst{31-24} = op{11-4};
let Inst{23-20} = M1;
let Inst{19-16} = op{3-0};
let Inst{15-0} = RI2;
}
class InstRIEa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<16> I2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = 0;
let Inst{31-16} = I2;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M3;
bits<16> RI4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-16} = RI4;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<8> I2;
bits<4> M3;
bits<16> RI4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = M3;
let Inst{31-16} = RI4;
let Inst{15-8} = I2;
let Inst{7-0} = op{7-0};
}
class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> I2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-16} = I2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> RI2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-16} = RI2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<8> I3;
bits<8> I4;
bits<8> I5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-24} = I3;
let Inst{23-16} = I4;
let Inst{15-8} = I5;
let Inst{7-0} = op{7-0};
}
class InstRIEg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> M3;
bits<16> I2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = M3;
let Inst{31-16} = I2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRILa<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<32> I2;
let Inst{47-40} = op{11-4};
let Inst{39-36} = R1;
let Inst{35-32} = op{3-0};
let Inst{31-0} = I2;
}
class InstRILb<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<32> RI2;
let Inst{47-40} = op{11-4};
let Inst{39-36} = R1;
let Inst{35-32} = op{3-0};
let Inst{31-0} = RI2;
}
class InstRILc<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> M1;
bits<32> RI2;
let Inst{47-40} = op{11-4};
let Inst{39-36} = M1;
let Inst{35-32} = op{3-0};
let Inst{31-0} = RI2;
}
class InstRIS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<8> I2;
bits<4> M3;
bits<16> BD4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = M3;
let Inst{31-16} = BD4;
let Inst{15-8} = I2;
let Inst{7-0} = op{7-0};
}
class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<2, outs, ins, asmstr, pattern> {
field bits<16> Inst;
field bits<16> SoftFail = 0;
bits<4> R1;
bits<4> R2;
let Inst{15-8} = op;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-4} = R3;
let Inst{3-0} = R2;
}
class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRFa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> R3;
bits<4> M4;
let Inst{31-16} = op;
let Inst{15-12} = R3;
let Inst{11-8} = M4;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRFb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> R3;
bits<4> M4;
let Inst{31-16} = op;
let Inst{15-12} = R3;
let Inst{11-8} = M4;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRFc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M3;
let Inst{31-16} = op;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRFd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M4;
let Inst{31-16} = op;
let Inst{15-12} = 0;
let Inst{11-8} = M4;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRFe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M3;
bits<4> M4;
let Inst{31-16} = op;
let Inst{15-12} = M3;
let Inst{11-8} = M4;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M3;
bits<16> BD4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-16} = BD4;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRXa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<20> XBD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-0} = XBD2;
let HasIndex = 1;
}
class InstRXb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> M1;
bits<20> XBD2;
let Inst{31-24} = op;
let Inst{23-20} = M1;
let Inst{19-0} = XBD2;
let HasIndex = 1;
}
class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<20> XBD2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-16} = XBD2;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<20> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R3;
let Inst{35-16} = XBD2;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXYa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<28> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-8} = XBD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
let HasIndex = 1;
}
class InstRXYb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> M1;
bits<28> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = M1;
let Inst{35-8} = XBD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
let HasIndex = 1;
}
class InstRSa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> BD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = R3;
let Inst{15-0} = BD2;
}
class InstRSb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> M3;
bits<16> BD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = M3;
let Inst{15-0} = BD2;
}
class InstRSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> RI2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = R3;
let Inst{15-0} = RI2;
}
class InstRSLa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<20> BDL1;
let Inst{47-40} = op{15-8};
let Inst{39-36} = BDL1{19-16};
let Inst{35-32} = 0;
let Inst{31-16} = BDL1{15-0};
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRSLb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<24> BDL2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-16} = BDL2;
let Inst{15-12} = R1;
let Inst{11-8} = M3;
let Inst{7-0} = op{7-0};
}
class InstRSYa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<24> BD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-8} = BD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstRSYb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> M3;
bits<24> BD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = M3;
let Inst{31-8} = BD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<16> BD1;
bits<8> I2;
let Inst{31-24} = op;
let Inst{23-16} = I2;
let Inst{15-0} = BD1;
}
class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<16> BD1;
bits<16> I2;
let Inst{47-32} = op;
let Inst{31-16} = BD1;
let Inst{15-0} = I2;
}
class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<24> BD1;
bits<8> I2;
let Inst{47-40} = op{15-8};
let Inst{39-32} = I2;
let Inst{31-8} = BD1;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSMI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> M1;
bits<16> RI2;
bits<16> BD3;
let Inst{47-40} = op;
let Inst{39-36} = M1;
let Inst{35-32} = 0;
let Inst{31-16} = BD3;
let Inst{15-0} = RI2;
}
class InstSSa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<24> BDL1;
bits<16> BD2;
let Inst{47-40} = op;
let Inst{39-16} = BDL1;
let Inst{15-0} = BD2;
}
class InstSSb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<20> BDL1;
bits<20> BDL2;
let Inst{47-40} = op;
let Inst{39-36} = BDL1{19-16};
let Inst{35-32} = BDL2{19-16};
let Inst{31-16} = BDL1{15-0};
let Inst{15-0} = BDL2{15-0};
}
class InstSSc<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<20> BDL1;
bits<16> BD2;
bits<4> I3;
let Inst{47-40} = op;
let Inst{39-36} = BDL1{19-16};
let Inst{35-32} = I3;
let Inst{31-16} = BDL1{15-0};
let Inst{15-0} = BD2;
}
class InstSSd<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<20> RBD1;
bits<16> BD2;
bits<4> R3;
let Inst{47-40} = op;
let Inst{39-36} = RBD1{19-16};
let Inst{35-32} = R3;
let Inst{31-16} = RBD1{15-0};
let Inst{15-0} = BD2;
}
class InstSSe<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<16> BD2;
bits<4> R3;
bits<16> BD4;
let Inst{47-40} = op;
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-16} = BD2;
let Inst{15-0} = BD4;
}
class InstSSf<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<16> BD1;
bits<24> BDL2;
let Inst{47-40} = op;
let Inst{39-32} = BDL2{23-16};
let Inst{31-16} = BD1;
let Inst{15-0} = BDL2{15-0};
}
class InstSSE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<16> BD1;
bits<16> BD2;
let Inst{47-32} = op;
let Inst{31-16} = BD1;
let Inst{15-0} = BD2;
}
class InstSSF<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<16> BD1;
bits<16> BD2;
bits<4> R3;
let Inst{47-40} = op{11-4};
let Inst{39-36} = R3;
let Inst{35-32} = op{3-0};
let Inst{31-16} = BD1;
let Inst{15-0} = BD2;
}
class InstS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<16> BD2;
let Inst{31-16} = op;
let Inst{15-0} = BD2;
}
class InstVRIa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<16> I2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = 0;
let Inst{31-16} = I2;
let Inst{15-12} = M3;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<8> I2;
bits<8> I3;
bits<4> M4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = 0;
let Inst{31-24} = I2;
let Inst{23-16} = I3;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V3;
bits<16> I2;
bits<4> M4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V3{3-0};
let Inst{31-16} = I2;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10} = V3{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRId<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<5> V3;
bits<8> I4;
bits<4> M5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-28} = V3{3-0};
let Inst{27-24} = 0;
let Inst{23-16} = I4;
let Inst{15-12} = M5;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9} = V3{4};
let Inst{8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<12> I3;
bits<4> M4;
bits<4> M5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-20} = I3;
let Inst{19-16} = M5;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<5> V3;
bits<8> I4;
bits<4> M5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-28} = V3{3-0};
let Inst{27-24} = 0;
let Inst{23-20} = M5;
let Inst{19-12} = I4;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9} = V3{4};
let Inst{8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<8> I3;
bits<8> I4;
bits<4> M5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-24} = I4;
let Inst{23-20} = M5;
let Inst{19-12} = I3;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIh<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<16> I2;
bits<4> I3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = 0;
let Inst{31-16} = I2;
let Inst{15-12} = I3;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRIi<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<4> R2;
bits<8> I3;
bits<4> M4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = R2;
let Inst{31-24} = 0;
let Inst{23-20} = M4;
let Inst{19-12} = I3;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
// Depending on the instruction mnemonic, certain bits may be or-ed into
// the M4 value provided as explicit operand. These are passed as m4or.
class InstVRRa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
bits<4> m4or = 0>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<4> M3;
bits<4> M4;
bits<4> M5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-24} = 0;
let Inst{23-20} = M5;
let Inst{19} = !if (!eq (m4or{3}, 1), 1, M4{3});
let Inst{18} = !if (!eq (m4or{2}, 1), 1, M4{2});
let Inst{17} = !if (!eq (m4or{1}, 1), 1, M4{1});
let Inst{16} = !if (!eq (m4or{0}, 1), 1, M4{0});
let Inst{15-12} = M3;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
// Depending on the instruction mnemonic, certain bits may be or-ed into
// the M5 value provided as explicit operand. These are passed as m5or.
class InstVRRb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
bits<4> m5or = 0>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<5> V3;
bits<4> M4;
bits<4> M5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-28} = V3{3-0};
let Inst{27-24} = 0;
let Inst{23} = !if (!eq (m5or{3}, 1), 1, M5{3});
let Inst{22} = !if (!eq (m5or{2}, 1), 1, M5{2});
let Inst{21} = !if (!eq (m5or{1}, 1), 1, M5{1});
let Inst{20} = !if (!eq (m5or{0}, 1), 1, M5{0});
let Inst{19-16} = 0;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9} = V3{4};
let Inst{8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRRc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<5> V3;
bits<4> M4;
bits<4> M5;
bits<4> M6;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-28} = V3{3-0};
let Inst{27-24} = 0;
let Inst{23-20} = M6;
let Inst{19-16} = M5;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9} = V3{4};
let Inst{8} = 0;
let Inst{7-0} = op{7-0};
}
// Depending on the instruction mnemonic, certain bits may be or-ed into
// the M6 value provided as explicit operand. These are passed as m6or.
class InstVRRd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
bits<4> m6or = 0>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<5> V3;
bits<5> V4;
bits<4> M5;
bits<4> M6;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-28} = V3{3-0};
let Inst{27-24} = M5;
let Inst{23} = !if (!eq (m6or{3}, 1), 1, M6{3});
let Inst{22} = !if (!eq (m6or{2}, 1), 1, M6{2});
let Inst{21} = !if (!eq (m6or{1}, 1), 1, M6{1});
let Inst{20} = !if (!eq (m6or{0}, 1), 1, M6{0});
let Inst{19-16} = 0;
let Inst{15-12} = V4{3-0};
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9} = V3{4};
let Inst{8} = V4{4};
let Inst{7-0} = op{7-0};
}
class InstVRRe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<5> V3;
bits<5> V4;
bits<4> M5;
bits<4> M6;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V2{3-0};
let Inst{31-28} = V3{3-0};
let Inst{27-24} = M6;
let Inst{23-20} = 0;
let Inst{19-16} = M5;
let Inst{15-12} = V4{3-0};
let Inst{11} = V1{4};
let Inst{10} = V2{4};
let Inst{9} = V3{4};
let Inst{8} = V4{4};
let Inst{7-0} = op{7-0};
}
class InstVRRf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<4> R2;
bits<4> R3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = R2;
let Inst{31-28} = R3;
let Inst{27-12} = 0;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRRg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
let Inst{47-40} = op{15-8};
let Inst{39-36} = 0;
let Inst{35-32} = V1{3-0};
let Inst{31-12} = 0;
let Inst{11} = 0;
let Inst{10} = V1{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRRh<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<5> V2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = 0;
let Inst{35-32} = V1{3-0};
let Inst{31-28} = V2{3-0};
let Inst{27-24} = 0;
let Inst{23-20} = M3;
let Inst{19-12} = 0;
let Inst{11} = 0;
let Inst{10} = V1{4};
let Inst{9} = V2{4};
let Inst{8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRRi<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<5> V2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = V2{3-0};
let Inst{31-24} = 0;
let Inst{23-20} = M3;
let Inst{19-12} = 0;
let Inst{11} = 0;
let Inst{10} = V2{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRSa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<16> BD2;
bits<5> V3;
bits<4> M4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = V3{3-0};
let Inst{31-16} = BD2;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10} = V3{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRSb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<16> BD2;
bits<4> R3;
bits<4> M4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-32} = R3;
let Inst{31-16} = BD2;
let Inst{15-12} = M4;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRSc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<16> BD2;
bits<5> V3;
bits<4> M4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = V3{3-0};
let Inst{31-16} = BD2;
let Inst{15-12} = M4;
let Inst{11} = 0;
let Inst{10} = V3{4};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRSd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<16> BD2;
bits<4> R3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = 0;
let Inst{35-32} = R3;
let Inst{31-16} = BD2;
let Inst{15-12} = V1{3-0};
let Inst{11-9} = 0;
let Inst{8} = V1{4};
let Inst{7-0} = op{7-0};
}
class InstVRV<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<21> VBD2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-16} = VBD2{19-0};
let Inst{15-12} = M3;
let Inst{11} = V1{4};
let Inst{10} = VBD2{20};
let Inst{9-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVRX<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<20> XBD2;
bits<4> M3;
let Inst{47-40} = op{15-8};
let Inst{39-36} = V1{3-0};
let Inst{35-16} = XBD2;
let Inst{15-12} = M3;
let Inst{11} = V1{4};
let Inst{10-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstVSI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<5> V1;
bits<16> BD2;
bits<8> I3;
let Inst{47-40} = op{15-8};
let Inst{39-32} = I3;
let Inst{31-16} = BD2;
let Inst{15-12} = V1{3-0};
let Inst{11-9} = 0;
let Inst{8} = V1{4};
let Inst{7-0} = op{7-0};
}
//===----------------------------------------------------------------------===//
// Instruction classes for .insn directives
//===----------------------------------------------------------------------===//
class DirectiveInsnE<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstE<0, outs, ins, asmstr, pattern> {
bits<16> enc;
let Inst = enc;
}
class DirectiveInsnRI<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRIa<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-24} = enc{31-24};
let Inst{19-16} = enc{19-16};
}
class DirectiveInsnRIE<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRIEd<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRIL<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRILa<0, outs, ins, asmstr, pattern> {
bits<48> enc;
string type;
let Inst{47-40} = enc{47-40};
let Inst{35-32} = enc{35-32};
}
class DirectiveInsnRIS<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRIS<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRR<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRR<0, outs, ins, asmstr, pattern> {
bits<16> enc;
let Inst{15-8} = enc{15-8};
}
class DirectiveInsnRRE<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRRE<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-16} = enc{31-16};
}
class DirectiveInsnRRF<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRRFa<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-16} = enc{31-16};
}
class DirectiveInsnRRS<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRRS<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRS<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRSa<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-24} = enc{31-24};
}
// RSE is like RSY except with a 12 bit displacement (instead of 20).
class DirectiveInsnRSE<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRSYa<6, outs, ins, asmstr, pattern> {
bits <48> enc;
let Inst{47-40} = enc{47-40};
let Inst{31-16} = BD2{15-0};
let Inst{15-8} = 0;
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRSI<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRSI<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-24} = enc{31-24};
}
class DirectiveInsnRSY<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRSYa<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRX<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRXa<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-24} = enc{31-24};
}
class DirectiveInsnRXE<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRXE<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let M3 = 0;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRXF<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRXF<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnRXY<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstRXYa<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnS<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstS<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-16} = enc{31-16};
}
class DirectiveInsnSI<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSI<0, outs, ins, asmstr, pattern> {
bits<32> enc;
let Inst{31-24} = enc{31-24};
}
class DirectiveInsnSIY<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSIY<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{7-0} = enc{7-0};
}
class DirectiveInsnSIL<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSIL<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-32} = enc{47-32};
}
class DirectiveInsnSS<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSSd<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
}
class DirectiveInsnSSE<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSSE<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-32} = enc{47-32};
}
class DirectiveInsnSSF<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSSF<0, outs, ins, asmstr, pattern> {
bits<48> enc;
let Inst{47-40} = enc{47-40};
let Inst{35-32} = enc{35-32};
}
//===----------------------------------------------------------------------===//
// Variants of instructions with condition mask
//===----------------------------------------------------------------------===//
//
// For instructions using a condition mask (e.g. conditional branches,
// compare-and-branch instructions, or conditional move instructions),
// we generally need to create multiple instruction patterns:
//
// - One used for code generation, which encodes the condition mask as an
// MI operand, but writes out an extended mnemonic for better readability.
// - One pattern for the base form of the instruction with an explicit
// condition mask (encoded as a plain integer MI operand).
// - Specific patterns for each extended mnemonic, where the condition mask
// is implied by the pattern name and not otherwise encoded at all.
//
// We need the latter primarily for the assembler and disassembler, since the
// assembler parser is not able to decode part of an instruction mnemonic
// into an operand. Thus we provide separate patterns for each mnemonic.
//
// Note that in some cases there are two different mnemonics for the same
// condition mask. In this case we cannot have both instructions available
// to the disassembler at the same time since the encodings are not distinct.
// Therefore the alternate forms are marked isAsmParserOnly.
//
// We don't make one of the two names an alias of the other because
// we need the custom parsing routines to select the correct register class.
//
// This section provides helpers for generating the specific forms.
//
//===----------------------------------------------------------------------===//
// A class to describe a variant of an instruction with condition mask.
class CondVariant<bits<4> ccmaskin, string suffixin, bit alternatein> {
// The fixed condition mask to use.
bits<4> ccmask = ccmaskin;
// The suffix to use for the extended assembler mnemonic.
string suffix = suffixin;
// Whether this is an alternate that needs to be marked isAsmParserOnly.
bit alternate = alternatein;
}
// Condition mask 15 means "always true", which is used to define
// unconditional branches as a variant of conditional branches.
def CondAlways : CondVariant<15, "", 0>;
// Condition masks for general instructions that can set all 4 bits.
def CondVariantO : CondVariant<1, "o", 0>;
def CondVariantH : CondVariant<2, "h", 0>;
def CondVariantP : CondVariant<2, "p", 1>;
def CondVariantNLE : CondVariant<3, "nle", 0>;
def CondVariantL : CondVariant<4, "l", 0>;
def CondVariantM : CondVariant<4, "m", 1>;
def CondVariantNHE : CondVariant<5, "nhe", 0>;
def CondVariantLH : CondVariant<6, "lh", 0>;
def CondVariantNE : CondVariant<7, "ne", 0>;
def CondVariantNZ : CondVariant<7, "nz", 1>;
def CondVariantE : CondVariant<8, "e", 0>;
def CondVariantZ : CondVariant<8, "z", 1>;
def CondVariantNLH : CondVariant<9, "nlh", 0>;
def CondVariantHE : CondVariant<10, "he", 0>;
def CondVariantNL : CondVariant<11, "nl", 0>;
def CondVariantNM : CondVariant<11, "nm", 1>;
def CondVariantLE : CondVariant<12, "le", 0>;
def CondVariantNH : CondVariant<13, "nh", 0>;
def CondVariantNP : CondVariant<13, "np", 1>;
def CondVariantNO : CondVariant<14, "no", 0>;
// A helper class to look up one of the above by name.
class CV<string name>
: CondVariant<!cast<CondVariant>("CondVariant"#name).ccmask,
!cast<CondVariant>("CondVariant"#name).suffix,
!cast<CondVariant>("CondVariant"#name).alternate>;
// Condition masks for integer instructions (e.g. compare-and-branch).
// This is like the list above, except that condition 3 is not possible
// and that the low bit of the mask is therefore always 0. This means
// that each condition has two names. Conditions "o" and "no" are not used.
def IntCondVariantH : CondVariant<2, "h", 0>;
def IntCondVariantNLE : CondVariant<2, "nle", 1>;
def IntCondVariantL : CondVariant<4, "l", 0>;
def IntCondVariantNHE : CondVariant<4, "nhe", 1>;
def IntCondVariantLH : CondVariant<6, "lh", 0>;
def IntCondVariantNE : CondVariant<6, "ne", 1>;
def IntCondVariantE : CondVariant<8, "e", 0>;
def IntCondVariantNLH : CondVariant<8, "nlh", 1>;
def IntCondVariantHE : CondVariant<10, "he", 0>;
def IntCondVariantNL : CondVariant<10, "nl", 1>;
def IntCondVariantLE : CondVariant<12, "le", 0>;
def IntCondVariantNH : CondVariant<12, "nh", 1>;
// A helper class to look up one of the above by name.
class ICV<string name>
: CondVariant<!cast<CondVariant>("IntCondVariant"#name).ccmask,
!cast<CondVariant>("IntCondVariant"#name).suffix,
!cast<CondVariant>("IntCondVariant"#name).alternate>;
//===----------------------------------------------------------------------===//
// Instruction definitions with semantics
//===----------------------------------------------------------------------===//
//
// These classes have the form [Cond]<Category><Format>, where <Format> is one
// of the formats defined above and where <Category> describes the inputs
// and outputs. "Cond" is used if the instruction is conditional,
// in which case the 4-bit condition-code mask is added as a final operand.
// <Category> can be one of:
//
// Inherent:
// One register output operand and no input operands.
//
// InherentDual:
// Two register output operands and no input operands.
//
// StoreInherent:
// One address operand. The instruction stores to the address.
//
// SideEffectInherent:
// No input or output operands, but causes some side effect.
//
// Branch:
// One branch target. The instruction branches to the target.
//
// Call:
// One output operand and one branch target. The instruction stores
// the return address to the output operand and branches to the target.
//
// CmpBranch:
// Two input operands and one optional branch target. The instruction
// compares the two input operands and branches or traps on the result.
//
// BranchUnary:
// One register output operand, one register input operand and one branch
// target. The instructions stores a modified form of the source register
// in the destination register and branches on the result.
//
// BranchBinary:
// One register output operand, two register input operands and one branch
// target. The instructions stores a modified form of one of the source
// registers in the destination register and branches on the result.
//
// LoadMultiple:
// One address input operand and two explicit output operands.
// The instruction loads a range of registers from the address,
// with the explicit operands giving the first and last register
// to load. Other loaded registers are added as implicit definitions.
//
// StoreMultiple:
// Two explicit input register operands and an address operand.
// The instruction stores a range of registers to the address,
// with the explicit operands giving the first and last register
// to store. Other stored registers are added as implicit uses.
//
// StoreLength:
// One value operand, one length operand and one address operand.
// The instruction stores the value operand to the address but
// doesn't write more than the number of bytes specified by the
// length operand.
//
// LoadAddress:
// One register output operand and one address operand.
//
// SideEffectAddress:
// One address operand. No output operands, but causes some side effect.
//
// Unary:
// One register output operand and one input operand.
//
// Store:
// One address operand and one other input operand. The instruction
// stores to the address.
//
// SideEffectUnary:
// One input operand. No output operands, but causes some side effect.
//
// Binary:
// One register output operand and two input operands.
//
// StoreBinary:
// One address operand and two other input operands. The instruction
// stores to the address.
//
// SideEffectBinary:
// Two input operands. No output operands, but causes some side effect.
//
// Compare:
// Two input operands and an implicit CC output operand.
//
// Test:
// One or two input operands and an implicit CC output operand. If
// present, the second input operand is an "address" operand used as
// a test class mask.
//
// Ternary:
// One register output operand and three input operands.
//
// SideEffectTernary:
// Three input operands. No output operands, but causes some side effect.
//
// Quaternary:
// One register output operand and four input operands.
//
// LoadAndOp:
// One output operand and two input operands, one of which is an address.
// The instruction both reads from and writes to the address.
//
// CmpSwap:
// One output operand and three input operands, one of which is an address.
// The instruction both reads from and writes to the address.
//
// RotateSelect:
// One output operand and five input operands. The first two operands
// are registers and the other three are immediates.
//
// Prefetch:
// One 4-bit immediate operand and one address operand. The immediate
// operand is 1 for a load prefetch and 2 for a store prefetch.
//
// BranchPreload:
// One 4-bit immediate operand and two address operands.
//
// The format determines which input operands are tied to output operands,
// and also determines the shape of any address operand.
//
// Multiclasses of the form <Category><Format>Pair define two instructions,
// one with <Category><Format> and one with <Category><Format>Y. The name
// of the first instruction has no suffix, the name of the second has
// an extra "y".
//
//===----------------------------------------------------------------------===//
class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
SDPatternOperator operator>
: InstRRE<opcode, (outs cls:$R1), (ins),
mnemonic#"\t$R1",
[(set cls:$R1, (operator))]> {
let R2 = 0;
}
class InherentDualRRE<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRRE<opcode, (outs cls:$R1, cls:$R2), (ins),
mnemonic#"\t$R1, $R2", []>;
class InherentVRIa<string mnemonic, bits<16> opcode, bits<16> value>
: InstVRIa<opcode, (outs VR128:$V1), (ins), mnemonic#"\t$V1", []> {
let I2 = value;
let M3 = 0;
}
class StoreInherentS<string mnemonic, bits<16> opcode,
SDPatternOperator operator, bits<5> bytes>
: InstS<opcode, (outs), (ins bdaddr12only:$BD2),
mnemonic#"\t$BD2", [(operator bdaddr12only:$BD2)]> {
let mayStore = 1;
let AccessBytes = bytes;
}
class SideEffectInherentE<string mnemonic, bits<16>opcode>
: InstE<opcode, (outs), (ins), mnemonic, []>;
class SideEffectInherentS<string mnemonic, bits<16> opcode,
SDPatternOperator operator>
: InstS<opcode, (outs), (ins), mnemonic, [(operator)]> {
let BD2 = 0;
}
class SideEffectInherentRRE<string mnemonic, bits<16> opcode>
: InstRRE<opcode, (outs), (ins), mnemonic, []> {
let R1 = 0;
let R2 = 0;
}
// Allow an optional TLS marker symbol to generate TLS call relocations.
class CallRI<string mnemonic, bits<12> opcode>
: InstRIb<opcode, (outs), (ins GR64:$R1, brtarget16tls:$RI2),
mnemonic#"\t$R1, $RI2", []>;
// Allow an optional TLS marker symbol to generate TLS call relocations.
class CallRIL<string mnemonic, bits<12> opcode>
: InstRILb<opcode, (outs), (ins GR64:$R1, brtarget32tls:$RI2),
mnemonic#"\t$R1, $RI2", []>;
class CallRR<string mnemonic, bits<8> opcode>
: InstRR<opcode, (outs), (ins GR64:$R1, ADDR64:$R2),
mnemonic#"\t$R1, $R2", []>;
class CallRX<string mnemonic, bits<8> opcode>
: InstRXa<opcode, (outs), (ins GR64:$R1, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2", []>;
class CondBranchRI<string mnemonic, bits<12> opcode,
SDPatternOperator operator = null_frag>
: InstRIc<opcode, (outs), (ins cond4:$valid, cond4:$M1, brtarget16:$RI2),
!subst("#", "${M1}", mnemonic)#"\t$RI2",
[(operator cond4:$valid, cond4:$M1, bb:$RI2)]> {
let CCMaskFirst = 1;
}
class AsmCondBranchRI<string mnemonic, bits<12> opcode>
: InstRIc<opcode, (outs), (ins imm32zx4:$M1, brtarget16:$RI2),
mnemonic#"\t$M1, $RI2", []>;
class FixedCondBranchRI<CondVariant V, string mnemonic, bits<12> opcode,
SDPatternOperator operator = null_frag>
: InstRIc<opcode, (outs), (ins brtarget16:$RI2),
!subst("#", V.suffix, mnemonic)#"\t$RI2", [(operator bb:$RI2)]> {
let isAsmParserOnly = V.alternate;
let M1 = V.ccmask;
}
class CondBranchRIL<string mnemonic, bits<12> opcode>
: InstRILc<opcode, (outs), (ins cond4:$valid, cond4:$M1, brtarget32:$RI2),
!subst("#", "${M1}", mnemonic)#"\t$RI2", []> {
let CCMaskFirst = 1;
}
class AsmCondBranchRIL<string mnemonic, bits<12> opcode>
: InstRILc<opcode, (outs), (ins imm32zx4:$M1, brtarget32:$RI2),
mnemonic#"\t$M1, $RI2", []>;
class FixedCondBranchRIL<CondVariant V, string mnemonic, bits<12> opcode>
: InstRILc<opcode, (outs), (ins brtarget32:$RI2),
!subst("#", V.suffix, mnemonic)#"\t$RI2", []> {
let isAsmParserOnly = V.alternate;
let M1 = V.ccmask;
}
class CondBranchRR<string mnemonic, bits<8> opcode>
: InstRR<opcode, (outs), (ins cond4:$valid, cond4:$R1, GR64:$R2),
!subst("#", "${R1}", mnemonic)#"\t$R2", []> {
let CCMaskFirst = 1;
}
class AsmCondBranchRR<string mnemonic, bits<8> opcode>
: InstRR<opcode, (outs), (ins imm32zx4:$R1, GR64:$R2),
mnemonic#"\t$R1, $R2", []>;
class FixedCondBranchRR<CondVariant V, string mnemonic, bits<8> opcode,
SDPatternOperator operator = null_frag>
: InstRR<opcode, (outs), (ins ADDR64:$R2),
!subst("#", V.suffix, mnemonic)#"\t$R2", [(operator ADDR64:$R2)]> {
let isAsmParserOnly = V.alternate;
let R1 = V.ccmask;
}
class CondBranchRX<string mnemonic, bits<8> opcode>
: InstRXb<opcode, (outs), (ins cond4:$valid, cond4:$M1, bdxaddr12only:$XBD2),
!subst("#", "${M1}", mnemonic)#"\t$XBD2", []> {
let CCMaskFirst = 1;
}
class AsmCondBranchRX<string mnemonic, bits<8> opcode>
: InstRXb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr12only:$XBD2),
mnemonic#"\t$M1, $XBD2", []>;
class FixedCondBranchRX<CondVariant V, string mnemonic, bits<8> opcode>
: InstRXb<opcode, (outs), (ins bdxaddr12only:$XBD2),
!subst("#", V.suffix, mnemonic)#"\t$XBD2", []> {
let isAsmParserOnly = V.alternate;
let M1 = V.ccmask;
}
class CondBranchRXY<string mnemonic, bits<16> opcode>
: InstRXYb<opcode, (outs), (ins cond4:$valid, cond4:$M1, bdxaddr20only:$XBD2),
!subst("#", "${M1}", mnemonic)#"\t$XBD2", []> {
let CCMaskFirst = 1;
}
class AsmCondBranchRXY<string mnemonic, bits<16> opcode>
: InstRXYb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr20only:$XBD2),
mnemonic#"\t$M1, $XBD2", []>;
class FixedCondBranchRXY<CondVariant V, string mnemonic, bits<16> opcode,
SDPatternOperator operator = null_frag>
: InstRXYb<opcode, (outs), (ins bdxaddr20only:$XBD2),
!subst("#", V.suffix, mnemonic)#"\t$XBD2",
[(operator (load bdxaddr20only:$XBD2))]> {
let isAsmParserOnly = V.alternate;
let M1 = V.ccmask;
}
class CmpBranchRIEa<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2, cond4:$M3),
mnemonic#"$M3\t$R1, $I2", []>;
class AsmCmpBranchRIEa<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2, imm32zx4:$M3),
mnemonic#"\t$R1, $I2, $M3", []>;
class FixedCmpBranchRIEa<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#V.suffix#"\t$R1, $I2", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CmpBranchRIEaPair<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRIEa<mnemonic, opcode, cls, imm>;
def Asm : AsmCmpBranchRIEa<mnemonic, opcode, cls, imm>;
}
class CmpBranchRIEb<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRIEb<opcode, (outs),
(ins cls:$R1, cls:$R2, cond4:$M3, brtarget16:$RI4),
mnemonic#"$M3\t$R1, $R2, $RI4", []>;
class AsmCmpBranchRIEb<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRIEb<opcode, (outs),
(ins cls:$R1, cls:$R2, imm32zx4:$M3, brtarget16:$RI4),
mnemonic#"\t$R1, $R2, $M3, $RI4", []>;
class FixedCmpBranchRIEb<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRIEb<opcode, (outs), (ins cls:$R1, cls:$R2, brtarget16:$RI4),
mnemonic#V.suffix#"\t$R1, $R2, $RI4", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CmpBranchRIEbPair<string mnemonic, bits<16> opcode,
RegisterOperand cls> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRIEb<mnemonic, opcode, cls>;
def Asm : AsmCmpBranchRIEb<mnemonic, opcode, cls>;
}
class CmpBranchRIEc<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEc<opcode, (outs),
(ins cls:$R1, imm:$I2, cond4:$M3, brtarget16:$RI4),
mnemonic#"$M3\t$R1, $I2, $RI4", []>;
class AsmCmpBranchRIEc<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEc<opcode, (outs),
(ins cls:$R1, imm:$I2, imm32zx4:$M3, brtarget16:$RI4),
mnemonic#"\t$R1, $I2, $M3, $RI4", []>;
class FixedCmpBranchRIEc<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEc<opcode, (outs), (ins cls:$R1, imm:$I2, brtarget16:$RI4),
mnemonic#V.suffix#"\t$R1, $I2, $RI4", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CmpBranchRIEcPair<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRIEc<mnemonic, opcode, cls, imm>;
def Asm : AsmCmpBranchRIEc<mnemonic, opcode, cls, imm>;
}
class CmpBranchRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2, cond4:$M3),
mnemonic#"$M3\t$R1, $R2", []>;
class AsmCmpBranchRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2, imm32zx4:$M3),
mnemonic#"\t$R1, $R2, $M3", []>;
multiclass CmpBranchRRFcPair<string mnemonic, bits<16> opcode,
RegisterOperand cls> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRRFc<mnemonic, opcode, cls>;
def Asm : AsmCmpBranchRRFc<mnemonic, opcode, cls>;
}
class FixedCmpBranchRRFc<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2),
mnemonic#V.suffix#"\t$R1, $R2", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
class CmpBranchRRS<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRRS<opcode, (outs),
(ins cls:$R1, cls:$R2, cond4:$M3, bdaddr12only:$BD4),
mnemonic#"$M3\t$R1, $R2, $BD4", []>;
class AsmCmpBranchRRS<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRRS<opcode, (outs),
(ins cls:$R1, cls:$R2, imm32zx4:$M3, bdaddr12only:$BD4),
mnemonic#"\t$R1, $R2, $M3, $BD4", []>;
class FixedCmpBranchRRS<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRRS<opcode, (outs), (ins cls:$R1, cls:$R2, bdaddr12only:$BD4),
mnemonic#V.suffix#"\t$R1, $R2, $BD4", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CmpBranchRRSPair<string mnemonic, bits<16> opcode,
RegisterOperand cls> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRRS<mnemonic, opcode, cls>;
def Asm : AsmCmpBranchRRS<mnemonic, opcode, cls>;
}
class CmpBranchRIS<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIS<opcode, (outs),
(ins cls:$R1, imm:$I2, cond4:$M3, bdaddr12only:$BD4),
mnemonic#"$M3\t$R1, $I2, $BD4", []>;
class AsmCmpBranchRIS<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIS<opcode, (outs),
(ins cls:$R1, imm:$I2, imm32zx4:$M3, bdaddr12only:$BD4),
mnemonic#"\t$R1, $I2, $M3, $BD4", []>;
class FixedCmpBranchRIS<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIS<opcode, (outs), (ins cls:$R1, imm:$I2, bdaddr12only:$BD4),
mnemonic#V.suffix#"\t$R1, $I2, $BD4", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CmpBranchRISPair<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRIS<mnemonic, opcode, cls, imm>;
def Asm : AsmCmpBranchRIS<mnemonic, opcode, cls, imm>;
}
class CmpBranchRSYb<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRSYb<opcode, (outs), (ins cls:$R1, bdaddr20only:$BD2, cond4:$M3),
mnemonic#"$M3\t$R1, $BD2", []>;
class AsmCmpBranchRSYb<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRSYb<opcode, (outs), (ins cls:$R1, bdaddr20only:$BD2, imm32zx4:$M3),
mnemonic#"\t$R1, $M3, $BD2", []>;
multiclass CmpBranchRSYbPair<string mnemonic, bits<16> opcode,
RegisterOperand cls> {
let isCodeGenOnly = 1 in
def "" : CmpBranchRSYb<mnemonic, opcode, cls>;
def Asm : AsmCmpBranchRSYb<mnemonic, opcode, cls>;
}
class FixedCmpBranchRSYb<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRSYb<opcode, (outs), (ins cls:$R1, bdaddr20only:$BD2),
mnemonic#V.suffix#"\t$R1, $BD2", []> {
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
: InstRIb<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$RI2),
mnemonic##"\t$R1, $RI2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchUnaryRIL<string mnemonic, bits<12> opcode, RegisterOperand cls>
: InstRILb<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget32:$RI2),
mnemonic##"\t$R1, $RI2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchUnaryRR<string mnemonic, bits<8> opcode, RegisterOperand cls>
: InstRR<opcode, (outs cls:$R1), (ins cls:$R1src, GR64:$R2),
mnemonic##"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchUnaryRRE<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRRE<opcode, (outs cls:$R1), (ins cls:$R1src, GR64:$R2),
mnemonic##"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchUnaryRX<string mnemonic, bits<8> opcode, RegisterOperand cls>
: InstRXa<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
mnemonic##"\t$R1, $XBD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchUnaryRXY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRXYa<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr20only:$XBD2),
mnemonic##"\t$R1, $XBD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchBinaryRSI<string mnemonic, bits<8> opcode, RegisterOperand cls>
: InstRSI<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, brtarget16:$RI2),
mnemonic##"\t$R1, $R3, $RI2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchBinaryRIEe<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRIEe<opcode, (outs cls:$R1),
(ins cls:$R1src, cls:$R3, brtarget16:$RI2),
mnemonic##"\t$R1, $R3, $RI2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchBinaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls>
: InstRSa<opcode, (outs cls:$R1),
(ins cls:$R1src, cls:$R3, bdaddr12only:$BD2),
mnemonic##"\t$R1, $R3, $BD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BranchBinaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSYa<opcode,
(outs cls:$R1), (ins cls:$R1src, cls:$R3, bdaddr20only:$BD2),
mnemonic##"\t$R1, $R3, $BD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class LoadMultipleRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
AddressingMode mode = bdaddr12only>
: InstRSa<opcode, (outs cls:$R1, cls:$R3), (ins mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayLoad = 1;
}
class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
AddressingMode mode = bdaddr20only>
: InstRSYa<opcode, (outs cls:$R1, cls:$R3), (ins mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayLoad = 1;
}
multiclass LoadMultipleRSPair<string mnemonic, bits<8> rsOpcode,
bits<16> rsyOpcode, RegisterOperand cls> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : LoadMultipleRS<mnemonic, rsOpcode, cls, bdaddr12pair>;
let DispSize = "20" in
def Y : LoadMultipleRSY<mnemonic#"y", rsyOpcode, cls, bdaddr20pair>;
}
}
class LoadMultipleSSe<string mnemonic, bits<8> opcode, RegisterOperand cls>
: InstSSe<opcode, (outs cls:$R1, cls:$R3),
(ins bdaddr12only:$BD2, bdaddr12only:$BD4),
mnemonic#"\t$R1, $R3, $BD2, $BD4", []> {
let mayLoad = 1;
}
class LoadMultipleVRSa<string mnemonic, bits<16> opcode>
: InstVRSa<opcode, (outs VR128:$V1, VR128:$V3), (ins bdaddr12only:$BD2),
mnemonic#"\t$V1, $V3, $BD2", []> {
let M4 = 0;
let mayLoad = 1;
}
class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
mnemonic#"\t$R1, $RI2",
[(operator cls:$R1, pcrel32:$RI2)]> {
let mayStore = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRXa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, mode:$XBD2)]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXYa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, mode:$XBD2)]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let mayStore = 1;
let AccessBytes = bytes;
}
multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
let DispSize = "20" in
def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
bdxaddr20pair>;
}
}
class StoreVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, bits<5> bytes, bits<4> type = 0>
: InstVRX<opcode, (outs), (ins tr.op:$V1, bdxaddr12only:$XBD2),
mnemonic#"\t$V1, $XBD2",
[(set tr.op:$V1, (tr.vt (operator bdxaddr12only:$XBD2)))]> {
let M3 = type;
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreLengthVRSb<string mnemonic, bits<16> opcode,
SDPatternOperator operator, bits<5> bytes>
: InstVRSb<opcode, (outs), (ins VR128:$V1, GR32:$R3, bdaddr12only:$BD2),
mnemonic#"\t$V1, $R3, $BD2",
[(operator VR128:$V1, GR32:$R3, bdaddr12only:$BD2)]> {
let M4 = 0;
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreLengthVRSd<string mnemonic, bits<16> opcode,
SDPatternOperator operator, bits<5> bytes>
: InstVRSd<opcode, (outs), (ins VR128:$V1, GR32:$R3, bdaddr12only:$BD2),
mnemonic#"\t$V1, $R3, $BD2",
[(operator VR128:$V1, GR32:$R3, bdaddr12only:$BD2)]> {
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreLengthVSI<string mnemonic, bits<16> opcode,
SDPatternOperator operator, bits<5> bytes>
: InstVSI<opcode, (outs), (ins VR128:$V1, bdaddr12only:$BD2, imm32zx8:$I3),
mnemonic#"\t$V1, $BD2, $I3",
[(operator VR128:$V1, imm32zx8:$I3, bdaddr12only:$BD2)]> {
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreMultipleRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
AddressingMode mode = bdaddr12only>
: InstRSa<opcode, (outs), (ins cls:$R1, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayStore = 1;
}
class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
AddressingMode mode = bdaddr20only>
: InstRSYa<opcode, (outs), (ins cls:$R1, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayStore = 1;
}
multiclass StoreMultipleRSPair<string mnemonic, bits<8> rsOpcode,
bits<16> rsyOpcode, RegisterOperand cls> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : StoreMultipleRS<mnemonic, rsOpcode, cls, bdaddr12pair>;
let DispSize = "20" in
def Y : StoreMultipleRSY<mnemonic#"y", rsyOpcode, cls, bdaddr20pair>;
}
}
class StoreMultipleVRSa<string mnemonic, bits<16> opcode>
: InstVRSa<opcode, (outs), (ins VR128:$V1, VR128:$V3, bdaddr12only:$BD2),
mnemonic#"\t$V1, $V3, $BD2", []> {
let M4 = 0;
let mayStore = 1;
}
// StoreSI* instructions are used to store an integer to memory, but the
// addresses are more restricted than for normal stores. If we are in the
// situation of having to force either the address into a register or the
// constant into a register, it's usually better to do the latter.
// We therefore match the address in the same way as a normal store and
// only use the StoreSI* instruction if the matched address is suitable.
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Immediate imm>
: InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mviaddr12pair:$BD1)]> {
let mayStore = 1;
}
class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm>
: InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mviaddr20pair:$BD1)]> {
let mayStore = 1;
}
class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm>
: InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mviaddr12pair:$BD1)]> {
let mayStore = 1;
}
multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, Immediate imm> {
let DispKey = mnemonic in {
let DispSize = "12" in
def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
let DispSize = "20" in
def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
}
}
class StoreSSE<string mnemonic, bits<16> opcode>
: InstSSE<opcode, (outs), (ins bdaddr12only:$BD1, bdaddr12only:$BD2),
mnemonic#"\t$BD1, $BD2", []> {
let mayStore = 1;
}
class CondStoreRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$M3),
mnemonic#"$M3\t$R1, $BD2", []> {
let mayStore = 1;
let AccessBytes = bytes;
let CCMaskLast = 1;
}
// Like CondStoreRSY, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$M3),
mnemonic#"\t$R1, $BD2, $M3", []> {
let mayStore = 1;
let AccessBytes = bytes;
}
// Like CondStoreRSY, but with a fixed CC mask.
class FixedCondStoreRSY<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2),
mnemonic#V.suffix#"\t$R1, $BD2", []> {
let mayStore = 1;
let AccessBytes = bytes;
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CondStoreRSYPair<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only> {
let isCodeGenOnly = 1 in
def "" : CondStoreRSY<mnemonic, opcode, cls, bytes, mode>;
def Asm : AsmCondStoreRSY<mnemonic, opcode, cls, bytes, mode>;
}
class SideEffectUnaryI<string mnemonic, bits<8> opcode, Immediate imm>
: InstI<opcode, (outs), (ins imm:$I1),
mnemonic#"\t$I1", []>;
class SideEffectUnaryRR<string mnemonic, bits<8>opcode, RegisterOperand cls>
: InstRR<opcode, (outs), (ins cls:$R1),
mnemonic#"\t$R1", []> {
let R2 = 0;
}
class SideEffectUnaryRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
SDPatternOperator operator>
: InstRRE<opcode, (outs), (ins cls:$R1),
mnemonic#"\t$R1", [(operator cls:$R1)]> {
let R2 = 0;
}
class SideEffectUnaryS<string mnemonic, bits<16> opcode,
SDPatternOperator operator, bits<5> bytes,
AddressingMode mode = bdaddr12only>
: InstS<opcode, (outs), (ins mode:$BD2),
mnemonic#"\t$BD2", [(operator mode:$BD2)]> {
let mayLoad = 1;
let AccessBytes = bytes;
}
class SideEffectAddressS<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
AddressingMode mode = bdaddr12only>
: InstS<opcode, (outs), (ins mode:$BD2),
mnemonic#"\t$BD2", [(operator mode:$BD2)]>;
class LoadAddressRX<string mnemonic, bits<8> opcode,
SDPatternOperator operator, AddressingMode mode>
: InstRXa<opcode, (outs GR64:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set GR64:$R1, (operator mode:$XBD2))]>;
class LoadAddressRXY<string mnemonic, bits<16> opcode,
SDPatternOperator operator, AddressingMode mode>
: InstRXYa<opcode, (outs GR64:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set GR64:$R1, (operator mode:$XBD2))]>;
multiclass LoadAddressRXPair<string mnemonic, bits<8> rxOpcode,
bits<16> rxyOpcode, SDPatternOperator operator> {
let DispKey = mnemonic in {
let DispSize = "12" in
def "" : LoadAddressRX<mnemonic, rxOpcode, operator, laaddr12pair>;
let DispSize = "20" in
def Y : LoadAddressRXY<mnemonic#"y", rxyOpcode, operator, laaddr20pair>;
}
}
class LoadAddressRIL<string mnemonic, bits<12> opcode,
SDPatternOperator operator>
: InstRILb<opcode, (outs GR64:$R1), (ins pcrel32:$RI2),
mnemonic#"\t$R1, $RI2",
[(set GR64:$R1, (operator pcrel32:$RI2))]>;
class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls2:$R2))]> {
let OpKey = mnemonic#cls1;
let OpType = "reg";
}
class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls2:$R2))]> {
let OpKey = mnemonic#cls1;
let OpType = "reg";
}
class UnaryTiedRRE<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRRE<opcode, (outs cls:$R1), (ins cls:$R1src),
mnemonic#"\t$R1", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let R2 = 0;
}
class UnaryMemRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRFc<opcode, (outs cls2:$R2, cls1:$R1), (ins cls1:$R1src),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let M3 = 0;
}
class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIa<opcode, (outs cls:$R1), (ins imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator imm:$I2))]>;
class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRILa<opcode, (outs cls:$R1), (ins imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator imm:$I2))]>;
class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRILb<opcode, (outs cls:$R1), (ins pcrel32:$RI2),
mnemonic#"\t$R1, $RI2",
[(set cls:$R1, (operator pcrel32:$RI2))]> {
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class CondUnaryRSY<string mnemonic, bits<16> opcode,
SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs cls:$R1),
(ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$M3),
mnemonic#"$M3\t$R1, $BD2",
[(set cls:$R1,
(z_select_ccmask (operator bdaddr20only:$BD2), cls:$R1src,
cond4:$valid, cond4:$M3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
let CCMaskLast = 1;
}
// Like CondUnaryRSY, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$M3),
mnemonic#"\t$R1, $BD2, $M3", []> {
let mayLoad = 1;
let AccessBytes = bytes;
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
// Like CondUnaryRSY, but with a fixed CC mask.
class FixedCondUnaryRSY<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
mnemonic#V.suffix#"\t$R1, $BD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CondUnaryRSYPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only> {
let isCodeGenOnly = 1 in
def "" : CondUnaryRSY<mnemonic, opcode, operator, cls, bytes, mode>;
def Asm : AsmCondUnaryRSY<mnemonic, opcode, cls, bytes, mode>;
}
class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRXa<opcode, (outs cls:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator mode:$XBD2))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
}
class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes>
: InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
let M3 = 0;
}
class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXYa<opcode, (outs cls:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator mode:$XBD2))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
let DispSize = "20" in
def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
bdxaddr20pair>;
}
}
class UnaryVRIa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, Immediate imm, bits<4> type = 0>
: InstVRIa<opcode, (outs tr.op:$V1), (ins imm:$I2),
mnemonic#"\t$V1, $I2",
[(set tr.op:$V1, (tr.vt (operator imm:$I2)))]> {
let M3 = type;
}
class UnaryVRIaGeneric<string mnemonic, bits<16> opcode, Immediate imm>
: InstVRIa<opcode, (outs VR128:$V1), (ins imm:$I2, imm32zx4:$M3),
mnemonic#"\t$V1, $I2, $M3", []>;
class UnaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m4 = 0,
bits<4> m5 = 0>
: InstVRRa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2),
mnemonic#"\t$V1, $V2",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2))))]> {
let M3 = type;
let M4 = m4;
let M5 = m5;
}
class UnaryVRRaGeneric<string mnemonic, bits<16> opcode, bits<4> m4 = 0,
bits<4> m5 = 0>
: InstVRRa<opcode, (outs VR128:$V1), (ins VR128:$V2, imm32zx4:$M3),
mnemonic#"\t$V1, $V2, $M3", []> {
let M4 = m4;
let M5 = m5;
}
class UnaryVRRaFloatGeneric<string mnemonic, bits<16> opcode, bits<4> m5 = 0>
: InstVRRa<opcode, (outs VR128:$V1),
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4),
mnemonic#"\t$V1, $V2, $M3, $M4", []> {
let M5 = m5;
}
// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
// The form that does not set CC has an extra operand to optionally allow
// specifying arbitrary M5 values in assembler.
multiclass UnaryExtraVRRaSPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
SDPatternOperator operator_cc,
TypedReg tr1, TypedReg tr2, bits<4> type> {
let M3 = type, M4 = 0 in
def "" : InstVRRa<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $M5", []>;
def : Pat<(tr1.vt (operator (tr2.vt tr2.op:$V2))),
(!cast<Instruction>(NAME) tr2.op:$V2, 0)>;
def : InstAlias<mnemonic#"\t$V1, $V2",
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2, 0)>;
let Defs = [CC] in
def S : UnaryVRRa<mnemonic##"s", opcode, operator_cc, tr1, tr2,
type, 0, 1>;
}
multiclass UnaryExtraVRRaSPairGeneric<string mnemonic, bits<16> opcode> {
let M4 = 0 in
def "" : InstVRRa<opcode, (outs VR128:$V1),
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $M3, $M5", []>;
def : InstAlias<mnemonic#"\t$V1, $V2, $M3",
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2,
imm32zx4:$M3, 0)>;
}
class UnaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, bits<5> bytes, bits<4> type = 0>
: InstVRX<opcode, (outs tr.op:$V1), (ins bdxaddr12only:$XBD2),
mnemonic#"\t$V1, $XBD2",
[(set tr.op:$V1, (tr.vt (operator bdxaddr12only:$XBD2)))]> {
let M3 = type;
let mayLoad = 1;
let AccessBytes = bytes;
}
class UnaryVRXGeneric<string mnemonic, bits<16> opcode>
: InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
mnemonic#"\t$V1, $XBD2, $M3", []> {
let mayLoad = 1;
}
class SideEffectBinaryRX<string mnemonic, bits<8> opcode,
RegisterOperand cls>
: InstRXa<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
mnemonic##"\t$R1, $XBD2", []>;
class SideEffectBinaryRXY<string mnemonic, bits<16> opcode,
RegisterOperand cls>
: InstRXYa<opcode, (outs), (ins cls:$R1, bdxaddr20only:$XBD2),
mnemonic##"\t$R1, $XBD2", []>;
class SideEffectBinaryRILPC<string mnemonic, bits<12> opcode,
RegisterOperand cls>
: InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
mnemonic##"\t$R1, $RI2", []> {
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class SideEffectBinaryRRE<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2", []>;
class SideEffectBinaryRRFa<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRFa<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2", []> {
let R3 = 0;
let M4 = 0;
}
class SideEffectBinaryRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRFc<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2", []> {
let M3 = 0;
}
class SideEffectBinaryIE<string mnemonic, bits<16> opcode,
Immediate imm1, Immediate imm2>
: InstIE<opcode, (outs), (ins imm1:$I1, imm2:$I2),
mnemonic#"\t$I1, $I2", []>;
class SideEffectBinarySI<string mnemonic, bits<8> opcode, Operand imm>
: InstSI<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2", []>;
class SideEffectBinarySIL<string mnemonic, bits<16> opcode,
SDPatternOperator operator, Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2", [(operator bdaddr12only:$BD1, imm:$I2)]>;
class SideEffectBinarySSa<string mnemonic, bits<8> opcode>
: InstSSa<opcode, (outs), (ins bdladdr12onlylen8:$BDL1, bdaddr12only:$BD2),
mnemonic##"\t$BDL1, $BD2", []>;
class SideEffectBinarySSb<string mnemonic, bits<8> opcode>
: InstSSb<opcode,
(outs), (ins bdladdr12onlylen4:$BDL1, bdladdr12onlylen4:$BDL2),
mnemonic##"\t$BDL1, $BDL2", []>;
class SideEffectBinarySSf<string mnemonic, bits<8> opcode>
: InstSSf<opcode, (outs), (ins bdaddr12only:$BD1, bdladdr12onlylen8:$BDL2),
mnemonic##"\t$BD1, $BDL2", []>;
class SideEffectBinarySSE<string mnemonic, bits<16> opcode>
: InstSSE<opcode, (outs), (ins bdaddr12only:$BD1, bdaddr12only:$BD2),
mnemonic#"\t$BD1, $BD2", []>;
class SideEffectBinaryMemMemRR<string mnemonic, bits<8> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1, cls2:$R2), (ins cls1:$R1src, cls2:$R2src),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src, $R2 = $R2src";
let DisableEncoding = "$R1src, $R2src";
}
class SideEffectBinaryMemRRE<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls2:$R2), (ins cls1:$R1, cls2:$R2src),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R2 = $R2src";
let DisableEncoding = "$R2src";
}
class SideEffectBinaryMemMemRRE<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1, cls2:$R2), (ins cls1:$R1src, cls2:$R2src),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src, $R2 = $R2src";
let DisableEncoding = "$R1src, $R2src";
}
class SideEffectBinaryMemMemRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRFc<opcode, (outs cls1:$R1, cls2:$R2), (ins cls1:$R1src, cls2:$R2src),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src, $R2 = $R2src";
let DisableEncoding = "$R1src, $R2src";
let M3 = 0;
}
class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
let OpKey = mnemonic#cls1;
let OpType = "reg";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
let OpKey = mnemonic#cls1;
let OpType = "reg";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRRD<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRD<opcode, (outs cls1:$R1), (ins cls2:$R3, cls2:$R2),
mnemonic#"\t$R1, $R3, $R2",
[(set cls1:$R1, (operator cls2:$R3, cls2:$R2))]> {
let OpKey = mnemonic#cls;
let OpType = "reg";
}
class BinaryRRFa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFa<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3),
mnemonic#"\t$R1, $R2, $R3",
[(set cls1:$R1, (operator cls2:$R2, cls3:$R3))]> {
let M4 = 0;
}
multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls1,
RegisterOperand cls2> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRRFa<mnemonic#"k", opcode2, null_frag, cls1, cls1, cls2>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
}
}
multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls1,
RegisterOperand cls2> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRRFa<mnemonic#"k", opcode2, null_frag, cls1, cls1, cls2>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
}
}
class BinaryRRFb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFb<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3),
mnemonic#"\t$R1, $R3, $R2",
[(set cls1:$R1, (operator cls2:$R2, cls3:$R3))]> {
let M4 = 0;
}
class BinaryMemRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2, Immediate imm>
: InstRRFc<opcode, (outs cls2:$R2, cls1:$R1), (ins cls1:$R1src, imm:$M3),
mnemonic#"\t$R1, $R2, $M3", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
multiclass BinaryMemRRFcOpt<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2> {
def "" : BinaryMemRRFc<mnemonic, opcode, cls1, cls2, imm32zx4>;
def Opt : UnaryMemRRFc<mnemonic, opcode, cls1, cls2>;
}
class BinaryRRFd<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRFd<opcode, (outs cls1:$R1), (ins cls2:$R2, imm32zx4:$M4),
mnemonic#"\t$R1, $R2, $M4", []>;
class BinaryRRFe<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRFe<opcode, (outs cls1:$R1), (ins imm32zx4:$M3, cls2:$R2),
mnemonic#"\t$R1, $M3, $R2", []> {
let M4 = 0;
}
class CondBinaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRFc<opcode, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, cond4:$valid, cond4:$M3),
mnemonic#"$M3\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let CCMaskLast = 1;
}
// Like CondBinaryRRF, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondBinaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRFc<opcode, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx4:$M3),
mnemonic#"\t$R1, $R2, $M3", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
// Like CondBinaryRRF, but with a fixed CC mask.
class FixedCondBinaryRRF<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRFc<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#V.suffix#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CondBinaryRRFPair<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2> {
let isCodeGenOnly = 1 in
def "" : CondBinaryRRF<mnemonic, opcode, cls1, cls2>;
def Asm : AsmCondBinaryRRF<mnemonic, opcode, cls1, cls2>;
}
class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIa<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
mnemonic#"\t$R1, $R3, $I2",
[(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls,
Immediate imm> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
}
}
class CondBinaryRIE<string mnemonic, bits<16> opcode, RegisterOperand cls,
Immediate imm>
: InstRIEg<opcode, (outs cls:$R1),
(ins cls:$R1src, imm:$I2, cond4:$valid, cond4:$M3),
mnemonic#"$M3\t$R1, $I2",
[(set cls:$R1, (z_select_ccmask imm:$I2, cls:$R1src,
cond4:$valid, cond4:$M3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let CCMaskLast = 1;
}
// Like CondBinaryRIE, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondBinaryRIE<string mnemonic, bits<16> opcode, RegisterOperand cls,
Immediate imm>
: InstRIEg<opcode, (outs cls:$R1),
(ins cls:$R1src, imm:$I2, imm32zx4:$M3),
mnemonic#"\t$R1, $I2, $M3", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
// Like CondBinaryRIE, but with a fixed CC mask.
class FixedCondBinaryRIE<CondVariant V, string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm>
: InstRIEg<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#V.suffix#"\t$R1, $I2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let isAsmParserOnly = V.alternate;
let M3 = V.ccmask;
}
multiclass CondBinaryRIEPair<string mnemonic, bits<16> opcode,
RegisterOperand cls, Immediate imm> {
let isCodeGenOnly = 1 in
def "" : CondBinaryRIE<mnemonic, opcode, cls, imm>;
def Asm : AsmCondBinaryRIE<mnemonic, opcode, cls, imm>;
}
class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRILa<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRSa<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
mnemonic#"\t$R1, $BD2",
[(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
let R3 = 0;
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRSYa<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
}
}
class BinaryRSL<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSLb<opcode, (outs cls:$R1),
(ins bdladdr12onlylen8:$BDL2, imm32zx4:$M3),
mnemonic#"\t$R1, $BDL2, $M3", []> {
let mayLoad = 1;
}
class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRXa<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
: InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src,
(load bdxaddr12only:$XBD2)))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
let M3 = 0;
}
class BinaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2,
SDPatternOperator load, bits<5> bytes>
: InstRXF<opcode, (outs cls1:$R1), (ins cls2:$R3, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $R3, $XBD2",
[(set cls1:$R1, (operator cls2:$R3, (load bdxaddr12only:$XBD2)))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
}
class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXYa<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load, bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
bdxaddr12pair>;
let DispSize = "20" in
def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
bdxaddr20pair>;
}
}
class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
let mayLoad = 1;
let mayStore = 1;
}
class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
let mayLoad = 1;
let mayStore = 1;
}
multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
bits<16> siyOpcode, SDPatternOperator operator,
Operand imm> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
let DispSize = "20" in
def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
}
}
class BinarySSF<string mnemonic, bits<12> opcode, RegisterOperand cls>
: InstSSF<opcode, (outs cls:$R3), (ins bdaddr12pair:$BD1, bdaddr12pair:$BD2),
mnemonic#"\t$R3, $BD1, $BD2", []> {
let mayLoad = 1;
}
class BinaryVRIb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, bits<4> type>
: InstVRIb<opcode, (outs tr.op:$V1), (ins imm32zx8:$I2, imm32zx8:$I3),
mnemonic#"\t$V1, $I2, $I3",
[(set tr.op:$V1, (tr.vt (operator imm32zx8:$I2, imm32zx8:$I3)))]> {
let M4 = type;
}
class BinaryVRIbGeneric<string mnemonic, bits<16> opcode>
: InstVRIb<opcode, (outs VR128:$V1),
(ins imm32zx8:$I2, imm32zx8:$I3, imm32zx4:$M4),
mnemonic#"\t$V1, $I2, $I3, $M4", []>;
class BinaryVRIc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type>
: InstVRIc<opcode, (outs tr1.op:$V1), (ins tr2.op:$V3, imm32zx16:$I2),
mnemonic#"\t$V1, $V3, $I2",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V3),
imm32zx16:$I2)))]> {
let M4 = type;
}
class BinaryVRIcGeneric<string mnemonic, bits<16> opcode>
: InstVRIc<opcode, (outs VR128:$V1),
(ins VR128:$V3, imm32zx16:$I2, imm32zx4:$M4),
mnemonic#"\t$V1, $V3, $I2, $M4", []>;
class BinaryVRIe<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type, bits<4> m5>
: InstVRIe<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, imm32zx12:$I3),
mnemonic#"\t$V1, $V2, $I3",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
imm32zx12:$I3)))]> {
let M4 = type;
let M5 = m5;
}
class BinaryVRIeFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRIe<opcode, (outs VR128:$V1),
(ins VR128:$V2, imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $I3, $M4, $M5", []>;
class BinaryVRIh<string mnemonic, bits<16> opcode>
: InstVRIh<opcode, (outs VR128:$V1),
(ins imm32zx16:$I2, imm32zx4:$I3),
mnemonic#"\t$V1, $I2, $I3", []>;
class BinaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m4 = 0>
: InstVRRa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $M5",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
imm32zx12:$M5)))]> {
let M3 = type;
let M4 = m4;
}
class BinaryVRRaFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRRa<opcode, (outs VR128:$V1),
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $M3, $M4, $M5", []>;
class BinaryVRRb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type = 0,
bits<4> modifier = 0>
: InstVRRb<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, tr2.op:$V3),
mnemonic#"\t$V1, $V2, $V3",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3))))]> {
let M4 = type;
let M5 = modifier;
}
// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
multiclass BinaryVRRbSPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
SDPatternOperator operator_cc, TypedReg tr1,
TypedReg tr2, bits<4> type, bits<4> modifier = 0> {
def "" : BinaryVRRb<mnemonic, opcode, operator, tr1, tr2, type,
!and (modifier, 14)>;
let Defs = [CC] in
def S : BinaryVRRb<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
!add (!and (modifier, 14), 1)>;
}
class BinaryVRRbSPairGeneric<string mnemonic, bits<16> opcode>
: InstVRRb<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
// The form that does not set CC has an extra operand to optionally allow
// specifying arbitrary M5 values in assembler.
multiclass BinaryExtraVRRbSPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
SDPatternOperator operator_cc,
TypedReg tr1, TypedReg tr2, bits<4> type> {
let M4 = type in
def "" : InstVRRb<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $M5", []>;
def : Pat<(tr1.vt (operator (tr2.vt tr2.op:$V2), (tr2.vt tr2.op:$V3))),
(!cast<Instruction>(NAME) tr2.op:$V2, tr2.op:$V3, 0)>;
def : InstAlias<mnemonic#"\t$V1, $V2, $V3",
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
tr2.op:$V3, 0)>;
let Defs = [CC] in
def S : BinaryVRRb<mnemonic##"s", opcode, operator_cc, tr1, tr2, type, 1>;
}
multiclass BinaryExtraVRRbSPairGeneric<string mnemonic, bits<16> opcode> {
def "" : InstVRRb<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $M4",
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
imm32zx4:$M4, 0)>;
}
class BinaryVRRc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m5 = 0,
bits<4> m6 = 0>
: InstVRRc<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, tr2.op:$V3),
mnemonic#"\t$V1, $V2, $V3",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3))))]> {
let M4 = type;
let M5 = m5;
let M6 = m6;
}
class BinaryVRRcGeneric<string mnemonic, bits<16> opcode, bits<4> m5 = 0,
bits<4> m6 = 0>
: InstVRRc<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4),
mnemonic#"\t$V1, $V2, $V3, $M4", []> {
let M5 = m5;
let M6 = m6;
}
class BinaryVRRcFloatGeneric<string mnemonic, bits<16> opcode, bits<4> m6 = 0>
: InstVRRc<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []> {
let M6 = m6;
}
// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
multiclass BinaryVRRcSPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
SDPatternOperator operator_cc, TypedReg tr1,
TypedReg tr2, bits<4> type, bits<4> m5,
bits<4> modifier = 0> {
def "" : BinaryVRRc<mnemonic, opcode, operator, tr1, tr2, type,
m5, !and (modifier, 14)>;
let Defs = [CC] in
def S : BinaryVRRc<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
m5, !add (!and (modifier, 14), 1)>;
}
class BinaryVRRcSPairFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRRc<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
imm32zx4:$M6),
mnemonic#"\t$V1, $V2, $V3, $M4, $M5, $M6", []>;
class BinaryVRRf<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr>
: InstVRRf<opcode, (outs tr.op:$V1), (ins GR64:$R2, GR64:$R3),
mnemonic#"\t$V1, $R2, $R3",
[(set tr.op:$V1, (tr.vt (operator GR64:$R2, GR64:$R3)))]>;
class BinaryVRRi<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstVRRi<opcode, (outs cls:$R1), (ins VR128:$V2, imm32zx4:$M3),
mnemonic#"\t$R1, $V2, $M3", []>;
class BinaryVRSa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type>
: InstVRSa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V3, shift12only:$BD2),
mnemonic#"\t$V1, $V3, $BD2",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V3),
shift12only:$BD2)))]> {
let M4 = type;
}
class BinaryVRSaGeneric<string mnemonic, bits<16> opcode>
: InstVRSa<opcode, (outs VR128:$V1),
(ins VR128:$V3, shift12only:$BD2, imm32zx4:$M4),
mnemonic#"\t$V1, $V3, $BD2, $M4", []>;
class BinaryVRSb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
bits<5> bytes>
: InstVRSb<opcode, (outs VR128:$V1), (ins GR32:$R3, bdaddr12only:$BD2),
mnemonic#"\t$V1, $R3, $BD2",
[(set VR128:$V1, (operator GR32:$R3, bdaddr12only:$BD2))]> {
let M4 = 0;
let mayLoad = 1;
let AccessBytes = bytes;
}
class BinaryVRSc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, bits<4> type>
: InstVRSc<opcode, (outs GR64:$R1), (ins tr.op:$V3, shift12only:$BD2),
mnemonic#"\t$R1, $V3, $BD2",
[(set GR64:$R1, (operator (tr.vt tr.op:$V3), shift12only:$BD2))]> {
let M4 = type;
}
class BinaryVRScGeneric<string mnemonic, bits<16> opcode>
: InstVRSc<opcode, (outs GR64:$R1),
(ins VR128:$V3, shift12only:$BD2, imm32zx4: $M4),
mnemonic#"\t$R1, $V3, $BD2, $M4", []>;
class BinaryVRSd<string mnemonic, bits<16> opcode, SDPatternOperator operator,
bits<5> bytes>
: InstVRSd<opcode, (outs VR128:$V1), (ins GR32:$R3, bdaddr12only:$BD2),
mnemonic#"\t$V1, $R3, $BD2",
[(set VR128:$V1, (operator GR32:$R3, bdaddr12only:$BD2))]> {
let mayLoad = 1;
let AccessBytes = bytes;
}
class BinaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, bits<5> bytes>
: InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
mnemonic#"\t$V1, $XBD2, $M3",
[(set tr.op:$V1, (tr.vt (operator bdxaddr12only:$XBD2,
imm32zx4:$M3)))]> {
let mayLoad = 1;
let AccessBytes = bytes;
}
class StoreBinaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr12only>
: InstRSb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
mnemonic#"\t$R1, $M3, $BD2", []> {
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreBinaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
mnemonic#"\t$R1, $M3, $BD2", []> {
let mayStore = 1;
let AccessBytes = bytes;
}
multiclass StoreBinaryRSPair<string mnemonic, bits<8> rsOpcode,
bits<16> rsyOpcode, RegisterOperand cls,
bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : StoreBinaryRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
let DispSize = "20" in
def Y : StoreBinaryRSY<mnemonic#"y", rsyOpcode, cls, bytes,
bdaddr20pair>;
}
}
class StoreBinaryRSL<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSLb<opcode, (outs),
(ins cls:$R1, bdladdr12onlylen8:$BDL2, imm32zx4:$M3),
mnemonic#"\t$R1, $BDL2, $M3", []> {
let mayStore = 1;
}
class BinaryVSI<string mnemonic, bits<16> opcode, SDPatternOperator operator,
bits<5> bytes>
: InstVSI<opcode, (outs VR128:$V1), (ins bdaddr12only:$BD2, imm32zx8:$I3),
mnemonic#"\t$V1, $BD2, $I3",
[(set VR128:$V1, (operator imm32zx8:$I3, bdaddr12only:$BD2))]> {
let mayLoad = 1;
let AccessBytes = bytes;
}
class StoreBinaryVRV<string mnemonic, bits<16> opcode, bits<5> bytes,
Immediate index>
: InstVRV<opcode, (outs), (ins VR128:$V1, bdvaddr12only:$VBD2, index:$M3),
mnemonic#"\t$V1, $VBD2, $M3", []> {
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreBinaryVRX<string mnemonic, bits<16> opcode,
SDPatternOperator operator, TypedReg tr, bits<5> bytes,
Immediate index>
: InstVRX<opcode, (outs), (ins tr.op:$V1, bdxaddr12only:$XBD2, index:$M3),
mnemonic#"\t$V1, $XBD2, $M3",
[(operator (tr.vt tr.op:$V1), bdxaddr12only:$XBD2, index:$M3)]> {
let mayStore = 1;
let AccessBytes = bytes;
}
class MemoryBinarySSd<string mnemonic, bits<8> opcode,
RegisterOperand cls>
: InstSSd<opcode, (outs),
(ins bdraddr12only:$RBD1, bdaddr12only:$BD2, cls:$R3),
mnemonic#"\t$RBD1, $BD2, $R3", []>;
class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(operator cls1:$R1, cls2:$R2)]> {
let OpKey = mnemonic#cls1;
let OpType = "reg";
let isCompare = 1;
}
class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"\t$R1, $R2",
[(operator cls1:$R1, cls2:$R2)]> {
let OpKey = mnemonic#cls1;
let OpType = "reg";
let isCompare = 1;
}
class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIa<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRILa<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
mnemonic#"\t$R1, $RI2",
[(operator cls:$R1, (load pcrel32:$RI2))]> {
let isCompare = 1;
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRXa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load mode:$XBD2))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let isCompare = 1;
let mayLoad = 1;
let AccessBytes = bytes;
}
class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
: InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let isCompare = 1;
let mayLoad = 1;
let AccessBytes = bytes;
let M3 = 0;
}
class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXYa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load mode:$XBD2))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let isCompare = 1;
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load, bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
load, bytes, bdxaddr12pair>;
let DispSize = "20" in
def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
load, bytes, bdxaddr20pair>;
}
}
class CompareRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr12only>
: InstRSb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
mnemonic#"\t$R1, $M3, $BD2", []> {
let mayLoad = 1;
let AccessBytes = bytes;
}
class CompareRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs), (ins cls:$R1, imm32zx4:$M3, mode:$BD2),
mnemonic#"\t$R1, $M3, $BD2", []> {
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass CompareRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
RegisterOperand cls, bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : CompareRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
let DispSize = "20" in
def Y : CompareRSY<mnemonic#"y", rsyOpcode, cls, bytes, bdaddr20pair>;
}
}
class CompareSSb<string mnemonic, bits<8> opcode>
: InstSSb<opcode,
(outs), (ins bdladdr12onlylen4:$BDL1, bdladdr12onlylen4:$BDL2),
mnemonic##"\t$BDL1, $BDL2", []> {
let isCompare = 1;
let mayLoad = 1;
}
class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load mode:$BD1), imm:$I2)]> {
let isCompare = 1;
let mayLoad = 1;
}
class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load bdaddr12only:$BD1), imm:$I2)]> {
let isCompare = 1;
let mayLoad = 1;
}
class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load mode:$BD1), imm:$I2)]> {
let isCompare = 1;
let mayLoad = 1;
}
multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, SDPatternOperator load,
Immediate imm> {
let DispKey = mnemonic in {
let DispSize = "12" in
def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
let DispSize = "20" in
def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
bdaddr20pair>;
}
}
class CompareVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr, bits<4> type>
: InstVRRa<opcode, (outs), (ins tr.op:$V1, tr.op:$V2),
mnemonic#"\t$V1, $V2",
[(operator (tr.vt tr.op:$V1), (tr.vt tr.op:$V2))]> {
let isCompare = 1;
let M3 = type;
let M4 = 0;
let M5 = 0;
}
class CompareVRRaGeneric<string mnemonic, bits<16> opcode>
: InstVRRa<opcode, (outs), (ins VR128:$V1, VR128:$V2, imm32zx4:$M3),
mnemonic#"\t$V1, $V2, $M3", []> {
let isCompare = 1;
let M4 = 0;
let M5 = 0;
}
class CompareVRRaFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRRa<opcode, (outs),
(ins VR64:$V1, VR64:$V2, imm32zx4:$M3, imm32zx4:$M4),
mnemonic#"\t$V1, $V2, $M3, $M4", []> {
let isCompare = 1;
let M5 = 0;
}
class CompareVRRh<string mnemonic, bits<16> opcode>
: InstVRRh<opcode, (outs), (ins VR128:$V1, VR128:$V2, imm32zx4:$M3),
mnemonic#"\t$V1, $V2, $M3", []> {
let isCompare = 1;
}
class TestRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, bdxaddr12only:$XBD2)]> {
let M3 = 0;
}
class TestRSL<string mnemonic, bits<16> opcode>
: InstRSLa<opcode, (outs), (ins bdladdr12onlylen4:$BDL1),
mnemonic#"\t$BDL1", []> {
let mayLoad = 1;
}
class TestVRRg<string mnemonic, bits<16> opcode>
: InstVRRg<opcode, (outs), (ins VR128:$V1),
mnemonic#"\t$V1", []>;
class SideEffectTernarySSc<string mnemonic, bits<8> opcode>
: InstSSc<opcode, (outs), (ins bdladdr12onlylen4:$BDL1,
shift12only:$BD2, imm32zx4:$I3),
mnemonic##"\t$BDL1, $BD2, $I3", []>;
class SideEffectTernaryRRFa<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFa<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3),
mnemonic#"\t$R1, $R2, $R3", []> {
let M4 = 0;
}
class SideEffectTernaryRRFb<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFb<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3),
mnemonic#"\t$R1, $R3, $R2", []> {
let M4 = 0;
}
class SideEffectTernaryMemMemMemRRFb<string mnemonic, bits<16> opcode,
RegisterOperand cls1,
RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFb<opcode, (outs cls1:$R1, cls2:$R2, cls3:$R3),
(ins cls1:$R1src, cls2:$R2src, cls3:$R3src),
mnemonic#"\t$R1, $R3, $R2", []> {
let Constraints = "$R1 = $R1src, $R2 = $R2src, $R3 = $R3src";
let DisableEncoding = "$R1src, $R2src, $R3src";
let M4 = 0;
}
class SideEffectTernaryRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
Immediate imm>
: InstRRFc<opcode, (outs), (ins cls1:$R1, cls2:$R2, imm:$M3),
mnemonic#"\t$R1, $R2, $M3", []>;
multiclass SideEffectTernaryRRFcOpt<string mnemonic, bits<16> opcode,
RegisterOperand cls1,
RegisterOperand cls2> {
def "" : SideEffectTernaryRRFc<mnemonic, opcode, cls1, cls2, imm32zx4>;
def Opt : SideEffectBinaryRRFc<mnemonic, opcode, cls1, cls2>;
}
class SideEffectTernaryMemMemRRFc<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
Immediate imm>
: InstRRFc<opcode, (outs cls1:$R1, cls2:$R2),
(ins cls1:$R1src, cls2:$R2src, imm:$M3),
mnemonic#"\t$R1, $R2, $M3", []> {
let Constraints = "$R1 = $R1src, $R2 = $R2src";
let DisableEncoding = "$R1src, $R2src";
}
multiclass SideEffectTernaryMemMemRRFcOpt<string mnemonic, bits<16> opcode,
RegisterOperand cls1,
RegisterOperand cls2> {
def "" : SideEffectTernaryMemMemRRFc<mnemonic, opcode, cls1, cls2, imm32zx4>;
def Opt : SideEffectBinaryMemMemRRFc<mnemonic, opcode, cls1, cls2>;
}
class SideEffectTernarySSF<string mnemonic, bits<12> opcode,
RegisterOperand cls>
: InstSSF<opcode, (outs),
(ins bdaddr12only:$BD1, bdaddr12only:$BD2, cls:$R3),
mnemonic#"\t$BD1, $BD2, $R3", []>;
class TernaryRRFa<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFa<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3, imm32zx4:$M4),
mnemonic#"\t$R1, $R2, $R3, $M4", []>;
class TernaryRRFb<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFb<opcode, (outs cls1:$R1, cls3:$R3),
(ins cls1:$R1src, cls2:$R2, imm32zx4:$M4),
mnemonic#"\t$R1, $R3, $R2, $M4", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class TernaryRRFe<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRFe<opcode, (outs cls1:$R1),
(ins imm32zx4:$M3, cls2:$R2, imm32zx4:$M4),
mnemonic#"\t$R1, $M3, $R2, $M4", []>;
class TernaryRRD<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRD<opcode, (outs cls1:$R1), (ins cls2:$R1src, cls2:$R3, cls2:$R2),
mnemonic#"\t$R1, $R3, $R2",
[(set cls1:$R1, (operator cls2:$R1src, cls2:$R3, cls2:$R2))]> {
let OpKey = mnemonic#cls;
let OpType = "reg";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class TernaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr12only>
: InstRSb<opcode, (outs cls:$R1),
(ins cls:$R1src, imm32zx4:$M3, mode:$BD2),
mnemonic#"\t$R1, $M3, $BD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class TernaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr20only>
: InstRSYb<opcode, (outs cls:$R1),
(ins cls:$R1src, imm32zx4:$M3, mode:$BD2),
mnemonic#"\t$R1, $M3, $BD2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass TernaryRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
RegisterOperand cls, bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : TernaryRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
let DispSize = "20" in
def Y : TernaryRSY<mnemonic#"y", rsyOpcode, cls, bytes, bdaddr20pair>;
}
}
class SideEffectTernaryRS<string mnemonic, bits<8> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRSa<opcode, (outs),
(ins cls1:$R1, cls2:$R3, bdaddr12only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []>;
class SideEffectTernaryRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRSYa<opcode, (outs),
(ins cls1:$R1, cls2:$R3, bdaddr20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []>;
class SideEffectTernaryMemMemRS<string mnemonic, bits<8> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRSa<opcode, (outs cls1:$R1, cls2:$R3),
(ins cls1:$R1src, cls2:$R3src, shift12only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let Constraints = "$R1 = $R1src, $R3 = $R3src";
let DisableEncoding = "$R1src, $R3src";
}
class SideEffectTernaryMemMemRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRSYa<opcode, (outs cls1:$R1, cls2:$R3),
(ins cls1:$R1src, cls2:$R3src, shift20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let Constraints = "$R1 = $R1src, $R3 = $R3src";
let DisableEncoding = "$R1src, $R3src";
}
class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2,
SDPatternOperator load, bits<5> bytes>
: InstRXF<opcode, (outs cls1:$R1),
(ins cls2:$R1src, cls2:$R3, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $R3, $XBD2",
[(set cls1:$R1, (operator cls2:$R1src, cls2:$R3,
(load bdxaddr12only:$XBD2)))]> {
let OpKey = mnemonic#"r"#cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class TernaryVRIa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, Immediate imm, Immediate index>
: InstVRIa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V1src, imm:$I2, index:$M3),
mnemonic#"\t$V1, $I2, $M3",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
imm:$I2, index:$M3)))]> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
}
class TernaryVRId<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type>
: InstVRId<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, imm32zx8:$I4),
mnemonic#"\t$V1, $V2, $V3, $I4",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
imm32zx8:$I4)))]> {
let M5 = type;
}
class TernaryVRIi<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstVRIi<opcode, (outs VR128:$V1),
(ins cls:$R2, imm32zx8:$I3, imm32zx4:$M4),
mnemonic#"\t$V1, $R2, $I3, $M4", []>;
class TernaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type, bits<4> m4or>
: InstVRRa<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $M4, $M5",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
imm32zx4:$M4,
imm32zx4:$M5)))],
m4or> {
let M3 = type;
}
class TernaryVRRaFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRRa<opcode, (outs VR128:$V1),
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $M3, $M4, $M5", []>;
class TernaryVRRb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type,
SDPatternOperator m5mask, bits<4> m5or>
: InstVRRb<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, m5mask:$M5),
mnemonic#"\t$V1, $V2, $V3, $M5",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
m5mask:$M5)))],
m5or> {
let M4 = type;
}
// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M5.
// Also create aliases to make use of M5 operand optional in assembler.
multiclass TernaryOptVRRbSPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
SDPatternOperator operator_cc,
TypedReg tr1, TypedReg tr2, bits<4> type,
bits<4> modifier = 0> {
def "" : TernaryVRRb<mnemonic, opcode, operator, tr1, tr2, type,
imm32zx4even, !and (modifier, 14)>;
def : InstAlias<mnemonic#"\t$V1, $V2, $V3",
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
tr2.op:$V3, 0)>;
let Defs = [CC] in
def S : TernaryVRRb<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
imm32zx4even, !add(!and (modifier, 14), 1)>;
def : InstAlias<mnemonic#"s\t$V1, $V2, $V3",
(!cast<Instruction>(NAME#"S") tr1.op:$V1, tr2.op:$V2,
tr2.op:$V3, 0)>;
}
multiclass TernaryOptVRRbSPairGeneric<string mnemonic, bits<16> opcode> {
def "" : InstVRRb<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $M4",
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
imm32zx4:$M4, 0)>;
}
class TernaryVRRc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2>
: InstVRRc<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M4),
mnemonic#"\t$V1, $V2, $V3, $M4",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
imm32zx4:$M4)))]> {
let M5 = 0;
let M6 = 0;
}
class TernaryVRRcFloat<string mnemonic, bits<16> opcode,
SDPatternOperator operator, TypedReg tr1, TypedReg tr2,
bits<4> type = 0, bits<4> m5 = 0>
: InstVRRc<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M6),
mnemonic#"\t$V1, $V2, $V3, $M6",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
imm32zx4:$M6)))]> {
let M4 = type;
let M5 = m5;
}
class TernaryVRRcFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRRc<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
imm32zx4:$M6),
mnemonic#"\t$V1, $V2, $V3, $M4, $M5, $M6", []>;
class TernaryVRRd<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type = 0>
: InstVRRd<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4),
mnemonic#"\t$V1, $V2, $V3, $V4",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
(tr1.vt tr1.op:$V4))))]> {
let M5 = type;
let M6 = 0;
}
class TernaryVRRdGeneric<string mnemonic, bits<16> opcode>
: InstVRRd<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $V4, $M5", []> {
let M6 = 0;
}
class TernaryVRRe<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> m5 = 0, bits<4> type = 0>
: InstVRRe<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4),
mnemonic#"\t$V1, $V2, $V3, $V4",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
(tr1.vt tr1.op:$V4))))]> {
let M5 = m5;
let M6 = type;
}
class TernaryVRReFloatGeneric<string mnemonic, bits<16> opcode>
: InstVRRe<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5, imm32zx4:$M6),
mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;
class TernaryVRSb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, RegisterOperand cls, bits<4> type>
: InstVRSb<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V1src, cls:$R3, shift12only:$BD2),
mnemonic#"\t$V1, $R3, $BD2",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
cls:$R3,
shift12only:$BD2)))]> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
let M4 = type;
}
class TernaryVRSbGeneric<string mnemonic, bits<16> opcode>
: InstVRSb<opcode, (outs VR128:$V1),
(ins VR128:$V1src, GR64:$R3, shift12only:$BD2, imm32zx4:$M4),
mnemonic#"\t$V1, $R3, $BD2, $M4", []> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
}
class TernaryVRV<string mnemonic, bits<16> opcode, bits<5> bytes,
Immediate index>
: InstVRV<opcode, (outs VR128:$V1),
(ins VR128:$V1src, bdvaddr12only:$VBD2, index:$M3),
mnemonic#"\t$V1, $VBD2, $M3", []> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class TernaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<5> bytes, Immediate index>
: InstVRX<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V1src, bdxaddr12only:$XBD2, index:$M3),
mnemonic#"\t$V1, $XBD2, $M3",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
bdxaddr12only:$XBD2,
index:$M3)))]> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class QuaternaryVRId<string mnemonic, bits<16> opcode, SDPatternOperator operator,
TypedReg tr1, TypedReg tr2, bits<4> type>
: InstVRId<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V1src, tr2.op:$V2, tr2.op:$V3, imm32zx8:$I4),
mnemonic#"\t$V1, $V2, $V3, $I4",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
(tr2.vt tr2.op:$V2),
(tr2.vt tr2.op:$V3),
imm32zx8:$I4)))]> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
let M5 = type;
}
class QuaternaryVRIdGeneric<string mnemonic, bits<16> opcode>
: InstVRId<opcode, (outs VR128:$V1),
(ins VR128:$V1src, VR128:$V2, VR128:$V3,
imm32zx8:$I4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $I4, $M5", []> {
let Constraints = "$V1 = $V1src";
let DisableEncoding = "$V1src";
}
class QuaternaryVRIf<string mnemonic, bits<16> opcode>
: InstVRIf<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3,
imm32zx8:$I4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $V3, $I4, $M5", []>;
class QuaternaryVRIg<string mnemonic, bits<16> opcode>
: InstVRIg<opcode, (outs VR128:$V1),
(ins VR128:$V2, imm32zx8:$I3,
imm32zx8:$I4, imm32zx4:$M5),
mnemonic#"\t$V1, $V2, $I3, $I4, $M5", []>;
class QuaternaryVRRd<string mnemonic, bits<16> opcode,
SDPatternOperator operator, TypedReg tr1, TypedReg tr2,
TypedReg tr3, TypedReg tr4, bits<4> type,
SDPatternOperator m6mask = imm32zx4, bits<4> m6or = 0>
: InstVRRd<opcode, (outs tr1.op:$V1),
(ins tr2.op:$V2, tr3.op:$V3, tr4.op:$V4, m6mask:$M6),
mnemonic#"\t$V1, $V2, $V3, $V4, $M6",
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
(tr3.vt tr3.op:$V3),
(tr4.vt tr4.op:$V4),
m6mask:$M6)))],
m6or> {
let M5 = type;
}
class QuaternaryVRRdGeneric<string mnemonic, bits<16> opcode>
: InstVRRd<opcode, (outs VR128:$V1),
(ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5, imm32zx4:$M6),
mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;
// Declare a pair of instructions, one which sets CC and one which doesn't.
// The CC-setting form ends with "S" and sets the low bit of M6.
// Also create aliases to make use of M6 operand optional in assembler.
multiclass QuaternaryOptVRRdSPair<string mnemonic, bits<16> opcode,
SDPatternOperator operator,
SDPatternOperator operator_cc,
TypedReg tr1, TypedReg tr2, bits<4> type,
bits<4> modifier = 0> {
def "" : QuaternaryVRRd<mnemonic, opcode, operator,
tr1, tr2, tr2, tr2, type,
imm32zx4even, !and (modifier, 14)>;
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4",
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
tr2.op:$V3, tr2.op:$V4, 0)>;
let Defs = [CC] in
def S : QuaternaryVRRd<mnemonic##"s", opcode, operator_cc,
tr1, tr2, tr2, tr2, type,
imm32zx4even, !add (!and (modifier, 14), 1)>;
def : InstAlias<mnemonic#"s\t$V1, $V2, $V3, $V4",
(!cast<Instruction>(NAME#"S") tr1.op:$V1, tr2.op:$V2,
tr2.op:$V3, tr2.op:$V4, 0)>;
}
multiclass QuaternaryOptVRRdSPairGeneric<string mnemonic, bits<16> opcode> {
def "" : QuaternaryVRRdGeneric<mnemonic, opcode>;
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4, $M5",
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
VR128:$V4, imm32zx4:$M5, 0)>;
}
class SideEffectQuaternaryRRFa<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFa<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3, imm32zx4:$M4),
mnemonic#"\t$R1, $R2, $R3, $M4", []>;
multiclass SideEffectQuaternaryRRFaOptOpt<string mnemonic, bits<16> opcode,
RegisterOperand cls1,
RegisterOperand cls2,
RegisterOperand cls3> {
def "" : SideEffectQuaternaryRRFa<mnemonic, opcode, cls1, cls2, cls3>;
def Opt : SideEffectTernaryRRFa<mnemonic, opcode, cls1, cls2, cls3>;
def OptOpt : SideEffectBinaryRRFa<mnemonic, opcode, cls1, cls2>;
}
class SideEffectQuaternaryRRFb<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2,
RegisterOperand cls3>
: InstRRFb<opcode, (outs), (ins cls1:$R1, cls2:$R2, cls3:$R3, imm32zx4:$M4),
mnemonic#"\t$R1, $R3, $R2, $M4", []>;
multiclass SideEffectQuaternaryRRFbOpt<string mnemonic, bits<16> opcode,
RegisterOperand cls1,
RegisterOperand cls2,
RegisterOperand cls3> {
def "" : SideEffectQuaternaryRRFb<mnemonic, opcode, cls1, cls2, cls3>;
def Opt : SideEffectTernaryRRFb<mnemonic, opcode, cls1, cls2, cls3>;
}
class SideEffectQuaternarySSe<string mnemonic, bits<8> opcode,
RegisterOperand cls>
: InstSSe<opcode, (outs),
(ins cls:$R1, bdaddr12only:$BD2, cls:$R3, bdaddr12only:$BD4),
mnemonic#"\t$R1, $BD2, $R3, $BD4", []>;
class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr20only>
: InstRSYa<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRRE<string mnemonic, bits<16> opcode,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr12only>
: InstRSa<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr20only>
: InstRSYa<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
let DispSize = "20" in
def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
}
}
class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRIEf<opcode, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
imm32zx6:$I5),
mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
: InstRXYb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr20only:$XBD2),
mnemonic##"\t$M1, $XBD2",
[(operator imm32zx4:$M1, bdxaddr20only:$XBD2)]>;
class PrefetchRILPC<string mnemonic, bits<12> opcode,
SDPatternOperator operator>
: InstRILc<opcode, (outs), (ins imm32zx4:$M1, pcrel32:$RI2),
mnemonic##"\t$M1, $RI2",
[(operator imm32zx4:$M1, pcrel32:$RI2)]> {
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class BranchPreloadSMI<string mnemonic, bits<8> opcode>
: InstSMI<opcode, (outs),
(ins imm32zx4:$M1, brtarget16bpp:$RI2, bdxaddr12only:$BD3),
mnemonic#"\t$M1, $RI2, $BD3", []>;
class BranchPreloadMII<string mnemonic, bits<8> opcode>
: InstMII<opcode, (outs),
(ins imm32zx4:$M1, brtarget12bpp:$RI2, brtarget24bpp:$RI3),
mnemonic#"\t$M1, $RI2, $RI3", []>;
// A floating-point load-and test operation. Create both a normal unary
// operation and one that acts as a comparison against zero.
// Note that the comparison against zero operation is not available if we
// have vector support, since load-and-test instructions will partially
// clobber the target (vector) register.
multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
RegisterOperand cls> {
def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
let isCodeGenOnly = 1, Predicates = [FeatureNoVector] in
def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
//
// Convenience instructions that get lowered to real instructions
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
// or SystemZInstrInfo::expandPostRAPseudo().
//
//===----------------------------------------------------------------------===//
class Pseudo<dag outs, dag ins, list<dag> pattern>
: InstSystemZ<0, outs, ins, "", pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// Like SideEffectBinarySIL, but expanded later.
class SideEffectBinarySILPseudo<SDPatternOperator operator, Immediate imm>
: Pseudo<(outs), (ins bdaddr12only:$BD1, imm:$I2),
[(operator bdaddr12only:$BD1, imm:$I2)]>;
// Like UnaryRI, but expanded after RA depending on the choice of register.
class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins imm:$I2),
[(set cls:$R1, (operator imm:$I2))]>;
// Like UnaryRXY, but expanded after RA depending on the choice of register.
class UnaryRXYPseudo<string key, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: Pseudo<(outs cls:$R1), (ins mode:$XBD2),
[(set cls:$R1, (operator mode:$XBD2))]> {
let OpKey = key#"r"#cls;
let OpType = "mem";
let mayLoad = 1;
let Has20BitOffset = 1;
let HasIndex = 1;
let AccessBytes = bytes;
}
// Like UnaryRR, but expanded after RA depending on the choice of registers.
class UnaryRRPseudo<string key, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: Pseudo<(outs cls1:$R1), (ins cls2:$R2),
[(set cls1:$R1, (operator cls2:$R2))]> {
let OpKey = key#cls1;
let OpType = "reg";
}
// Like BinaryRI, but expanded after RA depending on the choice of register.
class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
}
// Like BinaryRIE, but expanded after RA depending on the choice of register.
class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
[(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
RegisterOperand cls, Immediate imm> {
let NumOpsKey = key in {
let NumOpsValue = "3" in
def K : BinaryRIEPseudo<null_frag, cls, imm>,
Requires<[FeatureHighWord, FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRIPseudo<operator, cls, imm>,
Requires<[FeatureHighWord]>;
}
}
// Like CompareRI, but expanded after RA depending on the choice of register.
class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
// Like CompareRXY, but expanded after RA depending on the choice of register.
class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
[(operator cls:$R1, (load mode:$XBD2))]> {
let mayLoad = 1;
let Has20BitOffset = 1;
let HasIndex = 1;
let AccessBytes = bytes;
}
// Like CondBinaryRRF, but expanded after RA depending on the choice of
// register.
class CondBinaryRRFPseudo<RegisterOperand cls1, RegisterOperand cls2>
: Pseudo<(outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, cond4:$valid, cond4:$M3), []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let CCMaskLast = 1;
}
// Like CondBinaryRIE, but expanded after RA depending on the choice of
// register.
class CondBinaryRIEPseudo<RegisterOperand cls, Immediate imm>
: Pseudo<(outs cls:$R1),
(ins cls:$R1src, imm:$I2, cond4:$valid, cond4:$M3),
[(set cls:$R1, (z_select_ccmask imm:$I2, cls:$R1src,
cond4:$valid, cond4:$M3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let CCMaskLast = 1;
}
// Like CondUnaryRSY, but expanded after RA depending on the choice of
// register.
class CondUnaryRSYPseudo<SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr20only>
: Pseudo<(outs cls:$R1),
(ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
[(set cls:$R1,
(z_select_ccmask (operator mode:$BD2), cls:$R1src,
cond4:$valid, cond4:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
let CCMaskLast = 1;
}
// Like CondStoreRSY, but expanded after RA depending on the choice of
// register.
class CondStoreRSYPseudo<RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: Pseudo<(outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3), []> {
let mayStore = 1;
let AccessBytes = bytes;
let CCMaskLast = 1;
}
// Like StoreRXY, but expanded after RA depending on the choice of register.
class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdxaddr20only>
: Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
[(operator cls:$R1, mode:$XBD2)]> {
let mayStore = 1;
let Has20BitOffset = 1;
let HasIndex = 1;
let AccessBytes = bytes;
}
// Like RotateSelectRIEf, but expanded after RA depending on the choice
// of registers.
class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
: Pseudo<(outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
imm32zx6:$I5),
[]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
// the value of the PSW's 2-bit condition code field.
class SelectWrapper<ValueType vt, RegisterOperand cls>
: Pseudo<(outs cls:$dst),
(ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
[(set (vt cls:$dst), (z_select_ccmask cls:$src1, cls:$src2,
imm32zx4:$valid, imm32zx4:$cc))]> {
let usesCustomInserter = 1;
// Although the instructions used by these nodes do not in themselves
// change CC, the insertion requires new blocks, and CC cannot be live
// across them.
let Defs = [CC];
let Uses = [CC];
}
// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
SDPatternOperator load, AddressingMode mode> {
let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
def "" : Pseudo<(outs),
(ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
[(store (z_select_ccmask cls:$new, (load mode:$addr),
imm32zx4:$valid, imm32zx4:$cc),
mode:$addr)]>;
def Inv : Pseudo<(outs),
(ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
[(store (z_select_ccmask (load mode:$addr), cls:$new,
imm32zx4:$valid, imm32zx4:$cc),
mode:$addr)]>;
}
}
// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
dag pat, DAGOperand operand>
: Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
[(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
let Defs = [CC];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
let hasNoSchedulingInfo = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadBinaryReg32<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
class AtomicLoadBinaryReg64<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
DAGOperand operand>
: Pseudo<(outs GR32:$dst),
(ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize),
[(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize))]> {
let Defs = [CC];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
let hasNoSchedulingInfo = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadWBinaryReg<SDPatternOperator operator>
: AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
: AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
// Define an instruction that operates on two fixed-length blocks of memory,
// and associated pseudo instructions for operating on blocks of any size.
// The Sequence form uses a straight-line sequence of instructions and
// the Loop form uses a loop of length-256 instructions followed by
// another instruction to handle the excess.
multiclass MemorySS<string mnemonic, bits<8> opcode,
SDPatternOperator sequence, SDPatternOperator loop> {
def "" : SideEffectBinarySSa<mnemonic, opcode>;
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length),
[(sequence bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length)]>;
def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length, GR64:$count256),
[(loop bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length, GR64:$count256)]>;
}
}
// Define an instruction that operates on two strings, both terminated
// by the character in R0. The instruction processes a CPU-determinated
// number of bytes at a time and sets CC to 3 if the instruction needs
// to be repeated. Also define a pseudo instruction that represents
// the full loop (the main instruction plus the branch on CC==3).
multiclass StringRRE<string mnemonic, bits<16> opcode,
SDPatternOperator operator> {
let Uses = [R0L] in
def "" : SideEffectBinaryMemMemRRE<mnemonic, opcode, GR64, GR64>;
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def Loop : Pseudo<(outs GR64:$end),
(ins GR64:$start1, GR64:$start2, GR32:$char),
[(set GR64:$end, (operator GR64:$start1, GR64:$start2,
GR32:$char))]>;
}
// A pseudo instruction that is a direct alias of a real instruction.
// These aliases are used in cases where a particular register operand is
// fixed or where the same instruction is used with different register sizes.
// The size parameter is the size in bytes of the associated real instruction.
class Alias<int size, dag outs, dag ins, list<dag> pattern>
: InstSystemZ<size, outs, ins, "", pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
class UnaryAliasVRS<RegisterOperand cls1, RegisterOperand cls2>
: Alias<6, (outs cls1:$src1), (ins cls2:$src2), []>;
// An alias of a UnaryVRR*, but with different register sizes.
class UnaryAliasVRR<SDPatternOperator operator, TypedReg tr1, TypedReg tr2>
: Alias<6, (outs tr1.op:$V1), (ins tr2.op:$V2),
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2))))]>;
// An alias of a UnaryVRX, but with different register sizes.
class UnaryAliasVRX<SDPatternOperator operator, TypedReg tr,
AddressingMode mode = bdxaddr12only>
: Alias<6, (outs tr.op:$V1), (ins mode:$XBD2),
[(set tr.op:$V1, (tr.vt (operator mode:$XBD2)))]>;
// An alias of a StoreVRX, but with different register sizes.
class StoreAliasVRX<SDPatternOperator operator, TypedReg tr,
AddressingMode mode = bdxaddr12only>
: Alias<6, (outs), (ins tr.op:$V1, mode:$XBD2),
[(operator (tr.vt tr.op:$V1), mode:$XBD2)]>;
// An alias of a BinaryRI, but with different register sizes.
class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
}
// An alias of a BinaryRIL, but with different register sizes.
class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
}
// An alias of a BinaryVRRf, but with different register sizes.
class BinaryAliasVRRf<RegisterOperand cls>
: Alias<6, (outs VR128:$V1), (ins cls:$R2, cls:$R3), []>;
// An alias of a CompareRI, but with different register sizes.
class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
// An alias of a RotateSelectRIEf, but with different register sizes.
class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
: Alias<6, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
imm32zx6:$I5), []> {
let Constraints = "$R1 = $R1src";
}