forked from OSchip/llvm-project
630 lines
22 KiB
C++
630 lines
22 KiB
C++
//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for inline asm statements.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCTargetAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
|
|
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
|
|
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
|
|
/// provide a strong guidance to not use it.
|
|
///
|
|
/// This method checks to see if the argument is an acceptable l-value and
|
|
/// returns false if it is a case we can handle.
|
|
static bool CheckAsmLValue(const Expr *E, Sema &S) {
|
|
// Type dependent expressions will be checked during instantiation.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->isLValue())
|
|
return false; // Cool, this is an lvalue.
|
|
|
|
// Okay, this is not an lvalue, but perhaps it is the result of a cast that we
|
|
// are supposed to allow.
|
|
const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
|
|
if (E != E2 && E2->isLValue()) {
|
|
if (!S.getLangOpts().HeinousExtensions)
|
|
S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
|
|
<< E->getSourceRange();
|
|
else
|
|
S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
|
|
<< E->getSourceRange();
|
|
// Accept, even if we emitted an error diagnostic.
|
|
return false;
|
|
}
|
|
|
|
// None of the above, just randomly invalid non-lvalue.
|
|
return true;
|
|
}
|
|
|
|
/// isOperandMentioned - Return true if the specified operand # is mentioned
|
|
/// anywhere in the decomposed asm string.
|
|
static bool isOperandMentioned(unsigned OpNo,
|
|
ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
|
|
for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
|
|
const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
|
|
if (!Piece.isOperand()) continue;
|
|
|
|
// If this is a reference to the input and if the input was the smaller
|
|
// one, then we have to reject this asm.
|
|
if (Piece.getOperandNo() == OpNo)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
|
|
bool IsVolatile, unsigned NumOutputs,
|
|
unsigned NumInputs, IdentifierInfo **Names,
|
|
MultiExprArg constraints, MultiExprArg exprs,
|
|
Expr *asmString, MultiExprArg clobbers,
|
|
SourceLocation RParenLoc) {
|
|
unsigned NumClobbers = clobbers.size();
|
|
StringLiteral **Constraints =
|
|
reinterpret_cast<StringLiteral**>(constraints.get());
|
|
Expr **Exprs = exprs.get();
|
|
StringLiteral *AsmString = cast<StringLiteral>(asmString);
|
|
StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
|
|
|
|
SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
|
|
|
|
// The parser verifies that there is a string literal here.
|
|
if (!AsmString->isAscii())
|
|
return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
|
|
<< AsmString->getSourceRange());
|
|
|
|
for (unsigned i = 0; i != NumOutputs; i++) {
|
|
StringLiteral *Literal = Constraints[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef OutputName;
|
|
if (Names[i])
|
|
OutputName = Names[i]->getName();
|
|
|
|
TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
|
|
if (!Context.getTargetInfo().validateOutputConstraint(Info))
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_invalid_output_constraint)
|
|
<< Info.getConstraintStr());
|
|
|
|
// Check that the output exprs are valid lvalues.
|
|
Expr *OutputExpr = Exprs[i];
|
|
if (CheckAsmLValue(OutputExpr, *this)) {
|
|
return StmtError(Diag(OutputExpr->getLocStart(),
|
|
diag::err_asm_invalid_lvalue_in_output)
|
|
<< OutputExpr->getSourceRange());
|
|
}
|
|
|
|
OutputConstraintInfos.push_back(Info);
|
|
}
|
|
|
|
SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
|
|
|
|
for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
|
|
StringLiteral *Literal = Constraints[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef InputName;
|
|
if (Names[i])
|
|
InputName = Names[i]->getName();
|
|
|
|
TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
|
|
if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
|
|
NumOutputs, Info)) {
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_invalid_input_constraint)
|
|
<< Info.getConstraintStr());
|
|
}
|
|
|
|
Expr *InputExpr = Exprs[i];
|
|
|
|
// Only allow void types for memory constraints.
|
|
if (Info.allowsMemory() && !Info.allowsRegister()) {
|
|
if (CheckAsmLValue(InputExpr, *this))
|
|
return StmtError(Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_invalid_lvalue_in_input)
|
|
<< Info.getConstraintStr()
|
|
<< InputExpr->getSourceRange());
|
|
}
|
|
|
|
if (Info.allowsRegister()) {
|
|
if (InputExpr->getType()->isVoidType()) {
|
|
return StmtError(Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_invalid_type_in_input)
|
|
<< InputExpr->getType() << Info.getConstraintStr()
|
|
<< InputExpr->getSourceRange());
|
|
}
|
|
}
|
|
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
Exprs[i] = Result.take();
|
|
InputConstraintInfos.push_back(Info);
|
|
}
|
|
|
|
// Check that the clobbers are valid.
|
|
for (unsigned i = 0; i != NumClobbers; i++) {
|
|
StringLiteral *Literal = Clobbers[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef Clobber = Literal->getString();
|
|
|
|
if (!Context.getTargetInfo().isValidClobber(Clobber))
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_unknown_register_name) << Clobber);
|
|
}
|
|
|
|
AsmStmt *NS =
|
|
new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
|
|
NumInputs, Names, Constraints, Exprs, AsmString,
|
|
NumClobbers, Clobbers, RParenLoc);
|
|
// Validate the asm string, ensuring it makes sense given the operands we
|
|
// have.
|
|
SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
|
|
unsigned DiagOffs;
|
|
if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
|
|
Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
|
|
<< AsmString->getSourceRange();
|
|
return StmtError();
|
|
}
|
|
|
|
// Validate tied input operands for type mismatches.
|
|
for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
|
|
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
|
|
|
|
// If this is a tied constraint, verify that the output and input have
|
|
// either exactly the same type, or that they are int/ptr operands with the
|
|
// same size (int/long, int*/long, are ok etc).
|
|
if (!Info.hasTiedOperand()) continue;
|
|
|
|
unsigned TiedTo = Info.getTiedOperand();
|
|
unsigned InputOpNo = i+NumOutputs;
|
|
Expr *OutputExpr = Exprs[TiedTo];
|
|
Expr *InputExpr = Exprs[InputOpNo];
|
|
|
|
if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
|
|
continue;
|
|
|
|
QualType InTy = InputExpr->getType();
|
|
QualType OutTy = OutputExpr->getType();
|
|
if (Context.hasSameType(InTy, OutTy))
|
|
continue; // All types can be tied to themselves.
|
|
|
|
// Decide if the input and output are in the same domain (integer/ptr or
|
|
// floating point.
|
|
enum AsmDomain {
|
|
AD_Int, AD_FP, AD_Other
|
|
} InputDomain, OutputDomain;
|
|
|
|
if (InTy->isIntegerType() || InTy->isPointerType())
|
|
InputDomain = AD_Int;
|
|
else if (InTy->isRealFloatingType())
|
|
InputDomain = AD_FP;
|
|
else
|
|
InputDomain = AD_Other;
|
|
|
|
if (OutTy->isIntegerType() || OutTy->isPointerType())
|
|
OutputDomain = AD_Int;
|
|
else if (OutTy->isRealFloatingType())
|
|
OutputDomain = AD_FP;
|
|
else
|
|
OutputDomain = AD_Other;
|
|
|
|
// They are ok if they are the same size and in the same domain. This
|
|
// allows tying things like:
|
|
// void* to int*
|
|
// void* to int if they are the same size.
|
|
// double to long double if they are the same size.
|
|
//
|
|
uint64_t OutSize = Context.getTypeSize(OutTy);
|
|
uint64_t InSize = Context.getTypeSize(InTy);
|
|
if (OutSize == InSize && InputDomain == OutputDomain &&
|
|
InputDomain != AD_Other)
|
|
continue;
|
|
|
|
// If the smaller input/output operand is not mentioned in the asm string,
|
|
// then we can promote the smaller one to a larger input and the asm string
|
|
// won't notice.
|
|
bool SmallerValueMentioned = false;
|
|
|
|
// If this is a reference to the input and if the input was the smaller
|
|
// one, then we have to reject this asm.
|
|
if (isOperandMentioned(InputOpNo, Pieces)) {
|
|
// This is a use in the asm string of the smaller operand. Since we
|
|
// codegen this by promoting to a wider value, the asm will get printed
|
|
// "wrong".
|
|
SmallerValueMentioned |= InSize < OutSize;
|
|
}
|
|
if (isOperandMentioned(TiedTo, Pieces)) {
|
|
// If this is a reference to the output, and if the output is the larger
|
|
// value, then it's ok because we'll promote the input to the larger type.
|
|
SmallerValueMentioned |= OutSize < InSize;
|
|
}
|
|
|
|
// If the smaller value wasn't mentioned in the asm string, and if the
|
|
// output was a register, just extend the shorter one to the size of the
|
|
// larger one.
|
|
if (!SmallerValueMentioned && InputDomain != AD_Other &&
|
|
OutputConstraintInfos[TiedTo].allowsRegister())
|
|
continue;
|
|
|
|
// Either both of the operands were mentioned or the smaller one was
|
|
// mentioned. One more special case that we'll allow: if the tied input is
|
|
// integer, unmentioned, and is a constant, then we'll allow truncating it
|
|
// down to the size of the destination.
|
|
if (InputDomain == AD_Int && OutputDomain == AD_Int &&
|
|
!isOperandMentioned(InputOpNo, Pieces) &&
|
|
InputExpr->isEvaluatable(Context)) {
|
|
CastKind castKind =
|
|
(OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
|
|
InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
|
|
Exprs[InputOpNo] = InputExpr;
|
|
NS->setInputExpr(i, InputExpr);
|
|
continue;
|
|
}
|
|
|
|
Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_tying_incompatible_types)
|
|
<< InTy << OutTy << OutputExpr->getSourceRange()
|
|
<< InputExpr->getSourceRange();
|
|
return StmtError();
|
|
}
|
|
|
|
return Owned(NS);
|
|
}
|
|
|
|
// isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These
|
|
// require special handling.
|
|
static bool isMSAsmKeyword(StringRef Name) {
|
|
bool Ret = llvm::StringSwitch<bool>(Name)
|
|
.Cases("EVEN", "ALIGN", true) // Alignment directives.
|
|
.Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes.
|
|
.Case("_emit", true) // _emit Pseudoinstruction.
|
|
.Default(false);
|
|
return Ret;
|
|
}
|
|
|
|
static StringRef getSpelling(Sema &SemaRef, Token AsmTok) {
|
|
StringRef Asm;
|
|
SmallString<512> TokenBuf;
|
|
TokenBuf.resize(512);
|
|
bool StringInvalid = false;
|
|
Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid);
|
|
assert (!StringInvalid && "Expected valid string!");
|
|
return Asm;
|
|
}
|
|
|
|
static void patchMSAsmStrings(Sema &SemaRef, bool &IsSimple,
|
|
SourceLocation AsmLoc,
|
|
ArrayRef<Token> AsmToks,
|
|
const TargetInfo &TI,
|
|
std::vector<llvm::BitVector> &AsmRegs,
|
|
std::vector<llvm::BitVector> &AsmNames,
|
|
std::vector<std::string> &AsmStrings) {
|
|
assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
|
|
|
|
// Assume simple asm stmt until we parse a non-register identifer (or we just
|
|
// need to bail gracefully).
|
|
IsSimple = true;
|
|
|
|
SmallString<512> Asm;
|
|
unsigned NumAsmStrings = 0;
|
|
for (unsigned i = 0, e = AsmToks.size(); i != e; ++i) {
|
|
|
|
// Determine if this should be considered a new asm.
|
|
bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
|
|
AsmToks[i].is(tok::kw_asm);
|
|
|
|
// Emit the previous asm string.
|
|
if (i && isNewAsm) {
|
|
AsmStrings[NumAsmStrings++] = Asm.c_str();
|
|
if (AsmToks[i].is(tok::kw_asm)) {
|
|
++i; // Skip __asm
|
|
assert (i != e && "Expected another token.");
|
|
}
|
|
}
|
|
|
|
// Start a new asm string with the opcode.
|
|
if (isNewAsm) {
|
|
AsmRegs[NumAsmStrings].resize(AsmToks.size());
|
|
AsmNames[NumAsmStrings].resize(AsmToks.size());
|
|
|
|
StringRef Piece = AsmToks[i].getIdentifierInfo()->getName();
|
|
// MS-style inline asm keywords require special handling.
|
|
if (isMSAsmKeyword(Piece))
|
|
IsSimple = false;
|
|
|
|
// TODO: Verify this is a valid opcode.
|
|
Asm = Piece;
|
|
continue;
|
|
}
|
|
|
|
if (i && AsmToks[i].hasLeadingSpace())
|
|
Asm += ' ';
|
|
|
|
// Check the operand(s).
|
|
switch (AsmToks[i].getKind()) {
|
|
default:
|
|
IsSimple = false;
|
|
Asm += getSpelling(SemaRef, AsmToks[i]);
|
|
break;
|
|
case tok::comma: Asm += ","; break;
|
|
case tok::colon: Asm += ":"; break;
|
|
case tok::l_square: Asm += "["; break;
|
|
case tok::r_square: Asm += "]"; break;
|
|
case tok::l_brace: Asm += "{"; break;
|
|
case tok::r_brace: Asm += "}"; break;
|
|
case tok::numeric_constant:
|
|
Asm += getSpelling(SemaRef, AsmToks[i]);
|
|
break;
|
|
case tok::identifier: {
|
|
IdentifierInfo *II = AsmToks[i].getIdentifierInfo();
|
|
StringRef Name = II->getName();
|
|
|
|
// Valid register?
|
|
if (TI.isValidGCCRegisterName(Name)) {
|
|
AsmRegs[NumAsmStrings].set(i);
|
|
Asm += Name;
|
|
break;
|
|
}
|
|
|
|
IsSimple = false;
|
|
|
|
// MS-style inline asm keywords require special handling.
|
|
if (isMSAsmKeyword(Name)) {
|
|
IsSimple = false;
|
|
Asm += Name;
|
|
break;
|
|
}
|
|
|
|
// Lookup the identifier.
|
|
// TODO: Someone with more experience with clang should verify this the
|
|
// proper way of doing a symbol lookup.
|
|
DeclarationName DeclName(II);
|
|
Scope *CurScope = SemaRef.getCurScope();
|
|
LookupResult R(SemaRef, DeclName, AsmLoc, Sema::LookupOrdinaryName);
|
|
if (!SemaRef.LookupName(R, CurScope, false/*AllowBuiltinCreation*/))
|
|
break;
|
|
|
|
assert (R.isSingleResult() && "Expected a single result?!");
|
|
NamedDecl *Decl = R.getFoundDecl();
|
|
switch (Decl->getKind()) {
|
|
default:
|
|
assert(0 && "Unknown decl kind.");
|
|
break;
|
|
case Decl::Var: {
|
|
case Decl::ParmVar:
|
|
AsmNames[NumAsmStrings].set(i);
|
|
|
|
VarDecl *Var = cast<VarDecl>(Decl);
|
|
QualType Ty = Var->getType();
|
|
(void)Ty; // Avoid warning.
|
|
// TODO: Patch identifier with valid operand. One potential idea is to
|
|
// probe the backend with type information to guess the possible
|
|
// operand.
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit the final (and possibly only) asm string.
|
|
AsmStrings[NumAsmStrings] = Asm.c_str();
|
|
}
|
|
|
|
// Build the unmodified MSAsmString.
|
|
static std::string buildMSAsmString(Sema &SemaRef,
|
|
ArrayRef<Token> AsmToks,
|
|
unsigned &NumAsmStrings) {
|
|
assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
|
|
NumAsmStrings = 0;
|
|
|
|
SmallString<512> Asm;
|
|
for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
|
|
bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
|
|
AsmToks[i].is(tok::kw_asm);
|
|
|
|
if (isNewAsm) {
|
|
++NumAsmStrings;
|
|
if (i)
|
|
Asm += '\n';
|
|
if (AsmToks[i].is(tok::kw_asm)) {
|
|
i++; // Skip __asm
|
|
assert (i != e && "Expected another token");
|
|
}
|
|
}
|
|
|
|
if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm)
|
|
Asm += ' ';
|
|
|
|
Asm += getSpelling(SemaRef, AsmToks[i]);
|
|
}
|
|
return Asm.c_str();
|
|
}
|
|
|
|
StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
|
|
SourceLocation LBraceLoc,
|
|
ArrayRef<Token> AsmToks,
|
|
SourceLocation EndLoc) {
|
|
// MS-style inline assembly is not fully supported, so emit a warning.
|
|
Diag(AsmLoc, diag::warn_unsupported_msasm);
|
|
SmallVector<StringRef,4> Clobbers;
|
|
std::set<std::string> ClobberRegs;
|
|
SmallVector<IdentifierInfo*, 4> Inputs;
|
|
SmallVector<IdentifierInfo*, 4> Outputs;
|
|
|
|
// Empty asm statements don't need to instantiate the AsmParser, etc.
|
|
if (AsmToks.empty()) {
|
|
StringRef AsmString;
|
|
MSAsmStmt *NS =
|
|
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
|
|
/*IsVolatile*/ true, AsmToks, Inputs, Outputs,
|
|
AsmString, Clobbers, EndLoc);
|
|
return Owned(NS);
|
|
}
|
|
|
|
unsigned NumAsmStrings;
|
|
std::string AsmString = buildMSAsmString(*this, AsmToks, NumAsmStrings);
|
|
|
|
bool IsSimple;
|
|
std::vector<llvm::BitVector> Regs;
|
|
std::vector<llvm::BitVector> Names;
|
|
std::vector<std::string> PatchedAsmStrings;
|
|
|
|
Regs.resize(NumAsmStrings);
|
|
Names.resize(NumAsmStrings);
|
|
PatchedAsmStrings.resize(NumAsmStrings);
|
|
|
|
// Rewrite operands to appease the AsmParser.
|
|
patchMSAsmStrings(*this, IsSimple, AsmLoc, AsmToks,
|
|
Context.getTargetInfo(), Regs, Names, PatchedAsmStrings);
|
|
|
|
// patchMSAsmStrings doesn't correctly patch non-simple asm statements.
|
|
if (!IsSimple) {
|
|
MSAsmStmt *NS =
|
|
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
|
|
/*IsVolatile*/ true, AsmToks, Inputs, Outputs,
|
|
AsmString, Clobbers, EndLoc);
|
|
return Owned(NS);
|
|
}
|
|
|
|
// Initialize targets and assembly printers/parsers.
|
|
llvm::InitializeAllTargetInfos();
|
|
llvm::InitializeAllTargetMCs();
|
|
llvm::InitializeAllAsmParsers();
|
|
|
|
// Get the target specific parser.
|
|
std::string Error;
|
|
const std::string &TT = Context.getTargetInfo().getTriple().getTriple();
|
|
const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error));
|
|
|
|
OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT));
|
|
OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
|
|
OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
|
|
OwningPtr<llvm::MCSubtargetInfo>
|
|
STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
|
|
|
|
for (unsigned i = 0, e = PatchedAsmStrings.size(); i != e; ++i) {
|
|
llvm::SourceMgr SrcMgr;
|
|
llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr);
|
|
llvm::MemoryBuffer *Buffer =
|
|
llvm::MemoryBuffer::getMemBuffer(PatchedAsmStrings[i], "<inline asm>");
|
|
|
|
// Tell SrcMgr about this buffer, which is what the parser will pick up.
|
|
SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
|
|
|
|
OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
|
|
OwningPtr<llvm::MCAsmParser>
|
|
Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI));
|
|
OwningPtr<llvm::MCTargetAsmParser>
|
|
TargetParser(TheTarget->createMCAsmParser(*STI, *Parser));
|
|
// Change to the Intel dialect.
|
|
Parser->setAssemblerDialect(1);
|
|
Parser->setTargetParser(*TargetParser.get());
|
|
|
|
// Prime the lexer.
|
|
Parser->Lex();
|
|
|
|
// Parse the opcode.
|
|
StringRef IDVal;
|
|
Parser->ParseIdentifier(IDVal);
|
|
|
|
// Canonicalize the opcode to lower case.
|
|
SmallString<128> Opcode;
|
|
for (unsigned i = 0, e = IDVal.size(); i != e; ++i)
|
|
Opcode.push_back(tolower(IDVal[i]));
|
|
|
|
// Parse the operands.
|
|
llvm::SMLoc IDLoc;
|
|
SmallVector<llvm::MCParsedAsmOperand*, 8> Operands;
|
|
bool HadError = TargetParser->ParseInstruction(Opcode.str(), IDLoc,
|
|
Operands);
|
|
assert (!HadError && "Unexpected error parsing instruction");
|
|
|
|
// Match the MCInstr.
|
|
SmallVector<llvm::MCInst, 2> Instrs;
|
|
HadError = TargetParser->MatchInstruction(IDLoc, Operands, Instrs);
|
|
assert (!HadError && "Unexpected error matching instruction");
|
|
assert ((Instrs.size() == 1) && "Expected only a single instruction.");
|
|
|
|
// Get the instruction descriptor.
|
|
llvm::MCInst Inst = Instrs[0];
|
|
const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
|
|
const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode());
|
|
llvm::MCInstPrinter *IP =
|
|
TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
|
|
|
|
// Build the list of clobbers.
|
|
for (unsigned i = 0, e = Desc.getNumDefs(); i != e; ++i) {
|
|
const llvm::MCOperand &Op = Inst.getOperand(i);
|
|
if (!Op.isReg())
|
|
continue;
|
|
|
|
std::string Reg;
|
|
llvm::raw_string_ostream OS(Reg);
|
|
IP->printRegName(OS, Op.getReg());
|
|
|
|
StringRef Clobber(OS.str());
|
|
if (!Context.getTargetInfo().isValidClobber(Clobber))
|
|
return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) <<
|
|
Clobber);
|
|
ClobberRegs.insert(Reg);
|
|
}
|
|
}
|
|
for (std::set<std::string>::iterator I = ClobberRegs.begin(),
|
|
E = ClobberRegs.end(); I != E; ++I)
|
|
Clobbers.push_back(*I);
|
|
|
|
MSAsmStmt *NS =
|
|
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
|
|
/*IsVolatile*/ true, AsmToks, Inputs, Outputs,
|
|
AsmString, Clobbers, EndLoc);
|
|
return Owned(NS);
|
|
}
|