llvm-project/llvm/lib/Target/SystemZ
Quentin Colombet 61b305edfd [ShrinkWrap] Add (a simplified version) of shrink-wrapping.
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.

As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.


** Context **

Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.


** Motivating example **

Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b)  {
 %tmp = alloca i32, align 4
 %tmp2 = icmp slt i32 %a, %b
 br i1 %tmp2, label %true, label %false

true:
 store i32 %a, i32* %tmp, align 4
 %tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
 br label %false

false:
 %tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
 ret i32 %tmp.0
}

On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f:                                     ; @f
; BB#0:
  stp x29, x30, [sp, #-16]!
  mov  x29, sp
  sub sp, sp, #16             ; =16
  cmp  w0, w1
  b.ge  LBB0_2
; BB#1:                                 ; %true
  stur  w0, [x29, #-4]
  sub x1, x29, #4             ; =4
  mov  w0, wzr
  bl  _doSomething
LBB0_2:                                 ; %false
  mov  sp, x29
  ldp x29, x30, [sp], #16
  ret

With shrink-wrapping we could generate:
_f:                                     ; @f
; BB#0:
  cmp  w0, w1
  b.ge  LBB0_2
; BB#1:                                 ; %true
  stp x29, x30, [sp, #-16]!
  mov  x29, sp
  sub sp, sp, #16             ; =16
  stur  w0, [x29, #-4]
  sub x1, x29, #4             ; =4
  mov  w0, wzr
  bl  _doSomething
  add sp, x29, #16            ; =16
  ldp x29, x30, [sp], #16
LBB0_2:                                 ; %false
  ret

Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.


** Proposed Solution **

This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.

Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.

The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.

Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.


** Design Decisions **

1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
  pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.

Differential Revision: http://reviews.llvm.org/D9210

<rdar://problem/3201744>

llvm-svn: 236507
2015-05-05 17:38:16 +00:00
..
AsmParser [SystemZ] Clean up AsmParser isMem() handling 2015-05-04 17:40:53 +00:00
Disassembler Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
InstPrinter [MCInstPrinter] Enable MCInstPrinter to change its behavior based on the 2015-03-27 20:36:02 +00:00
MCTargetDesc Use raw_pwrite_stream in the object writer/streamer. 2015-04-14 22:14:34 +00:00
TargetInfo
CMakeLists.txt [SystemZ] Provide basic TargetTransformInfo implementation 2015-03-31 12:52:27 +00:00
LLVMBuild.txt [SystemZ] Add Analysis to required_libraries (fall-out from r233688) 2015-03-31 15:16:13 +00:00
Makefile Reinstate "Nuke the old JIT." 2014-09-02 22:28:02 +00:00
README.txt
SystemZ.h [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZ.td
SystemZAsmPrinter.cpp [AsmPrinter] Make AsmPrinter's OutStreamer member a unique_ptr. 2015-04-24 19:11:51 +00:00
SystemZAsmPrinter.h Refactor a lot of duplicated code for stub output. 2015-04-07 13:42:44 +00:00
SystemZCallingConv.cpp
SystemZCallingConv.h Canonicalize header guards into a common format. 2014-08-13 16:26:38 +00:00
SystemZCallingConv.td [SystemZ] Use SystemZCallingConv.td to define callee-saved registers 2014-07-10 11:44:37 +00:00
SystemZConstantPoolValue.cpp [SystemZ] Support all TLS access models - CodeGen part 2015-02-18 09:13:27 +00:00
SystemZConstantPoolValue.h [SystemZ] Support all TLS access models - CodeGen part 2015-02-18 09:13:27 +00:00
SystemZElimCompare.cpp Removing LLVM_EXPLICIT, as MSVC 2012 was the last reason for requiring the macro. NFC; LLVM edition. 2015-02-15 22:00:20 +00:00
SystemZFrameLowering.cpp [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
SystemZFrameLowering.h [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
SystemZISelDAGToDAG.cpp Reapply r235977 "[DebugInfo] Add debug locations to constant SD nodes" 2015-04-28 14:05:47 +00:00
SystemZISelLowering.cpp [SystemZ] Reclassify f32 subregs of f64 registers 2015-05-04 17:41:22 +00:00
SystemZISelLowering.h [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZInstrBuilder.h Canonicalize header guards into a common format. 2014-08-13 16:26:38 +00:00
SystemZInstrFP.td [SystemZ] Reclassify f32 subregs of f64 registers 2015-05-04 17:41:22 +00:00
SystemZInstrFormats.td [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZInstrInfo.cpp [SystemZ] Support RISBGN instruction on zEC12 2015-03-31 12:58:17 +00:00
SystemZInstrInfo.h ArrayRefize memory operand folding. NFC. 2015-02-28 12:04:00 +00:00
SystemZInstrInfo.td [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZLDCleanup.cpp [SystemZ] Support all TLS access models - CodeGen part 2015-02-18 09:13:27 +00:00
SystemZLongBranch.cpp Have MachineFunction cache a pointer to the subtarget to make lookups 2014-08-05 02:39:49 +00:00
SystemZMCInstLower.cpp [SystemZ] Support all TLS access models - CodeGen part 2015-02-18 09:13:27 +00:00
SystemZMCInstLower.h Canonicalize header guards into a common format. 2014-08-13 16:26:38 +00:00
SystemZMachineFunctionInfo.cpp
SystemZMachineFunctionInfo.h [SystemZ] Support all TLS access models - CodeGen part 2015-02-18 09:13:27 +00:00
SystemZOperands.td Reapply r235977 "[DebugInfo] Add debug locations to constant SD nodes" 2015-04-28 14:05:47 +00:00
SystemZOperators.td [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZPatterns.td [SystemZ] Avoid using i8 constants for immediate fields 2014-07-10 10:52:51 +00:00
SystemZProcessors.td [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZRegisterInfo.cpp Have getCallPreservedMask and getThisCallPreservedMask take a 2015-03-11 22:42:13 +00:00
SystemZRegisterInfo.h Have getCallPreservedMask and getThisCallPreservedMask take a 2015-03-11 22:42:13 +00:00
SystemZRegisterInfo.td [SystemZ] Reclassify f32 subregs of f64 registers 2015-05-04 17:41:22 +00:00
SystemZSelectionDAGInfo.cpp Reapply r235977 "[DebugInfo] Add debug locations to constant SD nodes" 2015-04-28 14:05:47 +00:00
SystemZSelectionDAGInfo.h Canonicalize header guards into a common format. 2014-08-13 16:26:38 +00:00
SystemZShortenInst.cpp Have MachineFunction cache a pointer to the subtarget to make lookups 2014-08-05 02:39:49 +00:00
SystemZSubtarget.cpp [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZSubtarget.h [SystemZ] Support transactional execution on zEC12 2015-04-01 12:51:43 +00:00
SystemZTargetMachine.cpp [SystemZ] Provide basic TargetTransformInfo implementation 2015-03-31 12:52:27 +00:00
SystemZTargetMachine.h [SystemZ] Provide basic TargetTransformInfo implementation 2015-03-31 12:52:27 +00:00
SystemZTargetTransformInfo.cpp [SystemZ] Use POPCNT instruction on z196 2015-03-31 12:56:33 +00:00
SystemZTargetTransformInfo.h [SystemZ] Use POPCNT instruction on z196 2015-03-31 12:56:33 +00:00

README.txt

//===---------------------------------------------------------------------===//
// Random notes about and ideas for the SystemZ backend.
//===---------------------------------------------------------------------===//

The initial backend is deliberately restricted to z10.  We should add support
for later architectures at some point.

--

SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
inline asm memory constraints; it doesn't get to see the original constraint.
This means that it must conservatively treat all inline asm constraints
as the most restricted type, "R".

--

If an inline asm ties an i32 "r" result to an i64 input, the input
will be treated as an i32, leaving the upper bits uninitialised.
For example:

define void @f4(i32 *%dst) {
  %val = call i32 asm "blah $0", "=r,0" (i64 103)
  store i32 %val, i32 *%dst
  ret void
}

from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
to load 103.  This seems to be a general target-independent problem.

--

The tuning of the choice between LOAD ADDRESS (LA) and addition in
SystemZISelDAGToDAG.cpp is suspect.  It should be tweaked based on
performance measurements.

--

There is no scheduling support.

--

We don't use the BRANCH ON INDEX instructions.

--

We might want to use BRANCH ON CONDITION for conditional indirect calls
and conditional returns.

--

We don't use the TEST DATA CLASS instructions.

--

We could use the generic floating-point forms of LOAD COMPLEMENT,
LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the
condition codes.  For example, we could use LCDFR instead of LCDBR.

--

We only use MVC, XC and CLC for constant-length block operations.
We could extend them to variable-length operations too,
using EXECUTE RELATIVE LONG.

MVCIN, MVCLE and CLCLE may be worthwhile too.

--

We don't use CUSE or the TRANSLATE family of instructions for string
operations.  The TRANSLATE ones are probably more difficult to exploit.

--

We don't take full advantage of builtins like fabsl because the calling
conventions require f128s to be returned by invisible reference.

--

ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
produce a carry.  SUBTRACT LOGICAL IMMEDIATE could be useful when we
need to produce a borrow.  (Note that there are no memory forms of
ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
part of 128-bit memory operations would probably need to be done
via a register.)

--

We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
(LRVH and STRVH).

--

We don't use ICM or STCM.

--

DAGCombiner doesn't yet fold truncations of extended loads.  Functions like:

    unsigned long f (unsigned long x, unsigned short *y)
    {
      return (x << 32) | *y;
    }

therefore end up as:

        sllg    %r2, %r2, 32
        llgh    %r0, 0(%r3)
        lr      %r2, %r0
        br      %r14

but truncating the load would give:

        sllg    %r2, %r2, 32
        lh      %r2, 0(%r3)
        br      %r14

--

Functions like:

define i64 @f1(i64 %a) {
  %and = and i64 %a, 1
  ret i64 %and
}

ought to be implemented as:

        lhi     %r0, 1
        ngr     %r2, %r0
        br      %r14

but two-address optimisations reverse the order of the AND and force:

        lhi     %r0, 1
        ngr     %r0, %r2
        lgr     %r2, %r0
        br      %r14

CodeGen/SystemZ/and-04.ll has several examples of this.

--

Out-of-range displacements are usually handled by loading the full
address into a register.  In many cases it would be better to create
an anchor point instead.  E.g. for:

define void @f4a(i128 *%aptr, i64 %base) {
  %addr = add i64 %base, 524288
  %bptr = inttoptr i64 %addr to i128 *
  %a = load volatile i128 *%aptr
  %b = load i128 *%bptr
  %add = add i128 %a, %b
  store i128 %add, i128 *%aptr
  ret void
}

(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
into separate registers, rather than using %base+524288 as a base for both.

--

Dynamic stack allocations round the size to 8 bytes and then allocate
that rounded amount.  It would be simpler to subtract the unrounded
size from the copy of the stack pointer and then align the result.
See CodeGen/SystemZ/alloca-01.ll for an example.

--

If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.

--

We might want to model all access registers and use them to spill
32-bit values.