llvm-project/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNod...

353 lines
14 KiB
C++

//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
// there is at most one ret and one unreachable instruction, it ensures there is
// at most one divergent exiting block.
//
// StructurizeCFG can't deal with multi-exit regions formed by branches to
// multiple return nodes. It is not desirable to structurize regions with
// uniform branches, so unifying those to the same return block as divergent
// branches inhibits use of scalar branching. It still can't deal with the case
// where one branch goes to return, and one unreachable. Replace unreachable in
// this case with a return.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
namespace {
class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
}
// We can preserve non-critical-edgeness when we unify function exit nodes
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
};
} // end anonymous namespace
char AMDGPUUnifyDivergentExitNodes::ID = 0;
char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
"Unify divergent function exit nodes", false, false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
"Unify divergent function exit nodes", false, false)
void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
// TODO: Preserve dominator tree.
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.addRequired<LegacyDivergenceAnalysis>();
// No divergent values are changed, only blocks and branch edges.
AU.addPreserved<LegacyDivergenceAnalysis>();
// We preserve the non-critical-edgeness property
AU.addPreservedID(BreakCriticalEdgesID);
// This is a cluster of orthogonal Transforms
AU.addPreservedID(LowerSwitchID);
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<TargetTransformInfoWrapperPass>();
}
/// \returns true if \p BB is reachable through only uniform branches.
/// XXX - Is there a more efficient way to find this?
static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA,
BasicBlock &BB) {
SmallVector<BasicBlock *, 8> Stack;
SmallPtrSet<BasicBlock *, 8> Visited;
for (BasicBlock *Pred : predecessors(&BB))
Stack.push_back(Pred);
while (!Stack.empty()) {
BasicBlock *Top = Stack.pop_back_val();
if (!DA.isUniform(Top->getTerminator()))
return false;
for (BasicBlock *Pred : predecessors(Top)) {
if (Visited.insert(Pred).second)
Stack.push_back(Pred);
}
}
return true;
}
static void removeDoneExport(Function &F) {
ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext());
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) {
if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) {
Intrin->setArgOperand(6, BoolFalse); // done
} else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) {
Intrin->setArgOperand(4, BoolFalse); // done
}
}
}
}
}
static BasicBlock *unifyReturnBlockSet(Function &F,
ArrayRef<BasicBlock *> ReturningBlocks,
bool InsertExport,
const TargetTransformInfo &TTI,
StringRef Name) {
// Otherwise, we need to insert a new basic block into the function, add a PHI
// nodes (if the function returns values), and convert all of the return
// instructions into unconditional branches.
BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
IRBuilder<> B(NewRetBlock);
if (InsertExport) {
// Ensure that there's only one "done" export in the shader by removing the
// "done" bit set on the original final export. More than one "done" export
// can lead to undefined behavior.
removeDoneExport(F);
Value *Undef = UndefValue::get(B.getFloatTy());
B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() },
{
B.getInt32(9), // target, SQ_EXP_NULL
B.getInt32(0), // enabled channels
Undef, Undef, Undef, Undef, // values
B.getTrue(), // done
B.getTrue(), // valid mask
});
}
PHINode *PN = nullptr;
if (F.getReturnType()->isVoidTy()) {
B.CreateRetVoid();
} else {
// If the function doesn't return void... add a PHI node to the block...
PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(),
"UnifiedRetVal");
assert(!InsertExport);
B.CreateRet(PN);
}
// Loop over all of the blocks, replacing the return instruction with an
// unconditional branch.
for (BasicBlock *BB : ReturningBlocks) {
// Add an incoming element to the PHI node for every return instruction that
// is merging into this new block...
if (PN)
PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
// Remove and delete the return inst.
BB->getTerminator()->eraseFromParent();
BranchInst::Create(NewRetBlock, BB);
}
for (BasicBlock *BB : ReturningBlocks) {
// Cleanup possible branch to unconditional branch to the return.
simplifyCFG(BB, TTI, {2});
}
return NewRetBlock;
}
bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
// If there's only one exit, we don't need to do anything, unless this is a
// pixel shader and that exit is an infinite loop, since we still have to
// insert an export in that case.
if (PDT.getRoots().size() <= 1 &&
F.getCallingConv() != CallingConv::AMDGPU_PS)
return false;
LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>();
// Loop over all of the blocks in a function, tracking all of the blocks that
// return.
SmallVector<BasicBlock *, 4> ReturningBlocks;
SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks;
SmallVector<BasicBlock *, 4> UnreachableBlocks;
// Dummy return block for infinite loop.
BasicBlock *DummyReturnBB = nullptr;
bool InsertExport = false;
for (BasicBlock *BB : PDT.getRoots()) {
if (isa<ReturnInst>(BB->getTerminator())) {
if (!isUniformlyReached(DA, *BB))
ReturningBlocks.push_back(BB);
else
UniformlyReachedRetBlocks.push_back(BB);
} else if (isa<UnreachableInst>(BB->getTerminator())) {
if (!isUniformlyReached(DA, *BB))
UnreachableBlocks.push_back(BB);
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
if (DummyReturnBB == nullptr) {
DummyReturnBB = BasicBlock::Create(F.getContext(),
"DummyReturnBlock", &F);
Type *RetTy = F.getReturnType();
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
// For pixel shaders, the producer guarantees that an export is
// executed before each return instruction. However, if there is an
// infinite loop and we insert a return ourselves, we need to uphold
// that guarantee by inserting a null export. This can happen e.g. in
// an infinite loop with kill instructions, which is supposed to
// terminate. However, we don't need to do this if there is a non-void
// return value, since then there is an epilog afterwards which will
// still export.
//
// Note: In the case where only some threads enter the infinite loop,
// this can result in the null export happening redundantly after the
// original exports. However, The last "real" export happens after all
// the threads that didn't enter an infinite loop converged, which
// means that the only extra threads to execute the null export are
// threads that entered the infinite loop, and they only could've
// exited through being killed which sets their exec bit to 0.
// Therefore, unless there's an actual infinite loop, which can have
// invalid results, or there's a kill after the last export, which we
// assume the frontend won't do, this export will have the same exec
// mask as the last "real" export, and therefore the valid mask will be
// overwritten with the same value and will still be correct. Also,
// even though this forces an extra unnecessary export wait, we assume
// that this happens rare enough in practice to that we don't have to
// worry about performance.
if (F.getCallingConv() == CallingConv::AMDGPU_PS &&
RetTy->isVoidTy()) {
InsertExport = true;
}
ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
ReturningBlocks.push_back(DummyReturnBB);
}
if (BI->isUnconditional()) {
BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
BI->eraseFromParent(); // Delete the unconditional branch.
// Add a new conditional branch with a dummy edge to the return block.
BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
} else { // Conditional branch.
// Create a new transition block to hold the conditional branch.
BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
// Create a branch that will always branch to the transition block and
// references DummyReturnBB.
BB->getTerminator()->eraseFromParent();
BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
}
}
}
if (!UnreachableBlocks.empty()) {
BasicBlock *UnreachableBlock = nullptr;
if (UnreachableBlocks.size() == 1) {
UnreachableBlock = UnreachableBlocks.front();
} else {
UnreachableBlock = BasicBlock::Create(F.getContext(),
"UnifiedUnreachableBlock", &F);
new UnreachableInst(F.getContext(), UnreachableBlock);
for (BasicBlock *BB : UnreachableBlocks) {
// Remove and delete the unreachable inst.
BB->getTerminator()->eraseFromParent();
BranchInst::Create(UnreachableBlock, BB);
}
}
if (!ReturningBlocks.empty()) {
// Don't create a new unreachable inst if we have a return. The
// structurizer/annotator can't handle the multiple exits
Type *RetTy = F.getReturnType();
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
// Remove and delete the unreachable inst.
UnreachableBlock->getTerminator()->eraseFromParent();
Function *UnreachableIntrin =
Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
// Insert a call to an intrinsic tracking that this is an unreachable
// point, in case we want to kill the active lanes or something later.
CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
// Don't create a scalar trap. We would only want to trap if this code was
// really reached, but a scalar trap would happen even if no lanes
// actually reached here.
ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
ReturningBlocks.push_back(UnreachableBlock);
}
}
// Now handle return blocks.
if (ReturningBlocks.empty())
return false; // No blocks return
if (ReturningBlocks.size() == 1 && !InsertExport)
return false; // Already has a single return block
const TargetTransformInfo &TTI
= getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
// Unify returning blocks. If we are going to insert the export it is also
// necessary to include blocks that are uniformly reached, because in addition
// to inserting the export the "done" bits on existing exports will be cleared
// and we do not want to end up with the normal export in a non-unified,
// uniformly reached block with the "done" bit cleared.
auto BlocksToUnify = std::move(ReturningBlocks);
if (InsertExport) {
BlocksToUnify.insert(BlocksToUnify.end(), UniformlyReachedRetBlocks.begin(),
UniformlyReachedRetBlocks.end());
}
unifyReturnBlockSet(F, BlocksToUnify, InsertExport, TTI,
"UnifiedReturnBlock");
return true;
}