llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.td

1076 lines
47 KiB
TableGen

//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
let neverHasSideEffects = 1 in {
// Takes as input the value of the stack pointer after a dynamic allocation
// has been made. Sets the output to the address of the dynamically-
// allocated area itself, skipping the outgoing arguments.
//
// This expands to an LA or LAY instruction. We restrict the offset
// to the range of LA and keep the LAY range in reserve for when
// the size of the outgoing arguments is added.
def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
[(set GR64:$dst, dynalloc12only:$src)]>;
}
//===----------------------------------------------------------------------===//
// Control flow instructions
//===----------------------------------------------------------------------===//
// A return instruction. R1 is the condition-code mask (all 1s)
// and R2 is the target address, which is always stored in %r14.
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
}
// Unconditional branches. R1 is the condition-code mask (all 1s).
let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
let isIndirectBranch = 1 in
def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
"br\t$R2", [(brind ADDR64:$R2)]>;
// An assembler extended mnemonic for BRC.
def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
[(br bb:$I2)]>;
// An assembler extended mnemonic for BRCL. (The extension is "G"
// rather than "L" because "JL" is "Jump if Less".)
def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
}
// Conditional branches. It's easier for LLVM to handle these branches
// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
// the first operand. It seems friendlier to use mnemonic forms like
// JE and JLH when writing out the assembly though.
//
// Using a custom inserter for BRC gives us a chance to convert the BRC
// and a preceding compare into a single compare-and-branch instruction.
// The inserter makes no change in cases where a separate branch really
// is needed.
multiclass CondBranches<Operand ccmask, string short, string long> {
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
def "" : InstRI<0xA74, (outs), (ins ccmask:$R1, brtarget16:$I2), short, []>;
def L : InstRIL<0xC04, (outs), (ins ccmask:$R1, brtarget32:$I2), long, []>;
}
}
let isCodeGenOnly = 1, usesCustomInserter = 1 in
defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
// Fused compare-and-branch instructions. As for normal branches,
// we handle these instructions internally in their raw CRJ-like form,
// but use assembly macros like CRJE when writing them out.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that they clobber CC, so that we can lower
// them to separate comparisons and BRCLs if the branch ends up being
// out of range.
multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
let isBranch = 1, isTerminator = 1, Defs = [CC] in {
def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
brtarget16:$RI4),
"crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
brtarget16:$RI4),
"cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
brtarget16:$RI4),
"cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
brtarget16:$RI4),
"cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
}
}
let isCodeGenOnly = 1 in
defm C : CompareBranches<cond4, "$M3", "">;
defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
// Define AsmParser mnemonics for each general condition-code mask
// (integer or floating-point)
multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
let R1 = ccmask in {
def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2),
"j"##name##"\t$I2", []>;
def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
"jg"##name##"\t$I2", []>;
}
}
defm AsmJO : CondExtendedMnemonic<1, "o">;
defm AsmJH : CondExtendedMnemonic<2, "h">;
defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
defm AsmJL : CondExtendedMnemonic<4, "l">;
defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
defm AsmJLH : CondExtendedMnemonic<6, "lh">;
defm AsmJNE : CondExtendedMnemonic<7, "ne">;
defm AsmJE : CondExtendedMnemonic<8, "e">;
defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
defm AsmJHE : CondExtendedMnemonic<10, "he">;
defm AsmJNL : CondExtendedMnemonic<11, "nl">;
defm AsmJLE : CondExtendedMnemonic<12, "le">;
defm AsmJNH : CondExtendedMnemonic<13, "nh">;
defm AsmJNO : CondExtendedMnemonic<14, "no">;
// Define AsmParser mnemonics for each integer condition-code mask.
// This is like the list above, except that condition 3 is not possible
// and that the low bit of the mask is therefore always 0. This means
// that each condition has two names. Conditions "o" and "no" are not used.
//
// We don't make one of the two names an alias of the other because
// we need the custom parsing routines to select the correct register class.
multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
let M3 = ccmask in {
def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
brtarget16:$RI4),
"crj"##name##"\t$R1, $R2, $RI4", []>;
def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
brtarget16:$RI4),
"cgrj"##name##"\t$R1, $R2, $RI4", []>;
def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
brtarget16:$RI4),
"cij"##name##"\t$R1, $I2, $RI4", []>;
def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
brtarget16:$RI4),
"cgij"##name##"\t$R1, $I2, $RI4", []>;
}
}
multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
: IntCondExtendedMnemonicA<ccmask, name1> {
let isAsmParserOnly = 1 in
defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
}
defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//
def Select32 : SelectWrapper<GR32>;
def Select64 : SelectWrapper<GR64>;
defm CondStore8_32 : CondStores<GR32, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16_32 : CondStores<GR32, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32_32 : CondStores<GR32, nonvolatile_store,
nonvolatile_load, bdxaddr20only>;
defm CondStore8 : CondStores<GR64, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16 : CondStores<GR64, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32 : CondStores<GR64, nonvolatile_truncstorei32,
nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, nonvolatile_store,
nonvolatile_load, bdxaddr20only>;
//===----------------------------------------------------------------------===//
// Call instructions
//===----------------------------------------------------------------------===//
// The definitions here are for the call-clobbered registers.
let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
R1 = 14, isCodeGenOnly = 1 in {
def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
"bras\t%r14, $I2", []>;
def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
"brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
"basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
}
// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
"bras\t$R1, $I2", []>;
def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
"brasl\t$R1, $I2", []>;
def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
"basr\t$R1, $R2", []>;
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
// Register moves.
let neverHasSideEffects = 1 in {
def LR : UnaryRR <"l", 0x18, null_frag, GR32, GR32>;
def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
}
// Immediate moves.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
// 16-bit sign-extended immediates.
def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
// Other 16-bit immediates.
def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
// 32-bit immediates.
def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}
// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
// These instructions are split after register allocation, so we don't
// want a custom inserter.
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
[(set GR128:$dst, (load bdxaddr20only128:$src))]>;
}
}
let canFoldAsLoad = 1 in {
def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}
// Register stores.
let SimpleBDXStore = 1 in {
let isCodeGenOnly = 1 in
defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
// These instructions are split after register allocation, so we don't
// want a custom inserter.
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
[(store GR128:$src, bdxaddr20only128:$dst)]>;
}
}
let isCodeGenOnly = 1 in
def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
def MVC : InstSS<0xD2, (outs), (ins bdladdr12onlylen8:$BDL1,
bdaddr12only:$BD2),
"mvc\t$BDL1, $BD2", []>;
let mayLoad = 1, mayStore = 1, usesCustomInserter = 1 in
def MVCWrapper : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
imm32len8:$length),
[(z_mvc bdaddr12only:$dest, bdaddr12only:$src,
imm32len8:$length)]>;
defm LoadStore8_32 : MVCLoadStore<anyextloadi8, truncstorei8, i32,
MVCWrapper, 1>;
defm LoadStore16_32 : MVCLoadStore<anyextloadi16, truncstorei16, i32,
MVCWrapper, 2>;
defm LoadStore32_32 : MVCLoadStore<load, store, i32, MVCWrapper, 4>;
defm LoadStore8 : MVCLoadStore<anyextloadi8, truncstorei8, i64,
MVCWrapper, 1>;
defm LoadStore16 : MVCLoadStore<anyextloadi16, truncstorei16, i64,
MVCWrapper, 2>;
defm LoadStore32 : MVCLoadStore<anyextloadi32, truncstorei32, i64,
MVCWrapper, 4>;
defm LoadStore64 : MVCLoadStore<load, store, i64, MVCWrapper, 8>;
//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
let neverHasSideEffects = 1 in {
def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>;
def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
}
// 64-bit extensions from registers.
let neverHasSideEffects = 1 in {
def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>;
def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
}
// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
(LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
// 32-bit extensions from memory.
def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32, 1>;
defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32, 2>;
def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
// 64-bit extensions from memory.
def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64, 1>;
def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64, 2>;
def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
// If the sign of a load-extend operation doesn't matter, use the signed ones.
// There's not really much to choose between the sign and zero extensions,
// but LH is more compact than LLH for small offsets.
def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7 in {
def : Pat<(i32 (extloadi16 pcrel32:$src)), (LHRL pcrel32:$src)>;
def : Pat<(i64 (extloadi16 pcrel32:$src)), (LGHRL pcrel32:$src)>;
}
//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
let neverHasSideEffects = 1 in {
def LLCR : UnaryRRE<"llc", 0xB994, zext8, GR32, GR32>;
def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
}
// 64-bit extensions from registers.
let neverHasSideEffects = 1 in {
def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>;
def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
}
// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
(LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
// 32-bit extensions from memory.
def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32, 1>;
def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32, 2>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
// 64-bit extensions from memory.
def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64, 1>;
def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64, 2>;
def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//
// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
// Truncations of 32-bit registers to memory.
let isCodeGenOnly = 1 in {
defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
}
// Truncations of 64-bit registers to memory.
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64, 1>;
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64, 2>;
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64, 4>;
def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//
// Multi-register loads.
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
// Multi-register stores.
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//
// Byte-swapping register moves.
let neverHasSideEffects = 1 in {
def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>;
def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
}
// Byte-swapping loads. Unlike normal loads, these instructions are
// allowed to access storage more than once.
def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
// Likewise byte-swapping stores.
def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
GR64, 8>;
//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//
// Load BDX-style addresses.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
DispKey = "la" in {
let DispSize = "12" in
def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
"la\t$R1, $XBD2",
[(set GR64:$R1, laaddr12pair:$XBD2)]>;
let DispSize = "20" in
def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
"lay\t$R1, $XBD2",
[(set GR64:$R1, laaddr20pair:$XBD2)]>;
}
// Load a PC-relative address. There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
"larl\t$R1, $I2",
[(set GR64:$R1, pcrel32:$I2)]>;
}
//===----------------------------------------------------------------------===//
// Negation
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
def LCR : UnaryRR <"lc", 0x13, ineg, GR32, GR32>;
def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;
//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//
let isCodeGenOnly = 1 in
defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8, 1>;
defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
let isCodeGenOnly = 1 in {
def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
}
def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
// ...likewise for 32-bit immediates. For GR32s this is a general
// full-width move. (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
}
def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
(IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
imm64hf32:$imm)>;
//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//
// Plain addition.
let Defs = [CC] in {
// Addition of a register.
let isCommutable = 1 in {
def AR : BinaryRR <"a", 0x1A, add, GR32, GR32>;
def AGR : BinaryRRE<"ag", 0xB908, add, GR64, GR64>;
}
def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
// Addition of signed 16-bit immediates.
def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
// Addition of signed 32-bit immediates.
def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
// Addition of memory.
defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16, 2>;
defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load, 4>;
def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32, 4>;
def AG : BinaryRXY<"ag", 0xE308, add, GR64, load, 8>;
// Addition to memory.
def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<add, GR64, AGFR>;
// Addition producing a carry.
let Defs = [CC] in {
// Addition of a register.
let isCommutable = 1 in {
def ALR : BinaryRR <"al", 0x1E, addc, GR32, GR32>;
def ALGR : BinaryRRE<"alg", 0xB90A, addc, GR64, GR64>;
}
def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
// Addition of unsigned 32-bit immediates.
def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
// Addition of memory.
defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32, 4>;
def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load, 8>;
}
defm : ZXB<addc, GR64, ALGFR>;
// Addition producing and using a carry.
let Defs = [CC], Uses = [CC] in {
// Addition of a register.
def ALCR : BinaryRRE<"alc", 0xB998, adde, GR32, GR32>;
def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
// Addition of memory.
def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load, 4>;
def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
}
//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//
// Plain substraction. Although immediate forms exist, we use the
// add-immediate instruction instead.
let Defs = [CC] in {
// Subtraction of a register.
def SR : BinaryRR <"s", 0x1B, sub, GR32, GR32>;
def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
def SGR : BinaryRRE<"sg", 0xB909, sub, GR64, GR64>;
// Subtraction of memory.
defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16, 2>;
defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32, 4>;
def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load, 8>;
}
defm : SXB<sub, GR64, SGFR>;
// Subtraction producing a carry.
let Defs = [CC] in {
// Subtraction of a register.
def SLR : BinaryRR <"sl", 0x1F, subc, GR32, GR32>;
def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
def SLGR : BinaryRRE<"slg", 0xB90B, subc, GR64, GR64>;
// Subtraction of unsigned 32-bit immediates. These don't match
// subc because we prefer addc for constants.
def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
// Subtraction of memory.
defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32, 4>;
def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load, 8>;
}
defm : ZXB<subc, GR64, SLGFR>;
// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC] in {
// Subtraction of a register.
def SLBR : BinaryRRE<"slb", 0xB999, sube, GR32, GR32>;
def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
// Subtraction of memory.
def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load, 4>;
def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
}
//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// ANDs of a register.
let isCommutable = 1 in {
def NR : BinaryRR <"n", 0x14, and, GR32, GR32>;
def NGR : BinaryRRE<"ng", 0xB980, and, GR64, GR64>;
}
// ANDs of a 16-bit immediate, leaving other bits unaffected.
let isCodeGenOnly = 1 in {
def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
}
def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
// ANDs of a 32-bit immediate, leaving other bits unaffected.
let isCodeGenOnly = 1 in
def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
// ANDs of memory.
defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
// AND to memory
defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;
//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// ORs of a register.
let isCommutable = 1 in {
def OR : BinaryRR <"o", 0x16, or, GR32, GR32>;
def OGR : BinaryRRE<"og", 0xB981, or, GR64, GR64>;
}
// ORs of a 16-bit immediate, leaving other bits unaffected.
let isCodeGenOnly = 1 in {
def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
}
def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
// ORs of a 32-bit immediate, leaving other bits unaffected.
let isCodeGenOnly = 1 in
def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
// ORs of memory.
defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
// OR to memory
defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;
//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// XORs of a register.
let isCommutable = 1 in {
def XR : BinaryRR <"x", 0x17, xor, GR32, GR32>;
def XGR : BinaryRRE<"xg", 0xB982, xor, GR64, GR64>;
}
// XORs of a 32-bit immediate, leaving other bits unaffected.
let isCodeGenOnly = 1 in
def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
// XORs of memory.
defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
// XOR to memory
defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;
//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//
// Multiplication of a register.
let isCommutable = 1 in {
def MSR : BinaryRRE<"ms", 0xB252, mul, GR32, GR32>;
def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;
// Multiplication of a signed 16-bit immediate.
def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
// Multiplication of a signed 32-bit immediate.
def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
// Multiplication of memory.
defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16, 2>;
defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32, 4>;
def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>;
// Multiplication of a register, producing two results.
def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
// Multiplication of memory, producing two results.
def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//
// Division and remainder, from registers.
def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
def DSGR : BinaryRRE<"dsg", 0xB90D, z_sdivrem64, GR128, GR64>;
def DLR : BinaryRRE<"dl", 0xB997, z_udivrem32, GR128, GR32>;
def DLGR : BinaryRRE<"dlg", 0xB987, z_udivrem64, GR128, GR64>;
// Division and remainder, from memory.
def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load, 8>;
def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load, 4>;
def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>;
//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//
// Shift left.
let neverHasSideEffects = 1 in {
def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
}
// Logical shift right.
let neverHasSideEffects = 1 in {
def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
}
// Arithmetic shift right.
let Defs = [CC] in {
def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
}
// Rotate left.
let neverHasSideEffects = 1 in {
def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
}
// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64)
let Defs = [CC] in {
let isCodeGenOnly = 1 in
def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}
//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//
// Signed comparisons.
let Defs = [CC] in {
// Comparison with a register.
def CR : CompareRR <"c", 0x19, z_cmp, GR32, GR32>;
def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
def CGR : CompareRRE<"cg", 0xB920, z_cmp, GR64, GR64>;
// Comparison with a signed 16-bit immediate.
def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
// Comparison with a signed 32-bit immediate.
def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
// Comparison with memory.
defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16, 2>;
defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load, 4>;
def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16, 2>;
def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32, 4>;
def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load, 8>;
def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
// Comparison between memory and a signed 16-bit immediate.
def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
}
defm : SXB<z_cmp, GR64, CGFR>;
// Unsigned comparisons.
let Defs = [CC] in {
// Comparison with a register.
def CLR : CompareRR <"cl", 0x15, z_ucmp, GR32, GR32>;
def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
def CLGR : CompareRRE<"clg", 0xB921, z_ucmp, GR64, GR64>;
// Comparison with a signed 32-bit immediate.
def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
// Comparison with memory.
defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32, 4>;
def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>;
def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
aligned_zextloadi16>;
def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
aligned_load>;
def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
aligned_zextloadi16>;
def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
aligned_zextloadi32>;
def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
aligned_load>;
// Comparison between memory and an unsigned 8-bit immediate.
defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
// Comparison between memory and an unsigned 16-bit immediate.
def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;
//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//
def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
imm32lh16c>;
def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
imm32ll16c>;
def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
imm32lh16c>;
def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64ll16c>;
def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64lh16c>;
def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hl16c>;
def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hh16c>;
def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64lf32c>;
def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hf32c>;
def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
def ATOMIC_CMP_SWAPW
: Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
ADDR32:$bitshift, ADDR32:$negbitshift,
uimm32:$bitsize),
[(set GR32:$dst,
(z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
ADDR32:$bitshift, ADDR32:$negbitshift,
uimm32:$bitsize))]> {
let Defs = [CC];
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
let Defs = [CC] in {
defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//
// Read a 32-bit access register into a GR32. As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
"ear\t$R1, $R2",
[(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
// Find leftmost one, AKA count leading zeros. The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared. We only use the first result here.
let Defs = [CC] in {
def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
}
def : Pat<(ctlz GR64:$src),
(EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
// There are no 32-bit equivalents of LLILL and LLILH, so use a full
// 64-bit move followed by a subreg. This preserves the invariant that
// all GR32 operations only modify the low 32 bits.
def : Pat<(i32 imm32ll16:$src),
(EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
def : Pat<(i32 imm32lh16:$src),
(EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
// Extend GR32s and GR64s to GR128s.
let usesCustomInserter = 1 in {
def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
}
//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//
// Use AL* for GR64 additions of unsigned 32-bit values.
defm : ZXB<add, GR64, ALGFR>;
def : Pat<(add GR64:$src1, imm64zx32:$src2),
(ALGFI GR64:$src1, imm64zx32:$src2)>;
def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
(ALGF GR64:$src1, bdxaddr20only:$addr)>;
// Use SL* for GR64 subtractions of unsigned 32-bit values.
defm : ZXB<sub, GR64, SLGFR>;
def : Pat<(add GR64:$src1, imm64zx32n:$src2),
(SLGFI GR64:$src1, imm64zx32n:$src2)>;
def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
(SLGF GR64:$src1, bdxaddr20only:$addr)>;