llvm-project/llvm/tools/llvm-objcopy/Object.cpp

939 lines
32 KiB
C++

//===- Object.cpp ---------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Object.h"
#include "llvm-objcopy.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>
using namespace llvm;
using namespace object;
using namespace ELF;
template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
using Elf_Ehdr = typename ELFT::Ehdr;
using Elf_Phdr = typename ELFT::Phdr;
uint8_t *Buf = Out.getBufferStart();
Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
Phdr.p_type = Type;
Phdr.p_flags = Flags;
Phdr.p_offset = Offset;
Phdr.p_vaddr = VAddr;
Phdr.p_paddr = PAddr;
Phdr.p_filesz = FileSize;
Phdr.p_memsz = MemSize;
Phdr.p_align = Align;
}
void Segment::writeSegment(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart() + Offset;
// We want to maintain segments' interstitial data and contents exactly.
// This lets us just copy segments directly.
std::copy(std::begin(Contents), std::end(Contents), Buf);
}
void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
void SectionBase::initialize(SectionTableRef SecTable) {}
void SectionBase::finalize() {}
template <class ELFT>
void SectionBase::writeHeader(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart();
Buf += HeaderOffset;
typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
Shdr.sh_name = NameIndex;
Shdr.sh_type = Type;
Shdr.sh_flags = Flags;
Shdr.sh_addr = Addr;
Shdr.sh_offset = Offset;
Shdr.sh_size = Size;
Shdr.sh_link = Link;
Shdr.sh_info = Info;
Shdr.sh_addralign = Align;
Shdr.sh_entsize = EntrySize;
}
void Section::writeSection(FileOutputBuffer &Out) const {
if (Type == SHT_NOBITS)
return;
uint8_t *Buf = Out.getBufferStart() + Offset;
std::copy(std::begin(Contents), std::end(Contents), Buf);
}
void StringTableSection::addString(StringRef Name) {
StrTabBuilder.add(Name);
Size = StrTabBuilder.getSize();
}
uint32_t StringTableSection::findIndex(StringRef Name) const {
return StrTabBuilder.getOffset(Name);
}
void StringTableSection::finalize() { StrTabBuilder.finalize(); }
void StringTableSection::writeSection(FileOutputBuffer &Out) const {
StrTabBuilder.write(Out.getBufferStart() + Offset);
}
static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
switch (Index) {
case SHN_ABS:
case SHN_COMMON:
return true;
}
if (Machine == EM_HEXAGON) {
switch (Index) {
case SHN_HEXAGON_SCOMMON:
case SHN_HEXAGON_SCOMMON_2:
case SHN_HEXAGON_SCOMMON_4:
case SHN_HEXAGON_SCOMMON_8:
return true;
}
}
return false;
}
uint16_t Symbol::getShndx() const {
if (DefinedIn != nullptr) {
return DefinedIn->Index;
}
switch (ShndxType) {
// This means that we don't have a defined section but we do need to
// output a legitimate section index.
case SYMBOL_SIMPLE_INDEX:
return SHN_UNDEF;
case SYMBOL_ABS:
case SYMBOL_COMMON:
case SYMBOL_HEXAGON_SCOMMON:
case SYMBOL_HEXAGON_SCOMMON_2:
case SYMBOL_HEXAGON_SCOMMON_4:
case SYMBOL_HEXAGON_SCOMMON_8:
return static_cast<uint16_t>(ShndxType);
}
llvm_unreachable("Symbol with invalid ShndxType encountered");
}
void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
SectionBase *DefinedIn, uint64_t Value,
uint16_t Shndx, uint64_t Sz) {
Symbol Sym;
Sym.Name = Name;
Sym.Binding = Bind;
Sym.Type = Type;
Sym.DefinedIn = DefinedIn;
if (DefinedIn == nullptr) {
if (Shndx >= SHN_LORESERVE)
Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
else
Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
}
Sym.Value = Value;
Sym.Size = Sz;
Sym.Index = Symbols.size();
Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
Size += this->EntrySize;
}
void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
if (SymbolNames == Sec) {
error("String table " + SymbolNames->Name +
" cannot be removed because it is referenced by the symbol table " +
this->Name);
}
auto Iter =
std::remove_if(std::begin(Symbols), std::end(Symbols),
[=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
Size -= (std::end(Symbols) - Iter) * this->EntrySize;
Symbols.erase(Iter, std::end(Symbols));
}
void SymbolTableSection::initialize(SectionTableRef SecTable) {
Size = 0;
setStrTab(SecTable.getSectionOfType<StringTableSection>(
Link,
"Symbol table has link index of " + Twine(Link) +
" which is not a valid index",
"Symbol table has link index of " + Twine(Link) +
" which is not a string table"));
}
void SymbolTableSection::finalize() {
// Make sure SymbolNames is finalized before getting name indexes.
SymbolNames->finalize();
uint32_t MaxLocalIndex = 0;
for (auto &Sym : Symbols) {
Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
if (Sym->Binding == STB_LOCAL)
MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
}
// Now we need to set the Link and Info fields.
Link = SymbolNames->Index;
Info = MaxLocalIndex + 1;
}
void SymbolTableSection::addSymbolNames() {
// Add all of our strings to SymbolNames so that SymbolNames has the right
// size before layout is decided.
for (auto &Sym : Symbols)
SymbolNames->addString(Sym->Name);
}
const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
if (Symbols.size() <= Index)
error("Invalid symbol index: " + Twine(Index));
return Symbols[Index].get();
}
template <class ELFT>
void SymbolTableSectionImpl<ELFT>::writeSection(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart();
Buf += Offset;
typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
// Loop though symbols setting each entry of the symbol table.
for (auto &Symbol : Symbols) {
Sym->st_name = Symbol->NameIndex;
Sym->st_value = Symbol->Value;
Sym->st_size = Symbol->Size;
Sym->setBinding(Symbol->Binding);
Sym->setType(Symbol->Type);
Sym->st_shndx = Symbol->getShndx();
++Sym;
}
}
template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
const SectionBase *Sec) {
if (Symbols == Sec) {
error("Symbol table " + Symbols->Name +
" cannot be removed because it is "
"referenced by the relocation "
"section " +
this->Name);
}
}
template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::initialize(
SectionTableRef SecTable) {
setSymTab(SecTable.getSectionOfType<SymTabType>(
Link,
"Link field value " + Twine(Link) + " in section " + Name + " is invalid",
"Link field value " + Twine(Link) + " in section " + Name +
" is not a symbol table"));
if (Info != SHN_UNDEF)
setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
" in section " + Name +
" is invalid"));
else
setSection(nullptr);
}
template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
this->Link = Symbols->Index;
if (SecToApplyRel != nullptr)
this->Info = SecToApplyRel->Index;
}
template <class ELFT>
void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
template <class ELFT>
void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
Rela.r_addend = Addend;
}
template <class ELFT>
template <class T>
void RelocationSection<ELFT>::writeRel(T *Buf) const {
for (const auto &Reloc : Relocations) {
Buf->r_offset = Reloc.Offset;
setAddend(*Buf, Reloc.Addend);
Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
++Buf;
}
}
template <class ELFT>
void RelocationSection<ELFT>::writeSection(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart() + Offset;
if (Type == SHT_REL)
writeRel(reinterpret_cast<Elf_Rel *>(Buf));
else
writeRel(reinterpret_cast<Elf_Rela *>(Buf));
}
void DynamicRelocationSection::writeSection(FileOutputBuffer &Out) const {
std::copy(std::begin(Contents), std::end(Contents),
Out.getBufferStart() + Offset);
}
void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
if (StrTab == Sec) {
error("String table " + StrTab->Name +
" cannot be removed because it is "
"referenced by the section " +
this->Name);
}
}
bool SectionWithStrTab::classof(const SectionBase *S) {
return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
}
void SectionWithStrTab::initialize(SectionTableRef SecTable) {
auto StrTab =
SecTable.getSection(Link, "Link field value " + Twine(Link) +
" in section " + Name + " is invalid");
if (StrTab->Type != SHT_STRTAB) {
error("Link field value " + Twine(Link) + " in section " + Name +
" is not a string table");
}
setStrTab(StrTab);
}
void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }
// Returns true IFF a section is wholly inside the range of a segment
static bool sectionWithinSegment(const SectionBase &Section,
const Segment &Segment) {
// If a section is empty it should be treated like it has a size of 1. This is
// to clarify the case when an empty section lies on a boundary between two
// segments and ensures that the section "belongs" to the second segment and
// not the first.
uint64_t SecSize = Section.Size ? Section.Size : 1;
return Segment.Offset <= Section.OriginalOffset &&
Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
}
// Returns true IFF a segment's original offset is inside of another segment's
// range.
static bool segmentOverlapsSegment(const Segment &Child,
const Segment &Parent) {
return Parent.OriginalOffset <= Child.OriginalOffset &&
Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
}
static bool compareSegments(const Segment *A, const Segment *B) {
// Any segment without a parent segment should come before a segment
// that has a parent segment.
if (A->OriginalOffset < B->OriginalOffset)
return true;
if (A->OriginalOffset > B->OriginalOffset)
return false;
return A->Index < B->Index;
}
template <class ELFT>
void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
uint32_t Index = 0;
for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
(size_t)Phdr.p_filesz};
Segments.emplace_back(llvm::make_unique<Segment>(Data));
Segment &Seg = *Segments.back();
Seg.Type = Phdr.p_type;
Seg.Flags = Phdr.p_flags;
Seg.OriginalOffset = Phdr.p_offset;
Seg.Offset = Phdr.p_offset;
Seg.VAddr = Phdr.p_vaddr;
Seg.PAddr = Phdr.p_paddr;
Seg.FileSize = Phdr.p_filesz;
Seg.MemSize = Phdr.p_memsz;
Seg.Align = Phdr.p_align;
Seg.Index = Index++;
for (auto &Section : Sections) {
if (sectionWithinSegment(*Section, Seg)) {
Seg.addSection(&*Section);
if (!Section->ParentSegment ||
Section->ParentSegment->Offset > Seg.Offset) {
Section->ParentSegment = &Seg;
}
}
}
}
// Now we do an O(n^2) loop through the segments in order to match up
// segments.
for (auto &Child : Segments) {
for (auto &Parent : Segments) {
// Every segment will overlap with itself but we don't want a segment to
// be it's own parent so we avoid that situation.
if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) {
// We want a canonical "most parental" segment but this requires
// inspecting the ParentSegment.
if (compareSegments(Parent.get(), Child.get()))
if (Child->ParentSegment == nullptr ||
compareSegments(Parent.get(), Child->ParentSegment)) {
Child->ParentSegment = Parent.get();
}
}
}
}
}
template <class ELFT>
void Object<ELFT>::initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
SymbolTableSection *SymTab,
SectionTableRef SecTable) {
const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
SectionBase *DefSection = nullptr;
StringRef Name = unwrapOrError(Sym.getName(StrTabData));
if (Sym.st_shndx >= SHN_LORESERVE) {
if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) {
error(
"Symbol '" + Name +
"' has unsupported value greater than or equal to SHN_LORESERVE: " +
Twine(Sym.st_shndx));
}
} else if (Sym.st_shndx != SHN_UNDEF) {
DefSection = SecTable.getSection(
Sym.st_shndx, "Symbol '" + Name +
"' is defined in invalid section with index " +
Twine(Sym.st_shndx));
}
SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
Sym.getValue(), Sym.st_shndx, Sym.st_size);
}
}
template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
ToSet = Rela.r_addend;
}
template <class ELFT, class T>
void initRelocations(RelocationSection<ELFT> *Relocs,
SymbolTableSection *SymbolTable, T RelRange) {
for (const auto &Rel : RelRange) {
Relocation ToAdd;
ToAdd.Offset = Rel.r_offset;
getAddend(ToAdd.Addend, Rel);
ToAdd.Type = Rel.getType(false);
ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
Relocs->addRelocation(ToAdd);
}
}
SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
if (Index == SHN_UNDEF || Index > Sections.size())
error(ErrMsg);
return Sections[Index - 1].get();
}
template <class T>
T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
Twine TypeErrMsg) {
if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
return Sec;
error(TypeErrMsg);
}
template <class ELFT>
std::unique_ptr<SectionBase>
Object<ELFT>::makeSection(const object::ELFFile<ELFT> &ElfFile,
const Elf_Shdr &Shdr) {
ArrayRef<uint8_t> Data;
switch (Shdr.sh_type) {
case SHT_REL:
case SHT_RELA:
if (Shdr.sh_flags & SHF_ALLOC) {
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<DynamicRelocationSection>(Data);
}
return llvm::make_unique<RelocationSection<ELFT>>();
case SHT_STRTAB:
// If a string table is allocated we don't want to mess with it. That would
// mean altering the memory image. There are no special link types or
// anything so we can just use a Section.
if (Shdr.sh_flags & SHF_ALLOC) {
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<Section>(Data);
}
return llvm::make_unique<StringTableSection>();
case SHT_HASH:
case SHT_GNU_HASH:
// Hash tables should refer to SHT_DYNSYM which we're not going to change.
// Because of this we don't need to mess with the hash tables either.
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<Section>(Data);
case SHT_DYNSYM:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<DynamicSymbolTableSection>(Data);
case SHT_DYNAMIC:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<DynamicSection>(Data);
case SHT_SYMTAB: {
auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>();
SymbolTable = SymTab.get();
return std::move(SymTab);
}
case SHT_NOBITS:
return llvm::make_unique<Section>(Data);
default:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return llvm::make_unique<Section>(Data);
}
}
template <class ELFT>
SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
uint32_t Index = 0;
for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
if (Index == 0) {
++Index;
continue;
}
SecPtr Sec = makeSection(ElfFile, Shdr);
Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
Sec->Type = Shdr.sh_type;
Sec->Flags = Shdr.sh_flags;
Sec->Addr = Shdr.sh_addr;
Sec->Offset = Shdr.sh_offset;
Sec->OriginalOffset = Shdr.sh_offset;
Sec->Size = Shdr.sh_size;
Sec->Link = Shdr.sh_link;
Sec->Info = Shdr.sh_info;
Sec->Align = Shdr.sh_addralign;
Sec->EntrySize = Shdr.sh_entsize;
Sec->Index = Index++;
Sections.push_back(std::move(Sec));
}
SectionTableRef SecTable(Sections);
// Now that all of the sections have been added we can fill out some extra
// details about symbol tables. We need the symbol table filled out before
// any relocations.
if (SymbolTable) {
SymbolTable->initialize(SecTable);
initSymbolTable(ElfFile, SymbolTable, SecTable);
}
// Now that all sections and symbols have been added we can add
// relocations that reference symbols and set the link and info fields for
// relocation sections.
for (auto &Section : Sections) {
if (Section.get() == SymbolTable)
continue;
Section->initialize(SecTable);
if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) {
auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
if (RelSec->Type == SHT_REL)
initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr)));
else
initRelocations(RelSec, SymbolTable,
unwrapOrError(ElfFile.relas(Shdr)));
}
}
return SecTable;
}
template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
const auto &ElfFile = *Obj.getELFFile();
const auto &Ehdr = *ElfFile.getHeader();
std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
Type = Ehdr.e_type;
Machine = Ehdr.e_machine;
Version = Ehdr.e_version;
Entry = Ehdr.e_entry;
Flags = Ehdr.e_flags;
SectionTableRef SecTable = readSectionHeaders(ElfFile);
readProgramHeaders(ElfFile);
SectionNames = SecTable.getSectionOfType<StringTableSection>(
Ehdr.e_shstrndx,
"e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
" is invalid",
"e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
" is not a string table");
}
template <class ELFT>
void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart();
Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
std::copy(Ident, Ident + 16, Ehdr.e_ident);
Ehdr.e_type = Type;
Ehdr.e_machine = Machine;
Ehdr.e_version = Version;
Ehdr.e_entry = Entry;
Ehdr.e_phoff = sizeof(Elf_Ehdr);
Ehdr.e_flags = Flags;
Ehdr.e_ehsize = sizeof(Elf_Ehdr);
Ehdr.e_phentsize = sizeof(Elf_Phdr);
Ehdr.e_phnum = Segments.size();
Ehdr.e_shentsize = sizeof(Elf_Shdr);
if (WriteSectionHeaders) {
Ehdr.e_shoff = SHOffset;
Ehdr.e_shnum = Sections.size() + 1;
Ehdr.e_shstrndx = SectionNames->Index;
} else {
Ehdr.e_shoff = 0;
Ehdr.e_shnum = 0;
Ehdr.e_shstrndx = 0;
}
}
template <class ELFT>
void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
for (auto &Phdr : Segments)
Phdr->template writeHeader<ELFT>(Out);
}
template <class ELFT>
void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
uint8_t *Buf = Out.getBufferStart() + SHOffset;
// This reference serves to write the dummy section header at the begining
// of the file. It is not used for anything else
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
Shdr.sh_name = 0;
Shdr.sh_type = SHT_NULL;
Shdr.sh_flags = 0;
Shdr.sh_addr = 0;
Shdr.sh_offset = 0;
Shdr.sh_size = 0;
Shdr.sh_link = 0;
Shdr.sh_info = 0;
Shdr.sh_addralign = 0;
Shdr.sh_entsize = 0;
for (auto &Section : Sections)
Section->template writeHeader<ELFT>(Out);
}
template <class ELFT>
void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
for (auto &Section : Sections)
Section->writeSection(Out);
}
template <class ELFT>
void Object<ELFT>::removeSections(
std::function<bool(const SectionBase &)> ToRemove) {
auto Iter = std::stable_partition(
std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
if (ToRemove(*Sec))
return false;
if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
if (auto ToRelSec = RelSec->getSection())
return !ToRemove(*ToRelSec);
}
return true;
});
if (SymbolTable != nullptr && ToRemove(*SymbolTable))
SymbolTable = nullptr;
if (ToRemove(*SectionNames)) {
if (WriteSectionHeaders)
error("Cannot remove " + SectionNames->Name +
" because it is the section header string table.");
SectionNames = nullptr;
}
// Now make sure there are no remaining references to the sections that will
// be removed. Sometimes it is impossible to remove a reference so we emit
// an error here instead.
for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
for (auto &Segment : Segments)
Segment->removeSection(RemoveSec.get());
for (auto &KeepSec : make_range(std::begin(Sections), Iter))
KeepSec->removeSectionReferences(RemoveSec.get());
}
// Now finally get rid of them all togethor.
Sections.erase(Iter, std::end(Sections));
}
template <class ELFT> void ELFObject<ELFT>::sortSections() {
// Put all sections in offset order. Maintain the ordering as closely as
// possible while meeting that demand however.
auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
return A->OriginalOffset < B->OriginalOffset;
};
std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
CompareSections);
}
static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
// Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
if (Align == 0)
Align = 1;
auto Diff =
static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
// We only want to add to Offset, however, so if Diff < 0 we can add Align and
// (Offset + Diff) & -Align == Addr & -Align will still hold.
if (Diff < 0)
Diff += Align;
return Offset + Diff;
}
// Orders segments such that if x = y->ParentSegment then y comes before x.
static void OrderSegments(std::vector<Segment *> &Segments) {
std::stable_sort(std::begin(Segments), std::end(Segments), compareSegments);
}
// This function finds a consistent layout for a list of segments starting from
// an Offset. It assumes that Segments have been sorted by OrderSegments and
// returns an Offset one past the end of the last segment.
static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
uint64_t Offset) {
assert(std::is_sorted(std::begin(Segments), std::end(Segments),
compareSegments));
// The only way a segment should move is if a section was between two
// segments and that section was removed. If that section isn't in a segment
// then it's acceptable, but not ideal, to simply move it to after the
// segments. So we can simply layout segments one after the other accounting
// for alignment.
for (auto &Segment : Segments) {
// We assume that segments have been ordered by OriginalOffset and Index
// such that a parent segment will always come before a child segment in
// OrderedSegments. This means that the Offset of the ParentSegment should
// already be set and we can set our offset relative to it.
if (Segment->ParentSegment != nullptr) {
auto Parent = Segment->ParentSegment;
Segment->Offset =
Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
} else {
Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
Segment->Offset = Offset;
}
Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
}
return Offset;
}
// This function finds a consistent layout for a list of sections. It assumes
// that the ->ParentSegment of each section has already been laid out. The
// supplied starting Offset is used for the starting offset of any section that
// does not have a ParentSegment. It returns either the offset given if all
// sections had a ParentSegment or an offset one past the last section if there
// was a section that didn't have a ParentSegment.
template <class SecPtr>
static uint64_t LayoutSections(std::vector<SecPtr> &Sections, uint64_t Offset) {
// Now the offset of every segment has been set we can assign the offsets
// of each section. For sections that are covered by a segment we should use
// the segment's original offset and the section's original offset to compute
// the offset from the start of the segment. Using the offset from the start
// of the segment we can assign a new offset to the section. For sections not
// covered by segments we can just bump Offset to the next valid location.
uint32_t Index = 1;
for (auto &Section : Sections) {
Section->Index = Index++;
if (Section->ParentSegment != nullptr) {
auto Segment = Section->ParentSegment;
Section->Offset =
Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
} else {
Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align);
Section->Offset = Offset;
if (Section->Type != SHT_NOBITS)
Offset += Section->Size;
}
}
return Offset;
}
template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
// We need a temporary list of segments that has a special order to it
// so that we know that anytime ->ParentSegment is set that segment has
// already had its offset properly set.
std::vector<Segment *> OrderedSegments;
for (auto &Segment : this->Segments)
OrderedSegments.push_back(Segment.get());
OrderSegments(OrderedSegments);
// The size of ELF + program headers will not change so it is ok to assume
// that the first offset of the first segment is a good place to start
// outputting sections. This covers both the standard case and the PT_PHDR
// case.
uint64_t Offset;
if (!OrderedSegments.empty()) {
Offset = OrderedSegments[0]->Offset;
} else {
Offset = sizeof(Elf_Ehdr);
}
Offset = LayoutSegments(OrderedSegments, Offset);
Offset = LayoutSections(this->Sections, Offset);
// If we need to write the section header table out then we need to align the
// Offset so that SHOffset is valid.
if (this->WriteSectionHeaders)
Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
this->SHOffset = Offset;
}
template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
// We already have the section header offset so we can calculate the total
// size by just adding up the size of each section header.
auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
NullSectionSize;
}
template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
this->writeHeader(Out);
this->writeProgramHeaders(Out);
this->writeSectionData(Out);
if (this->WriteSectionHeaders)
this->writeSectionHeaders(Out);
}
template <class ELFT> void ELFObject<ELFT>::finalize() {
// Make sure we add the names of all the sections.
if (this->SectionNames != nullptr)
for (const auto &Section : this->Sections) {
this->SectionNames->addString(Section->Name);
}
// Make sure we add the names of all the symbols.
if (this->SymbolTable != nullptr)
this->SymbolTable->addSymbolNames();
sortSections();
assignOffsets();
// Finalize SectionNames first so that we can assign name indexes.
if (this->SectionNames != nullptr)
this->SectionNames->finalize();
// Finally now that all offsets and indexes have been set we can finalize any
// remaining issues.
uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
for (auto &Section : this->Sections) {
Section->HeaderOffset = Offset;
Offset += sizeof(Elf_Shdr);
if (this->WriteSectionHeaders)
Section->NameIndex = this->SectionNames->findIndex(Section->Name);
Section->finalize();
}
}
template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
return TotalSize;
}
template <class ELFT>
void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
for (auto &Section : this->Sections) {
if ((Section->Flags & SHF_ALLOC) == 0)
continue;
Section->writeSection(Out);
}
}
template <class ELFT> void BinaryObject<ELFT>::finalize() {
// TODO: Create a filter range to construct OrderedSegments from so that this
// code can be deduped with assignOffsets above. This should also solve the
// todo below for LayoutSections.
// We need a temporary list of segments that has a special order to it
// so that we know that anytime ->ParentSegment is set that segment has
// already had it's offset properly set. We only want to consider the segments
// that will affect layout of allocated sections so we only add those.
std::vector<Segment *> OrderedSegments;
for (auto &Section : this->Sections) {
if ((Section->Flags & SHF_ALLOC) != 0 &&
Section->ParentSegment != nullptr) {
OrderedSegments.push_back(Section->ParentSegment);
}
}
OrderSegments(OrderedSegments);
// Because we add a ParentSegment for each section we might have duplicate
// segments in OrderedSegments. If there were duplicates then LayoutSegments
// would do very strange things.
auto End =
std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
OrderedSegments.erase(End, std::end(OrderedSegments));
// Modify the first segment so that there is no gap at the start. This allows
// our layout algorithm to proceed as expected while not out writing out the
// gap at the start.
if (!OrderedSegments.empty()) {
auto Seg = OrderedSegments[0];
auto Sec = Seg->firstSection();
auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
Seg->OriginalOffset += Diff;
// The size needs to be shrunk as well
Seg->FileSize -= Diff;
Seg->MemSize -= Diff;
// The VAddr needs to be adjusted so that the alignment is correct as well
Seg->VAddr += Diff;
Seg->PAddr = Seg->VAddr;
// We don't want this to be shifted by alignment so we need to set the
// alignment to zero.
Seg->Align = 0;
}
uint64_t Offset = LayoutSegments(OrderedSegments, 0);
// TODO: generalize LayoutSections to take a range. Pass a special range
// constructed from an iterator that skips values for which a predicate does
// not hold. Then pass such a range to LayoutSections instead of constructing
// AllocatedSections here.
std::vector<SectionBase *> AllocatedSections;
for (auto &Section : this->Sections) {
if ((Section->Flags & SHF_ALLOC) == 0)
continue;
AllocatedSections.push_back(Section.get());
}
LayoutSections(AllocatedSections, Offset);
// Now that every section has been laid out we just need to compute the total
// file size. This might not be the same as the offset returned by
// LayoutSections, because we want to truncate the last segment to the end of
// its last section, to match GNU objcopy's behaviour.
TotalSize = 0;
for (const auto &Section : AllocatedSections) {
if (Section->Type != SHT_NOBITS)
TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
}
}
namespace llvm {
template class Object<ELF64LE>;
template class Object<ELF64BE>;
template class Object<ELF32LE>;
template class Object<ELF32BE>;
template class ELFObject<ELF64LE>;
template class ELFObject<ELF64BE>;
template class ELFObject<ELF32LE>;
template class ELFObject<ELF32BE>;
template class BinaryObject<ELF64LE>;
template class BinaryObject<ELF64BE>;
template class BinaryObject<ELF32LE>;
template class BinaryObject<ELF32BE>;
} // end namespace llvm