llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp

1160 lines
48 KiB
C++

//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::vector;
template <typename T>
static LLVM::LLVMType getPtrToElementType(T containerType,
LLVMTypeConverter &typeConverter) {
return typeConverter.convertType(containerType.getElementType())
.template cast<LLVM::LLVMType>()
.getPointerTo();
}
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
Value into, int64_t offset) {
auto vectorType = into.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<InsertOp>(loc, from, into, offset);
return rewriter.create<vector::InsertElementOp>(
loc, vectorType, from, into,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
int64_t offset) {
auto vectorType = vector.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<ExtractOp>(loc, vector, offset);
return rewriter.create<vector::ExtractElementOp>(
loc, vectorType.getElementType(), vector,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO(rriddle): Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront = 0,
unsigned dropBack = 0) {
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
auto range = arrayAttr.getAsRange<IntegerAttr>();
SmallVector<int64_t, 4> res;
res.reserve(arrayAttr.size() - dropFront - dropBack);
for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
it != eit; ++it)
res.push_back((*it).getValue().getSExtValue());
return res;
}
namespace {
class VectorBroadcastOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorBroadcastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::BroadcastOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto broadcastOp = cast<vector::BroadcastOp>(op);
VectorType dstVectorType = broadcastOp.getVectorType();
if (typeConverter.convertType(dstVectorType) == nullptr)
return failure();
// Rewrite when the full vector type can be lowered (which
// implies all 'reduced' types can be lowered too).
auto adaptor = vector::BroadcastOpOperandAdaptor(operands);
VectorType srcVectorType =
broadcastOp.getSourceType().dyn_cast<VectorType>();
rewriter.replaceOp(
op, expandRanks(adaptor.source(), // source value to be expanded
op->getLoc(), // location of original broadcast
srcVectorType, dstVectorType, rewriter));
return success();
}
private:
// Expands the given source value over all the ranks, as defined
// by the source and destination type (a null source type denotes
// expansion from a scalar value into a vector).
//
// TODO(ajcbik): consider replacing this one-pattern lowering
// with a two-pattern lowering using other vector
// ops once all insert/extract/shuffle operations
// are available with lowering implementation.
//
Value expandRanks(Value value, Location loc, VectorType srcVectorType,
VectorType dstVectorType,
ConversionPatternRewriter &rewriter) const {
assert((dstVectorType != nullptr) && "invalid result type in broadcast");
// Determine rank of source and destination.
int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0;
int64_t dstRank = dstVectorType.getRank();
int64_t curDim = dstVectorType.getDimSize(0);
if (srcRank < dstRank)
// Duplicate this rank.
return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
curDim, rewriter);
// If all trailing dimensions are the same, the broadcast consists of
// simply passing through the source value and we are done. Otherwise,
// any non-matching dimension forces a stretch along this rank.
assert((srcVectorType != nullptr) && (srcRank > 0) &&
(srcRank == dstRank) && "invalid rank in broadcast");
for (int64_t r = 0; r < dstRank; r++) {
if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) {
return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
curDim, rewriter);
}
}
return value;
}
// Picks the best way to duplicate a single rank. For the 1-D case, a
// single insert-elt/shuffle is the most efficient expansion. For higher
// dimensions, however, we need dim x insert-values on a new broadcast
// with one less leading dimension, which will be lowered "recursively"
// to matching LLVM IR.
// For example:
// v = broadcast s : f32 to vector<4x2xf32>
// becomes:
// x = broadcast s : f32 to vector<2xf32>
// v = [x,x,x,x]
// becomes:
// x = [s,s]
// v = [x,x,x,x]
Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType,
VectorType dstVectorType, int64_t rank, int64_t dim,
ConversionPatternRewriter &rewriter) const {
Type llvmType = typeConverter.convertType(dstVectorType);
assert((llvmType != nullptr) && "unlowerable vector type");
if (rank == 1) {
Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType);
Value expand = insertOne(rewriter, typeConverter, loc, undef, value,
llvmType, rank, 0);
SmallVector<int32_t, 4> zeroValues(dim, 0);
return rewriter.create<LLVM::ShuffleVectorOp>(
loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues));
}
Value expand = expandRanks(value, loc, srcVectorType,
reducedVectorTypeFront(dstVectorType), rewriter);
Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
for (int64_t d = 0; d < dim; ++d) {
result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType,
rank, d);
}
return result;
}
// Picks the best way to stretch a single rank. For the 1-D case, a
// single insert-elt/shuffle is the most efficient expansion when at
// a stretch. Otherwise, every dimension needs to be expanded
// individually and individually inserted in the resulting vector.
// For example:
// v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32>
// becomes:
// a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32>
// b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32>
// c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32>
// d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32>
// v = [a,b,c,d]
// becomes:
// x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32>
// y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32>
// a = [x, y]
// etc.
Value stretchOneRank(Value value, Location loc, VectorType srcVectorType,
VectorType dstVectorType, int64_t rank, int64_t dim,
ConversionPatternRewriter &rewriter) const {
Type llvmType = typeConverter.convertType(dstVectorType);
assert((llvmType != nullptr) && "unlowerable vector type");
Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
bool atStretch = dim != srcVectorType.getDimSize(0);
if (rank == 1) {
assert(atStretch);
Type redLlvmType =
typeConverter.convertType(dstVectorType.getElementType());
Value one =
extractOne(rewriter, typeConverter, loc, value, redLlvmType, rank, 0);
Value expand = insertOne(rewriter, typeConverter, loc, result, one,
llvmType, rank, 0);
SmallVector<int32_t, 4> zeroValues(dim, 0);
return rewriter.create<LLVM::ShuffleVectorOp>(
loc, expand, result, rewriter.getI32ArrayAttr(zeroValues));
}
VectorType redSrcType = reducedVectorTypeFront(srcVectorType);
VectorType redDstType = reducedVectorTypeFront(dstVectorType);
Type redLlvmType = typeConverter.convertType(redSrcType);
for (int64_t d = 0; d < dim; ++d) {
int64_t pos = atStretch ? 0 : d;
Value one = extractOne(rewriter, typeConverter, loc, value, redLlvmType,
rank, pos);
Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter);
result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType,
rank, d);
}
return result;
}
};
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorMatmulOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto matmulOp = cast<vector::MatmulOp>(op);
auto adaptor = vector::MatmulOpOperandAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(),
adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(),
matmulOp.rhs_columns());
return success();
}
};
class VectorReductionOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorReductionOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto reductionOp = cast<vector::ReductionOp>(op);
auto kind = reductionOp.kind();
Type eltType = reductionOp.dest().getType();
Type llvmType = typeConverter.convertType(eltType);
if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) {
// Integer reductions: add/mul/min/max/and/or/xor.
if (kind == "add")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>(
op, llvmType, operands[0]);
else if (kind == "mul")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>(
op, llvmType, operands[0]);
else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>(
op, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>(
op, llvmType, operands[0]);
else if (kind == "and")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>(
op, llvmType, operands[0]);
else if (kind == "or")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>(
op, llvmType, operands[0]);
else if (kind == "xor")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>(
op, llvmType, operands[0]);
else
return failure();
return success();
} else if (eltType.isF32() || eltType.isF64()) {
// Floating-point reductions: add/mul/min/max
if (kind == "add") {
// Optional accumulator (or zero).
Value acc = operands.size() > 1 ? operands[1]
: rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmType,
rewriter.getZeroAttr(eltType));
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>(
op, llvmType, acc, operands[0]);
} else if (kind == "mul") {
// Optional accumulator (or one).
Value acc = operands.size() > 1
? operands[1]
: rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmType,
rewriter.getFloatAttr(eltType, 1.0));
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>(
op, llvmType, acc, operands[0]);
} else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>(
op, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>(
op, llvmType, operands[0]);
else
return failure();
return success();
}
return failure();
}
};
class VectorShuffleOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorShuffleOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ShuffleOpOperandAdaptor(operands);
auto shuffleOp = cast<vector::ShuffleOp>(op);
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = typeConverter.convertType(vectorType);
auto maskArrayAttr = shuffleOp.mask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
assert(v1Type.getRank() == rank);
assert(v2Type.getRank() == rank);
int64_t v1Dim = v1Type.getDimSize(0);
// For rank 1, where both operands have *exactly* the same vector type,
// there is direct shuffle support in LLVM. Use it!
if (rank == 1 && v1Type == v2Type) {
Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
rewriter.replaceOp(op, shuffle);
return success();
}
// For all other cases, insert the individual values individually.
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (auto en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.v1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.v2();
}
Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType,
rank, extPos);
insert = insertOne(rewriter, typeConverter, loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(op, insert);
return success();
}
};
class VectorExtractElementOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExtractElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
auto extractEltOp = cast<vector::ExtractElementOp>(op);
auto vectorType = extractEltOp.getVectorType();
auto llvmType = typeConverter.convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
op, llvmType, adaptor.vector(), adaptor.position());
return success();
}
};
class VectorExtractOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExtractOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ExtractOpOperandAdaptor(operands);
auto extractOp = cast<vector::ExtractOp>(op);
auto vectorType = extractOp.getVectorType();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter.convertType(resultType);
auto positionArrayAttr = extractOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(op, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
auto oneDVectorType = reducedVectorTypeBack(vectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(op, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fma %va, %va, %va:
/// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">)
/// -> !llvm<"<8 x float>">
/// ```
class VectorFMAOp1DConversion : public ConvertToLLVMPattern {
public:
explicit VectorFMAOp1DConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::FMAOpOperandAdaptor(operands);
vector::FMAOp fmaOp = cast<vector::FMAOp>(op);
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() != 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMAOp>(op, adaptor.lhs(), adaptor.rhs(),
adaptor.acc());
return success();
}
};
class VectorInsertElementOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorInsertElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::InsertElementOpOperandAdaptor(operands);
auto insertEltOp = cast<vector::InsertElementOp>(op);
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter.convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
return success();
}
};
class VectorInsertOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorInsertOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::InsertOpOperandAdaptor(operands);
auto insertOp = cast<vector::InsertOp>(op);
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter.convertType(destVectorType);
auto positionArrayAttr = insertOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, llvmResultType, adaptor.dest(), adaptor.source(),
positionArrayAttr);
rewriter.replaceOp(op, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.dest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
adaptor.source(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
adaptor.dest(), inserted,
nMinusOnePositionAttrs);
}
rewriter.replaceOp(op, inserted);
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
// When ranks are different, InsertStridedSlice needs to extract a properly
// ranked vector from the destination vector into which to insert. This pattern
// only takes care of this part and forwards the rest of the conversion to
// another pattern that converts InsertStridedSlice for operands of the same
// rank.
//
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have different ranks. In this case:
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpDifferentRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
auto loc = op.getLoc();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff == 0)
return failure();
int64_t rankRest = dstType.getRank() - rankDiff;
// Extract / insert the subvector of matching rank and InsertStridedSlice
// on it.
Value extracted =
rewriter.create<ExtractOp>(loc, op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
// A different pattern will kick in for InsertStridedSlice with matching
// ranks.
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
loc, op.source(), extracted,
getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
getI64SubArray(op.strides(), /*dropFront=*/0));
rewriter.replaceOpWithNewOp<InsertOp>(
op, stridedSliceInnerOp.getResult(), op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
return success();
}
};
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have the same rank. In this case, we reduce
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpSameRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff != 0)
return failure();
if (srcType == dstType) {
rewriter.replaceOp(op, op.source());
return success();
}
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = srcType.getShape().front();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
Value res = op.dest();
// For each slice of the source vector along the most major dimension.
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
// 1. extract the proper subvector (or element) from source
Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
if (extractedSource.getType().isa<VectorType>()) {
// 2. If we have a vector, extract the proper subvector from destination
// Otherwise we are at the element level and no need to recurse.
Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
// smaller rank.
InsertStridedSliceOp insertStridedSliceOp =
rewriter.create<InsertStridedSliceOp>(
loc, extractedSource, extractedDest,
getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
// Call matchAndRewrite recursively from within the pattern. This
// circumvents the current limitation that a given pattern cannot
// be called multiple times by the PatternRewrite infrastructure (to
// avoid infinite recursion, but in this case, infinite recursion
// cannot happen because the rank is strictly decreasing).
// TODO(rriddle, nicolasvasilache) Implement something like a hook for
// a potential function that must decrease and allow the same pattern
// multiple times.
auto success = matchAndRewrite(insertStridedSliceOp, rewriter);
(void)success;
assert(succeeded(success) && "Unexpected failure");
extractedSource = insertStridedSliceOp;
}
// 4. Insert the extractedSource into the res vector.
res = insertOne(rewriter, loc, extractedSource, res, off);
}
rewriter.replaceOp(op, res);
return success();
}
};
class VectorTypeCastOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorTypeCastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType =
castOp.getResult().getType().cast<MemRefType>();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
operands[0].getType().dyn_cast<LLVM::LLVMType>();
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
return failure();
MemRefDescriptor sourceMemRef(operands[0]);
auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMType>();
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
return failure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(sourceMemRefType, strides, offset);
bool isContiguous = (strides.back() == 1);
if (isContiguous) {
auto sizes = sourceMemRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
isContiguous = false;
break;
}
}
}
// Only contiguous source tensors supported atm.
if (failed(successStrides) || !isContiguous)
return failure();
auto int64Ty = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect());
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(op, {desc});
return success();
}
};
class VectorPrintOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorPrintOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context,
typeConverter) {}
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO(ajcbik): rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto printOp = cast<vector::PrintOp>(op);
auto adaptor = vector::PrintOpOperandAdaptor(operands);
Type printType = printOp.getPrintType();
if (typeConverter.convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support (currently just Float/Double).
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
int64_t rank = vectorType ? vectorType.getRank() : 0;
Operation *printer;
if (eltType.isSignlessInteger(32))
printer = getPrintI32(op);
else if (eltType.isSignlessInteger(64))
printer = getPrintI64(op);
else if (eltType.isF32())
printer = getPrintFloat(op);
else if (eltType.isF64())
printer = getPrintDouble(op);
else
return failure();
// Unroll vector into elementary print calls.
emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
emitCall(rewriter, op->getLoc(), getPrintNewline(op));
rewriter.eraseOp(op);
return success();
}
private:
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, VectorType vectorType, Operation *printer,
int64_t rank) const {
Location loc = op->getLoc();
if (rank == 0) {
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc, getPrintOpen(op));
Operation *printComma = getPrintComma(op);
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType =
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
auto llvmType = typeConverter.convertType(
rank > 1 ? reducedType : vectorType.getElementType());
Value nestedVal =
extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, getPrintClose(op));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
rewriter.getSymbolRefAttr(ref), params);
}
// Helper for printer method declaration (first hit) and lookup.
static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
StringRef name, ArrayRef<LLVM::LLVMType> params) {
auto module = op->getParentOfType<ModuleOp>();
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
if (func)
return func;
OpBuilder moduleBuilder(module.getBodyRegion());
return moduleBuilder.create<LLVM::LLVMFuncOp>(
op->getLoc(), name,
LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
params, /*isVarArg=*/false));
}
// Helpers for method names.
Operation *getPrintI32(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_i32",
LLVM::LLVMType::getInt32Ty(dialect));
}
Operation *getPrintI64(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_i64",
LLVM::LLVMType::getInt64Ty(dialect));
}
Operation *getPrintFloat(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_f32",
LLVM::LLVMType::getFloatTy(dialect));
}
Operation *getPrintDouble(Operation *op) const {
LLVM::LLVMDialect *dialect = typeConverter.getDialect();
return getPrint(op, dialect, "print_f64",
LLVM::LLVMType::getDoubleTy(dialect));
}
Operation *getPrintOpen(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_open", {});
}
Operation *getPrintClose(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_close", {});
}
Operation *getPrintComma(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_comma", {});
}
Operation *getPrintNewline(Operation *op) const {
return getPrint(op, typeConverter.getDialect(), "print_newline", {});
}
};
/// Progressive lowering of StridedSliceOp to either:
/// 1. extractelement + insertelement for the 1-D case
/// 2. extract + optional strided_slice + insert for the n-D case.
class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> {
public:
using OpRewritePattern<StridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(StridedSliceOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getResult().getType().cast<VectorType>();
assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
auto elemType = dstType.getElementType();
assert(elemType.isSignlessIntOrIndexOrFloat());
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
Value extracted = extractOne(rewriter, loc, op.vector(), off);
if (op.offsets().getValue().size() > 1) {
StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>(
loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.sizes(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
// Call matchAndRewrite recursively from within the pattern. This
// circumvents the current limitation that a given pattern cannot
// be called multiple times by the PatternRewrite infrastructure (to
// avoid infinite recursion, but in this case, infinite recursion
// cannot happen because the rank is strictly decreasing).
// TODO(rriddle, nicolasvasilache) Implement something like a hook for
// a potential function that must decrease and allow the same pattern
// multiple times.
auto success = matchAndRewrite(stridedSliceOp, rewriter);
(void)success;
assert(succeeded(success) && "Unexpected failure");
extracted = stridedSliceOp;
}
res = insertOne(rewriter, loc, extracted, res, idx);
}
rewriter.replaceOp(op, {res});
return success();
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.insert<VectorFMAOpNDRewritePattern,
VectorInsertStridedSliceOpDifferentRankRewritePattern,
VectorInsertStridedSliceOpSameRankRewritePattern,
VectorStridedSliceOpConversion>(ctx);
patterns.insert<VectorBroadcastOpConversion, VectorReductionOpConversion,
VectorShuffleOpConversion, VectorExtractElementOpConversion,
VectorExtractOpConversion, VectorFMAOp1DConversion,
VectorInsertElementOpConversion, VectorInsertOpConversion,
VectorTypeCastOpConversion, VectorPrintOpConversion>(
ctx, converter);
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.insert<VectorMatmulOpConversion>(ctx, converter);
}
namespace {
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
/// Include the generated pass utilities.
#define GEN_PASS_ConvertVectorToLLVM
#include "mlir/Conversion/Passes.h.inc"
void runOnModule() override;
};
} // namespace
void LowerVectorToLLVMPass::runOnModule() {
// Perform progressive lowering of operations on slices and
// all contraction operations. Also applies folding and DCE.
{
OwningRewritePatternList patterns;
populateVectorSlicesLoweringPatterns(patterns, &getContext());
populateVectorContractLoweringPatterns(patterns, &getContext());
applyPatternsGreedily(getModule(), patterns);
}
// Convert to the LLVM IR dialect.
LLVMTypeConverter converter(&getContext());
OwningRewritePatternList patterns;
populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns);
populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
if (failed(
applyPartialConversion(getModule(), target, patterns, &converter))) {
signalPassFailure();
}
}
std::unique_ptr<OpPassBase<ModuleOp>> mlir::createConvertVectorToLLVMPass() {
return std::make_unique<LowerVectorToLLVMPass>();
}