llvm-project/clang/lib/Sema/TreeTransform.h

9362 lines
361 KiB
C++

//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This file implements a semantic tree transformation that takes a given
// AST and rebuilds it, possibly transforming some nodes in the process.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
#define LLVM_CLANG_SEMA_TREETRANSFORM_H
#include "TypeLocBuilder.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
namespace clang {
using namespace sema;
/// \brief A semantic tree transformation that allows one to transform one
/// abstract syntax tree into another.
///
/// A new tree transformation is defined by creating a new subclass \c X of
/// \c TreeTransform<X> and then overriding certain operations to provide
/// behavior specific to that transformation. For example, template
/// instantiation is implemented as a tree transformation where the
/// transformation of TemplateTypeParmType nodes involves substituting the
/// template arguments for their corresponding template parameters; a similar
/// transformation is performed for non-type template parameters and
/// template template parameters.
///
/// This tree-transformation template uses static polymorphism to allow
/// subclasses to customize any of its operations. Thus, a subclass can
/// override any of the transformation or rebuild operators by providing an
/// operation with the same signature as the default implementation. The
/// overridding function should not be virtual.
///
/// Semantic tree transformations are split into two stages, either of which
/// can be replaced by a subclass. The "transform" step transforms an AST node
/// or the parts of an AST node using the various transformation functions,
/// then passes the pieces on to the "rebuild" step, which constructs a new AST
/// node of the appropriate kind from the pieces. The default transformation
/// routines recursively transform the operands to composite AST nodes (e.g.,
/// the pointee type of a PointerType node) and, if any of those operand nodes
/// were changed by the transformation, invokes the rebuild operation to create
/// a new AST node.
///
/// Subclasses can customize the transformation at various levels. The
/// most coarse-grained transformations involve replacing TransformType(),
/// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
/// TransformTemplateName(), or TransformTemplateArgument() with entirely
/// new implementations.
///
/// For more fine-grained transformations, subclasses can replace any of the
/// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
/// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
/// replacing TransformTemplateTypeParmType() allows template instantiation
/// to substitute template arguments for their corresponding template
/// parameters. Additionally, subclasses can override the \c RebuildXXX
/// functions to control how AST nodes are rebuilt when their operands change.
/// By default, \c TreeTransform will invoke semantic analysis to rebuild
/// AST nodes. However, certain other tree transformations (e.g, cloning) may
/// be able to use more efficient rebuild steps.
///
/// There are a handful of other functions that can be overridden, allowing one
/// to avoid traversing nodes that don't need any transformation
/// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
/// operands have not changed (\c AlwaysRebuild()), and customize the
/// default locations and entity names used for type-checking
/// (\c getBaseLocation(), \c getBaseEntity()).
template<typename Derived>
class TreeTransform {
/// \brief Private RAII object that helps us forget and then re-remember
/// the template argument corresponding to a partially-substituted parameter
/// pack.
class ForgetPartiallySubstitutedPackRAII {
Derived &Self;
TemplateArgument Old;
public:
ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
Old = Self.ForgetPartiallySubstitutedPack();
}
~ForgetPartiallySubstitutedPackRAII() {
Self.RememberPartiallySubstitutedPack(Old);
}
};
protected:
Sema &SemaRef;
/// \brief The set of local declarations that have been transformed, for
/// cases where we are forced to build new declarations within the transformer
/// rather than in the subclass (e.g., lambda closure types).
llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
public:
/// \brief Initializes a new tree transformer.
TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
/// \brief Retrieves a reference to the derived class.
Derived &getDerived() { return static_cast<Derived&>(*this); }
/// \brief Retrieves a reference to the derived class.
const Derived &getDerived() const {
return static_cast<const Derived&>(*this);
}
static inline ExprResult Owned(Expr *E) { return E; }
static inline StmtResult Owned(Stmt *S) { return S; }
/// \brief Retrieves a reference to the semantic analysis object used for
/// this tree transform.
Sema &getSema() const { return SemaRef; }
/// \brief Whether the transformation should always rebuild AST nodes, even
/// if none of the children have changed.
///
/// Subclasses may override this function to specify when the transformation
/// should rebuild all AST nodes.
bool AlwaysRebuild() { return false; }
/// \brief Returns the location of the entity being transformed, if that
/// information was not available elsewhere in the AST.
///
/// By default, returns no source-location information. Subclasses can
/// provide an alternative implementation that provides better location
/// information.
SourceLocation getBaseLocation() { return SourceLocation(); }
/// \brief Returns the name of the entity being transformed, if that
/// information was not available elsewhere in the AST.
///
/// By default, returns an empty name. Subclasses can provide an alternative
/// implementation with a more precise name.
DeclarationName getBaseEntity() { return DeclarationName(); }
/// \brief Sets the "base" location and entity when that
/// information is known based on another transformation.
///
/// By default, the source location and entity are ignored. Subclasses can
/// override this function to provide a customized implementation.
void setBase(SourceLocation Loc, DeclarationName Entity) { }
/// \brief RAII object that temporarily sets the base location and entity
/// used for reporting diagnostics in types.
class TemporaryBase {
TreeTransform &Self;
SourceLocation OldLocation;
DeclarationName OldEntity;
public:
TemporaryBase(TreeTransform &Self, SourceLocation Location,
DeclarationName Entity) : Self(Self) {
OldLocation = Self.getDerived().getBaseLocation();
OldEntity = Self.getDerived().getBaseEntity();
if (Location.isValid())
Self.getDerived().setBase(Location, Entity);
}
~TemporaryBase() {
Self.getDerived().setBase(OldLocation, OldEntity);
}
};
/// \brief Determine whether the given type \p T has already been
/// transformed.
///
/// Subclasses can provide an alternative implementation of this routine
/// to short-circuit evaluation when it is known that a given type will
/// not change. For example, template instantiation need not traverse
/// non-dependent types.
bool AlreadyTransformed(QualType T) {
return T.isNull();
}
/// \brief Determine whether the given call argument should be dropped, e.g.,
/// because it is a default argument.
///
/// Subclasses can provide an alternative implementation of this routine to
/// determine which kinds of call arguments get dropped. By default,
/// CXXDefaultArgument nodes are dropped (prior to transformation).
bool DropCallArgument(Expr *E) {
return E->isDefaultArgument();
}
/// \brief Determine whether we should expand a pack expansion with the
/// given set of parameter packs into separate arguments by repeatedly
/// transforming the pattern.
///
/// By default, the transformer never tries to expand pack expansions.
/// Subclasses can override this routine to provide different behavior.
///
/// \param EllipsisLoc The location of the ellipsis that identifies the
/// pack expansion.
///
/// \param PatternRange The source range that covers the entire pattern of
/// the pack expansion.
///
/// \param Unexpanded The set of unexpanded parameter packs within the
/// pattern.
///
/// \param ShouldExpand Will be set to \c true if the transformer should
/// expand the corresponding pack expansions into separate arguments. When
/// set, \c NumExpansions must also be set.
///
/// \param RetainExpansion Whether the caller should add an unexpanded
/// pack expansion after all of the expanded arguments. This is used
/// when extending explicitly-specified template argument packs per
/// C++0x [temp.arg.explicit]p9.
///
/// \param NumExpansions The number of separate arguments that will be in
/// the expanded form of the corresponding pack expansion. This is both an
/// input and an output parameter, which can be set by the caller if the
/// number of expansions is known a priori (e.g., due to a prior substitution)
/// and will be set by the callee when the number of expansions is known.
/// The callee must set this value when \c ShouldExpand is \c true; it may
/// set this value in other cases.
///
/// \returns true if an error occurred (e.g., because the parameter packs
/// are to be instantiated with arguments of different lengths), false
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
/// must be set.
bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
bool &ShouldExpand,
bool &RetainExpansion,
Optional<unsigned> &NumExpansions) {
ShouldExpand = false;
return false;
}
/// \brief "Forget" about the partially-substituted pack template argument,
/// when performing an instantiation that must preserve the parameter pack
/// use.
///
/// This routine is meant to be overridden by the template instantiator.
TemplateArgument ForgetPartiallySubstitutedPack() {
return TemplateArgument();
}
/// \brief "Remember" the partially-substituted pack template argument
/// after performing an instantiation that must preserve the parameter pack
/// use.
///
/// This routine is meant to be overridden by the template instantiator.
void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
/// \brief Note to the derived class when a function parameter pack is
/// being expanded.
void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
/// \brief Transforms the given type into another type.
///
/// By default, this routine transforms a type by creating a
/// TypeSourceInfo for it and delegating to the appropriate
/// function. This is expensive, but we don't mind, because
/// this method is deprecated anyway; all users should be
/// switched to storing TypeSourceInfos.
///
/// \returns the transformed type.
QualType TransformType(QualType T);
/// \brief Transforms the given type-with-location into a new
/// type-with-location.
///
/// By default, this routine transforms a type by delegating to the
/// appropriate TransformXXXType to build a new type. Subclasses
/// may override this function (to take over all type
/// transformations) or some set of the TransformXXXType functions
/// to alter the transformation.
TypeSourceInfo *TransformType(TypeSourceInfo *DI);
/// \brief Transform the given type-with-location into a new
/// type, collecting location information in the given builder
/// as necessary.
///
QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
/// \brief Transform the given statement.
///
/// By default, this routine transforms a statement by delegating to the
/// appropriate TransformXXXStmt function to transform a specific kind of
/// statement or the TransformExpr() function to transform an expression.
/// Subclasses may override this function to transform statements using some
/// other mechanism.
///
/// \returns the transformed statement.
StmtResult TransformStmt(Stmt *S);
/// \brief Transform the given expression.
///
/// By default, this routine transforms an expression by delegating to the
/// appropriate TransformXXXExpr function to build a new expression.
/// Subclasses may override this function to transform expressions using some
/// other mechanism.
///
/// \returns the transformed expression.
ExprResult TransformExpr(Expr *E);
/// \brief Transform the given initializer.
///
/// By default, this routine transforms an initializer by stripping off the
/// semantic nodes added by initialization, then passing the result to
/// TransformExpr or TransformExprs.
///
/// \returns the transformed initializer.
ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit);
/// \brief Transform the given list of expressions.
///
/// This routine transforms a list of expressions by invoking
/// \c TransformExpr() for each subexpression. However, it also provides
/// support for variadic templates by expanding any pack expansions (if the
/// derived class permits such expansion) along the way. When pack expansions
/// are present, the number of outputs may not equal the number of inputs.
///
/// \param Inputs The set of expressions to be transformed.
///
/// \param NumInputs The number of expressions in \c Inputs.
///
/// \param IsCall If \c true, then this transform is being performed on
/// function-call arguments, and any arguments that should be dropped, will
/// be.
///
/// \param Outputs The transformed input expressions will be added to this
/// vector.
///
/// \param ArgChanged If non-NULL, will be set \c true if any argument changed
/// due to transformation.
///
/// \returns true if an error occurred, false otherwise.
bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
SmallVectorImpl<Expr *> &Outputs,
bool *ArgChanged = 0);
/// \brief Transform the given declaration, which is referenced from a type
/// or expression.
///
/// By default, acts as the identity function on declarations, unless the
/// transformer has had to transform the declaration itself. Subclasses
/// may override this function to provide alternate behavior.
Decl *TransformDecl(SourceLocation Loc, Decl *D) {
llvm::DenseMap<Decl *, Decl *>::iterator Known
= TransformedLocalDecls.find(D);
if (Known != TransformedLocalDecls.end())
return Known->second;
return D;
}
/// \brief Transform the attributes associated with the given declaration and
/// place them on the new declaration.
///
/// By default, this operation does nothing. Subclasses may override this
/// behavior to transform attributes.
void transformAttrs(Decl *Old, Decl *New) { }
/// \brief Note that a local declaration has been transformed by this
/// transformer.
///
/// Local declarations are typically transformed via a call to
/// TransformDefinition. However, in some cases (e.g., lambda expressions),
/// the transformer itself has to transform the declarations. This routine
/// can be overridden by a subclass that keeps track of such mappings.
void transformedLocalDecl(Decl *Old, Decl *New) {
TransformedLocalDecls[Old] = New;
}
/// \brief Transform the definition of the given declaration.
///
/// By default, invokes TransformDecl() to transform the declaration.
/// Subclasses may override this function to provide alternate behavior.
Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
return getDerived().TransformDecl(Loc, D);
}
/// \brief Transform the given declaration, which was the first part of a
/// nested-name-specifier in a member access expression.
///
/// This specific declaration transformation only applies to the first
/// identifier in a nested-name-specifier of a member access expression, e.g.,
/// the \c T in \c x->T::member
///
/// By default, invokes TransformDecl() to transform the declaration.
/// Subclasses may override this function to provide alternate behavior.
NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
}
/// \brief Transform the given nested-name-specifier with source-location
/// information.
///
/// By default, transforms all of the types and declarations within the
/// nested-name-specifier. Subclasses may override this function to provide
/// alternate behavior.
NestedNameSpecifierLoc TransformNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS,
QualType ObjectType = QualType(),
NamedDecl *FirstQualifierInScope = 0);
/// \brief Transform the given declaration name.
///
/// By default, transforms the types of conversion function, constructor,
/// and destructor names and then (if needed) rebuilds the declaration name.
/// Identifiers and selectors are returned unmodified. Sublcasses may
/// override this function to provide alternate behavior.
DeclarationNameInfo
TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
/// \brief Transform the given template name.
///
/// \param SS The nested-name-specifier that qualifies the template
/// name. This nested-name-specifier must already have been transformed.
///
/// \param Name The template name to transform.
///
/// \param NameLoc The source location of the template name.
///
/// \param ObjectType If we're translating a template name within a member
/// access expression, this is the type of the object whose member template
/// is being referenced.
///
/// \param FirstQualifierInScope If the first part of a nested-name-specifier
/// also refers to a name within the current (lexical) scope, this is the
/// declaration it refers to.
///
/// By default, transforms the template name by transforming the declarations
/// and nested-name-specifiers that occur within the template name.
/// Subclasses may override this function to provide alternate behavior.
TemplateName TransformTemplateName(CXXScopeSpec &SS,
TemplateName Name,
SourceLocation NameLoc,
QualType ObjectType = QualType(),
NamedDecl *FirstQualifierInScope = 0);
/// \brief Transform the given template argument.
///
/// By default, this operation transforms the type, expression, or
/// declaration stored within the template argument and constructs a
/// new template argument from the transformed result. Subclasses may
/// override this function to provide alternate behavior.
///
/// Returns true if there was an error.
bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
TemplateArgumentLoc &Output);
/// \brief Transform the given set of template arguments.
///
/// By default, this operation transforms all of the template arguments
/// in the input set using \c TransformTemplateArgument(), and appends
/// the transformed arguments to the output list.
///
/// Note that this overload of \c TransformTemplateArguments() is merely
/// a convenience function. Subclasses that wish to override this behavior
/// should override the iterator-based member template version.
///
/// \param Inputs The set of template arguments to be transformed.
///
/// \param NumInputs The number of template arguments in \p Inputs.
///
/// \param Outputs The set of transformed template arguments output by this
/// routine.
///
/// Returns true if an error occurred.
bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
unsigned NumInputs,
TemplateArgumentListInfo &Outputs) {
return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
}
/// \brief Transform the given set of template arguments.
///
/// By default, this operation transforms all of the template arguments
/// in the input set using \c TransformTemplateArgument(), and appends
/// the transformed arguments to the output list.
///
/// \param First An iterator to the first template argument.
///
/// \param Last An iterator one step past the last template argument.
///
/// \param Outputs The set of transformed template arguments output by this
/// routine.
///
/// Returns true if an error occurred.
template<typename InputIterator>
bool TransformTemplateArguments(InputIterator First,
InputIterator Last,
TemplateArgumentListInfo &Outputs);
/// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
void InventTemplateArgumentLoc(const TemplateArgument &Arg,
TemplateArgumentLoc &ArgLoc);
/// \brief Fakes up a TypeSourceInfo for a type.
TypeSourceInfo *InventTypeSourceInfo(QualType T) {
return SemaRef.Context.getTrivialTypeSourceInfo(T,
getDerived().getBaseLocation());
}
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
#include "clang/AST/TypeLocNodes.def"
QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL,
CXXRecordDecl *ThisContext,
unsigned ThisTypeQuals);
StmtResult
TransformSEHHandler(Stmt *Handler);
QualType
TransformTemplateSpecializationType(TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL,
TemplateName Template);
QualType
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
TemplateName Template,
CXXScopeSpec &SS);
QualType
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
NestedNameSpecifierLoc QualifierLoc);
/// \brief Transforms the parameters of a function type into the
/// given vectors.
///
/// The result vectors should be kept in sync; null entries in the
/// variables vector are acceptable.
///
/// Return true on error.
bool TransformFunctionTypeParams(SourceLocation Loc,
ParmVarDecl **Params, unsigned NumParams,
const QualType *ParamTypes,
SmallVectorImpl<QualType> &PTypes,
SmallVectorImpl<ParmVarDecl*> *PVars);
/// \brief Transforms a single function-type parameter. Return null
/// on error.
///
/// \param indexAdjustment - A number to add to the parameter's
/// scope index; can be negative
ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
int indexAdjustment,
Optional<unsigned> NumExpansions,
bool ExpectParameterPack);
QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
/// \brief Transform the captures and body of a lambda expression.
ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator);
ExprResult TransformAddressOfOperand(Expr *E);
ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
bool IsAddressOfOperand);
#define STMT(Node, Parent) \
StmtResult Transform##Node(Node *S);
#define EXPR(Node, Parent) \
ExprResult Transform##Node(Node *E);
#define ABSTRACT_STMT(Stmt)
#include "clang/AST/StmtNodes.inc"
/// \brief Build a new pointer type given its pointee type.
///
/// By default, performs semantic analysis when building the pointer type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
/// \brief Build a new block pointer type given its pointee type.
///
/// By default, performs semantic analysis when building the block pointer
/// type. Subclasses may override this routine to provide different behavior.
QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
/// \brief Build a new reference type given the type it references.
///
/// By default, performs semantic analysis when building the
/// reference type. Subclasses may override this routine to provide
/// different behavior.
///
/// \param LValue whether the type was written with an lvalue sigil
/// or an rvalue sigil.
QualType RebuildReferenceType(QualType ReferentType,
bool LValue,
SourceLocation Sigil);
/// \brief Build a new member pointer type given the pointee type and the
/// class type it refers into.
///
/// By default, performs semantic analysis when building the member pointer
/// type. Subclasses may override this routine to provide different behavior.
QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
SourceLocation Sigil);
/// \brief Build a new array type given the element type, size
/// modifier, size of the array (if known), size expression, and index type
/// qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
/// Also by default, all of the other Rebuild*Array
QualType RebuildArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt *Size,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new constant array type given the element type, size
/// modifier, (known) size of the array, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildConstantArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt &Size,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new incomplete array type given the element type, size
/// modifier, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildIncompleteArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new variable-length array type given the element type,
/// size modifier, size expression, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildVariableArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new dependent-sized array type given the element type,
/// size modifier, size expression, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentSizedArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new vector type given the element type and
/// number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
VectorType::VectorKind VecKind);
/// \brief Build a new extended vector type given the element type and
/// number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
SourceLocation AttributeLoc);
/// \brief Build a new potentially dependently-sized extended vector type
/// given the element type and number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentSizedExtVectorType(QualType ElementType,
Expr *SizeExpr,
SourceLocation AttributeLoc);
/// \brief Build a new function type.
///
/// By default, performs semantic analysis when building the function type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildFunctionProtoType(QualType T,
llvm::MutableArrayRef<QualType> ParamTypes,
const FunctionProtoType::ExtProtoInfo &EPI);
/// \brief Build a new unprototyped function type.
QualType RebuildFunctionNoProtoType(QualType ResultType);
/// \brief Rebuild an unresolved typename type, given the decl that
/// the UnresolvedUsingTypenameDecl was transformed to.
QualType RebuildUnresolvedUsingType(Decl *D);
/// \brief Build a new typedef type.
QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
return SemaRef.Context.getTypeDeclType(Typedef);
}
/// \brief Build a new class/struct/union type.
QualType RebuildRecordType(RecordDecl *Record) {
return SemaRef.Context.getTypeDeclType(Record);
}
/// \brief Build a new Enum type.
QualType RebuildEnumType(EnumDecl *Enum) {
return SemaRef.Context.getTypeDeclType(Enum);
}
/// \brief Build a new typeof(expr) type.
///
/// By default, performs semantic analysis when building the typeof type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
/// \brief Build a new typeof(type) type.
///
/// By default, builds a new TypeOfType with the given underlying type.
QualType RebuildTypeOfType(QualType Underlying);
/// \brief Build a new unary transform type.
QualType RebuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc);
/// \brief Build a new C++0x decltype type.
///
/// By default, performs semantic analysis when building the decltype type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
/// \brief Build a new C++0x auto type.
///
/// By default, builds a new AutoType with the given deduced type.
QualType RebuildAutoType(QualType Deduced) {
return SemaRef.Context.getAutoType(Deduced);
}
/// \brief Build a new template specialization type.
///
/// By default, performs semantic analysis when building the template
/// specialization type. Subclasses may override this routine to provide
/// different behavior.
QualType RebuildTemplateSpecializationType(TemplateName Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &Args);
/// \brief Build a new parenthesized type.
///
/// By default, builds a new ParenType type from the inner type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildParenType(QualType InnerType) {
return SemaRef.Context.getParenType(InnerType);
}
/// \brief Build a new qualified name type.
///
/// By default, builds a new ElaboratedType type from the keyword,
/// the nested-name-specifier and the named type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildElaboratedType(SourceLocation KeywordLoc,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifierLoc QualifierLoc,
QualType Named) {
return SemaRef.Context.getElaboratedType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
Named);
}
/// \brief Build a new typename type that refers to a template-id.
///
/// By default, builds a new DependentNameType type from the
/// nested-name-specifier and the given type. Subclasses may override
/// this routine to provide different behavior.
QualType RebuildDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo *Name,
SourceLocation NameLoc,
TemplateArgumentListInfo &Args) {
// Rebuild the template name.
// TODO: avoid TemplateName abstraction
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
TemplateName InstName
= getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), 0);
if (InstName.isNull())
return QualType();
// If it's still dependent, make a dependent specialization.
if (InstName.getAsDependentTemplateName())
return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
Name,
Args);
// Otherwise, make an elaborated type wrapping a non-dependent
// specialization.
QualType T =
getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
if (T.isNull()) return QualType();
if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == 0)
return T;
return SemaRef.Context.getElaboratedType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
T);
}
/// \brief Build a new typename type that refers to an identifier.
///
/// By default, performs semantic analysis when building the typename type
/// (or elaborated type). Subclasses may override this routine to provide
/// different behavior.
QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo *Id,
SourceLocation IdLoc) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
// If the name is still dependent, just build a new dependent name type.
if (!SemaRef.computeDeclContext(SS))
return SemaRef.Context.getDependentNameType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
Id);
}
if (Keyword == ETK_None || Keyword == ETK_Typename)
return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
*Id, IdLoc);
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
// We had a dependent elaborated-type-specifier that has been transformed
// into a non-dependent elaborated-type-specifier. Find the tag we're
// referring to.
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
DeclContext *DC = SemaRef.computeDeclContext(SS, false);
if (!DC)
return QualType();
if (SemaRef.RequireCompleteDeclContext(SS, DC))
return QualType();
TagDecl *Tag = 0;
SemaRef.LookupQualifiedName(Result, DC);
switch (Result.getResultKind()) {
case LookupResult::NotFound:
case LookupResult::NotFoundInCurrentInstantiation:
break;
case LookupResult::Found:
Tag = Result.getAsSingle<TagDecl>();
break;
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
llvm_unreachable("Tag lookup cannot find non-tags");
case LookupResult::Ambiguous:
// Let the LookupResult structure handle ambiguities.
return QualType();
}
if (!Tag) {
// Check where the name exists but isn't a tag type and use that to emit
// better diagnostics.
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
SemaRef.LookupQualifiedName(Result, DC);
switch (Result.getResultKind()) {
case LookupResult::Found:
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue: {
NamedDecl *SomeDecl = Result.getRepresentativeDecl();
unsigned Kind = 0;
if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
break;
}
default:
// FIXME: Would be nice to highlight just the source range.
SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
<< Kind << Id << DC;
break;
}
return QualType();
}
if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
IdLoc, *Id)) {
SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
return QualType();
}
// Build the elaborated-type-specifier type.
QualType T = SemaRef.Context.getTypeDeclType(Tag);
return SemaRef.Context.getElaboratedType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
T);
}
/// \brief Build a new pack expansion type.
///
/// By default, builds a new PackExpansionType type from the given pattern.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildPackExpansionType(QualType Pattern,
SourceRange PatternRange,
SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions) {
return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
NumExpansions);
}
/// \brief Build a new atomic type given its value type.
///
/// By default, performs semantic analysis when building the atomic type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
/// \brief Build a new template name given a nested name specifier, a flag
/// indicating whether the "template" keyword was provided, and the template
/// that the template name refers to.
///
/// By default, builds the new template name directly. Subclasses may override
/// this routine to provide different behavior.
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
bool TemplateKW,
TemplateDecl *Template);
/// \brief Build a new template name given a nested name specifier and the
/// name that is referred to as a template.
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
const IdentifierInfo &Name,
SourceLocation NameLoc,
QualType ObjectType,
NamedDecl *FirstQualifierInScope);
/// \brief Build a new template name given a nested name specifier and the
/// overloaded operator name that is referred to as a template.
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
OverloadedOperatorKind Operator,
SourceLocation NameLoc,
QualType ObjectType);
/// \brief Build a new template name given a template template parameter pack
/// and the
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
const TemplateArgument &ArgPack) {
return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
}
/// \brief Build a new compound statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
MultiStmtArg Statements,
SourceLocation RBraceLoc,
bool IsStmtExpr) {
return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
IsStmtExpr);
}
/// \brief Build a new case statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
Expr *LHS,
SourceLocation EllipsisLoc,
Expr *RHS,
SourceLocation ColonLoc) {
return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
ColonLoc);
}
/// \brief Attach the body to a new case statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
getSema().ActOnCaseStmtBody(S, Body);
return S;
}
/// \brief Build a new default statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
Stmt *SubStmt) {
return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
/*CurScope=*/0);
}
/// \brief Build a new label statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
SourceLocation ColonLoc, Stmt *SubStmt) {
return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
}
/// \brief Build a new label statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
ArrayRef<const Attr*> Attrs,
Stmt *SubStmt) {
return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
}
/// \brief Build a new "if" statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
VarDecl *CondVar, Stmt *Then,
SourceLocation ElseLoc, Stmt *Else) {
return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
}
/// \brief Start building a new switch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
Expr *Cond, VarDecl *CondVar) {
return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
CondVar);
}
/// \brief Attach the body to the switch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
Stmt *Switch, Stmt *Body) {
return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
}
/// \brief Build a new while statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
VarDecl *CondVar, Stmt *Body) {
return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
}
/// \brief Build a new do-while statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc, SourceLocation LParenLoc,
Expr *Cond, SourceLocation RParenLoc) {
return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
Cond, RParenLoc);
}
/// \brief Build a new for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
Stmt *Init, Sema::FullExprArg Cond,
VarDecl *CondVar, Sema::FullExprArg Inc,
SourceLocation RParenLoc, Stmt *Body) {
return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
CondVar, Inc, RParenLoc, Body);
}
/// \brief Build a new goto statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
LabelDecl *Label) {
return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
}
/// \brief Build a new indirect goto statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
Expr *Target) {
return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
}
/// \brief Build a new return statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
return getSema().ActOnReturnStmt(ReturnLoc, Result);
}
/// \brief Build a new declaration statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDeclStmt(Decl **Decls, unsigned NumDecls,
SourceLocation StartLoc,
SourceLocation EndLoc) {
Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls, NumDecls);
return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
}
/// \brief Build a new inline asm statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg Constraints, MultiExprArg Exprs,
Expr *AsmString, MultiExprArg Clobbers,
SourceLocation RParenLoc) {
return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
NumInputs, Names, Constraints, Exprs,
AsmString, Clobbers, RParenLoc);
}
/// \brief Build a new MS style inline asm statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks, SourceLocation EndLoc) {
return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, EndLoc);
}
/// \brief Build a new Objective-C \@try statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
Stmt *TryBody,
MultiStmtArg CatchStmts,
Stmt *Finally) {
return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
Finally);
}
/// \brief Rebuild an Objective-C exception declaration.
///
/// By default, performs semantic analysis to build the new declaration.
/// Subclasses may override this routine to provide different behavior.
VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *TInfo, QualType T) {
return getSema().BuildObjCExceptionDecl(TInfo, T,
ExceptionDecl->getInnerLocStart(),
ExceptionDecl->getLocation(),
ExceptionDecl->getIdentifier());
}
/// \brief Build a new Objective-C \@catch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParenLoc,
VarDecl *Var,
Stmt *Body) {
return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
Var, Body);
}
/// \brief Build a new Objective-C \@finally statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
Stmt *Body) {
return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
}
/// \brief Build a new Objective-C \@throw statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
Expr *Operand) {
return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
}
/// \brief Rebuild the operand to an Objective-C \@synchronized statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
Expr *object) {
return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
}
/// \brief Build a new Objective-C \@synchronized statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
Expr *Object, Stmt *Body) {
return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
}
/// \brief Build a new Objective-C \@autoreleasepool statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
Stmt *Body) {
return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
}
/// \brief Build a new Objective-C fast enumeration statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
Stmt *Element,
Expr *Collection,
SourceLocation RParenLoc,
Stmt *Body) {
StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
Element,
Collection,
RParenLoc);
if (ForEachStmt.isInvalid())
return StmtError();
return getSema().FinishObjCForCollectionStmt(ForEachStmt.take(), Body);
}
/// \brief Build a new C++ exception declaration.
///
/// By default, performs semantic analysis to build the new decaration.
/// Subclasses may override this routine to provide different behavior.
VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *Declarator,
SourceLocation StartLoc,
SourceLocation IdLoc,
IdentifierInfo *Id) {
VarDecl *Var = getSema().BuildExceptionDeclaration(0, Declarator,
StartLoc, IdLoc, Id);
if (Var)
getSema().CurContext->addDecl(Var);
return Var;
}
/// \brief Build a new C++ catch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
VarDecl *ExceptionDecl,
Stmt *Handler) {
return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
Handler));
}
/// \brief Build a new C++ try statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXTryStmt(SourceLocation TryLoc,
Stmt *TryBlock,
MultiStmtArg Handlers) {
return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
}
/// \brief Build a new C++0x range-based for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
SourceLocation ColonLoc,
Stmt *Range, Stmt *BeginEnd,
Expr *Cond, Expr *Inc,
Stmt *LoopVar,
SourceLocation RParenLoc) {
// If we've just learned that the range is actually an Objective-C
// collection, treat this as an Objective-C fast enumeration loop.
if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
if (RangeStmt->isSingleDecl()) {
if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
Expr *RangeExpr = RangeVar->getInit();
if (!RangeExpr->isTypeDependent() &&
RangeExpr->getType()->isObjCObjectPointerType())
return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr,
RParenLoc);
}
}
}
return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
Cond, Inc, LoopVar, RParenLoc,
Sema::BFRK_Rebuild);
}
/// \brief Build a new C++0x range-based for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested) {
return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
QualifierLoc, NameInfo, Nested);
}
/// \brief Attach body to a C++0x range-based for statement.
///
/// By default, performs semantic analysis to finish the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
return getSema().FinishCXXForRangeStmt(ForRange, Body);
}
StmtResult RebuildSEHTryStmt(bool IsCXXTry,
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler) {
return getSema().ActOnSEHTryBlock(IsCXXTry,TryLoc,TryBlock,Handler);
}
StmtResult RebuildSEHExceptStmt(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block) {
return getSema().ActOnSEHExceptBlock(Loc,FilterExpr,Block);
}
StmtResult RebuildSEHFinallyStmt(SourceLocation Loc,
Stmt *Block) {
return getSema().ActOnSEHFinallyBlock(Loc,Block);
}
/// \brief Build a new expression that references a declaration.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool RequiresADL) {
return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
}
/// \brief Build a new expression that references a declaration.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
ValueDecl *VD,
const DeclarationNameInfo &NameInfo,
TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
// FIXME: loses template args.
return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
}
/// \brief Build a new expression in parentheses.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
SourceLocation RParen) {
return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
}
/// \brief Build a new pseudo-destructor expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
SourceLocation OperatorLoc,
bool isArrow,
CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destroyed);
/// \brief Build a new unary operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *SubExpr) {
return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr);
}
/// \brief Build a new builtin offsetof expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
TypeSourceInfo *Type,
Sema::OffsetOfComponent *Components,
unsigned NumComponents,
SourceLocation RParenLoc) {
return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
NumComponents, RParenLoc);
}
/// \brief Build a new sizeof, alignof or vec_step expression with a
/// type argument.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R) {
return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
}
/// \brief Build a new sizeof, alignof or vec step expression with an
/// expression argument.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R) {
ExprResult Result
= getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
if (Result.isInvalid())
return ExprError();
return Result;
}
/// \brief Build a new array subscript expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildArraySubscriptExpr(Expr *LHS,
SourceLocation LBracketLoc,
Expr *RHS,
SourceLocation RBracketLoc) {
return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS,
LBracketLoc, RHS,
RBracketLoc);
}
/// \brief Build a new call expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc,
Expr *ExecConfig = 0) {
return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc,
Args, RParenLoc, ExecConfig);
}
/// \brief Build a new member access expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
bool isArrow,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
ValueDecl *Member,
NamedDecl *FoundDecl,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
NamedDecl *FirstQualifierInScope) {
ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
isArrow);
if (!Member->getDeclName()) {
// We have a reference to an unnamed field. This is always the
// base of an anonymous struct/union member access, i.e. the
// field is always of record type.
assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
assert(Member->getType()->isRecordType() &&
"unnamed member not of record type?");
BaseResult =
getSema().PerformObjectMemberConversion(BaseResult.take(),
QualifierLoc.getNestedNameSpecifier(),
FoundDecl, Member);
if (BaseResult.isInvalid())
return ExprError();
Base = BaseResult.take();
ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
MemberExpr *ME =
new (getSema().Context) MemberExpr(Base, isArrow,
Member, MemberNameInfo,
cast<FieldDecl>(Member)->getType(),
VK, OK_Ordinary);
return getSema().Owned(ME);
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
Base = BaseResult.take();
QualType BaseType = Base->getType();
// FIXME: this involves duplicating earlier analysis in a lot of
// cases; we should avoid this when possible.
LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
R.addDecl(FoundDecl);
R.resolveKind();
return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
SS, TemplateKWLoc,
FirstQualifierInScope,
R, ExplicitTemplateArgs);
}
/// \brief Build a new binary operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *LHS, Expr *RHS) {
return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS);
}
/// \brief Build a new conditional operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildConditionalOperator(Expr *Cond,
SourceLocation QuestionLoc,
Expr *LHS,
SourceLocation ColonLoc,
Expr *RHS) {
return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
LHS, RHS);
}
/// \brief Build a new C-style cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *SubExpr) {
return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
SubExpr);
}
/// \brief Build a new compound literal expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *Init) {
return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
Init);
}
/// \brief Build a new extended vector element access expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildExtVectorElementExpr(Expr *Base,
SourceLocation OpLoc,
SourceLocation AccessorLoc,
IdentifierInfo &Accessor) {
CXXScopeSpec SS;
DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
OpLoc, /*IsArrow*/ false,
SS, SourceLocation(),
/*FirstQualifierInScope*/ 0,
NameInfo,
/* TemplateArgs */ 0);
}
/// \brief Build a new initializer list expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildInitList(SourceLocation LBraceLoc,
MultiExprArg Inits,
SourceLocation RBraceLoc,
QualType ResultTy) {
ExprResult Result
= SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc);
if (Result.isInvalid() || ResultTy->isDependentType())
return Result;
// Patch in the result type we were given, which may have been computed
// when the initial InitListExpr was built.
InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
ILE->setType(ResultTy);
return Result;
}
/// \brief Build a new designated initializer expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDesignatedInitExpr(Designation &Desig,
MultiExprArg ArrayExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
Expr *Init) {
ExprResult Result
= SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
Init);
if (Result.isInvalid())
return ExprError();
return Result;
}
/// \brief Build a new value-initialized expression.
///
/// By default, builds the implicit value initialization without performing
/// any semantic analysis. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildImplicitValueInitExpr(QualType T) {
return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T));
}
/// \brief Build a new \c va_arg expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
Expr *SubExpr, TypeSourceInfo *TInfo,
SourceLocation RParenLoc) {
return getSema().BuildVAArgExpr(BuiltinLoc,
SubExpr, TInfo,
RParenLoc);
}
/// \brief Build a new expression list in parentheses.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
MultiExprArg SubExprs,
SourceLocation RParenLoc) {
return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
}
/// \brief Build a new address-of-label expression.
///
/// By default, performs semantic analysis, using the name of the label
/// rather than attempting to map the label statement itself.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
SourceLocation LabelLoc, LabelDecl *Label) {
return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
}
/// \brief Build a new GNU statement expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
Stmt *SubStmt,
SourceLocation RParenLoc) {
return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
}
/// \brief Build a new __builtin_choose_expr expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
Expr *Cond, Expr *LHS, Expr *RHS,
SourceLocation RParenLoc) {
return SemaRef.ActOnChooseExpr(BuiltinLoc,
Cond, LHS, RHS,
RParenLoc);
}
/// \brief Build a new generic selection expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
TypeSourceInfo **Types,
Expr **Exprs,
unsigned NumAssocs) {
return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
ControllingExpr, Types, Exprs,
NumAssocs);
}
/// \brief Build a new overloaded operator call expression.
///
/// By default, performs semantic analysis to build the new expression.
/// The semantic analysis provides the behavior of template instantiation,
/// copying with transformations that turn what looks like an overloaded
/// operator call into a use of a builtin operator, performing
/// argument-dependent lookup, etc. Subclasses may override this routine to
/// provide different behavior.
ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr *Callee,
Expr *First,
Expr *Second);
/// \brief Build a new C++ "named" cast expression, such as static_cast or
/// reinterpret_cast.
///
/// By default, this routine dispatches to one of the more-specific routines
/// for a particular named case, e.g., RebuildCXXStaticCastExpr().
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
Stmt::StmtClass Class,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
switch (Class) {
case Stmt::CXXStaticCastExprClass:
return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXDynamicCastExprClass:
return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXReinterpretCastExprClass:
return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr,
RParenLoc);
case Stmt::CXXConstCastExprClass:
return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
default:
llvm_unreachable("Invalid C++ named cast");
}
}
/// \brief Build a new C++ static_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ dynamic_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ reinterpret_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ const_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ functional-style cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
Expr *Sub,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
MultiExprArg(&Sub, 1),
RParenLoc);
}
/// \brief Build a new C++ typeid(type) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ typeid(expr) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ __uuidof(type) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ __uuidof(expr) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ "this" expression.
///
/// By default, builds a new "this" expression without performing any
/// semantic analysis. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
QualType ThisType,
bool isImplicit) {
getSema().CheckCXXThisCapture(ThisLoc);
return getSema().Owned(
new (getSema().Context) CXXThisExpr(ThisLoc, ThisType,
isImplicit));
}
/// \brief Build a new C++ throw expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
bool IsThrownVariableInScope) {
return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
}
/// \brief Build a new C++ default-argument expression.
///
/// By default, builds a new default-argument expression, which does not
/// require any semantic analysis. Subclasses may override this routine to
/// provide different behavior.
ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
ParmVarDecl *Param) {
return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc,
Param));
}
/// \brief Build a new C++ zero-initialization expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
MultiExprArg(), RParenLoc);
}
/// \brief Build a new C++ "new" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocatedType,
TypeSourceInfo *AllocatedTypeInfo,
Expr *ArraySize,
SourceRange DirectInitRange,
Expr *Initializer) {
return getSema().BuildCXXNew(StartLoc, UseGlobal,
PlacementLParen,
PlacementArgs,
PlacementRParen,
TypeIdParens,
AllocatedType,
AllocatedTypeInfo,
ArraySize,
DirectInitRange,
Initializer);
}
/// \brief Build a new C++ "delete" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
bool IsGlobalDelete,
bool IsArrayForm,
Expr *Operand) {
return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
Operand);
}
/// \brief Build a new unary type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait,
SourceLocation StartLoc,
TypeSourceInfo *T,
SourceLocation RParenLoc) {
return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc);
}
/// \brief Build a new binary type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildBinaryTypeTrait(BinaryTypeTrait Trait,
SourceLocation StartLoc,
TypeSourceInfo *LhsT,
TypeSourceInfo *RhsT,
SourceLocation RParenLoc) {
return getSema().BuildBinaryTypeTrait(Trait, StartLoc, LhsT, RhsT, RParenLoc);
}
/// \brief Build a new type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildTypeTrait(TypeTrait Trait,
SourceLocation StartLoc,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc) {
return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
}
/// \brief Build a new array type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
SourceLocation StartLoc,
TypeSourceInfo *TSInfo,
Expr *DimExpr,
SourceLocation RParenLoc) {
return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
}
/// \brief Build a new expression trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
SourceLocation StartLoc,
Expr *Queried,
SourceLocation RParenLoc) {
return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
}
/// \brief Build a new (previously unresolved) declaration reference
/// expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDependentScopeDeclRefExpr(
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
bool IsAddressOfOperand) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
if (TemplateArgs || TemplateKWLoc.isValid())
return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc,
NameInfo, TemplateArgs);
return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo,
IsAddressOfOperand);
}
/// \brief Build a new template-id expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo *TemplateArgs) {
return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
TemplateArgs);
}
/// \brief Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXConstructExpr(QualType T,
SourceLocation Loc,
CXXConstructorDecl *Constructor,
bool IsElidable,
MultiExprArg Args,
bool HadMultipleCandidates,
bool ListInitialization,
bool RequiresZeroInit,
CXXConstructExpr::ConstructionKind ConstructKind,
SourceRange ParenRange) {
SmallVector<Expr*, 8> ConvertedArgs;
if (getSema().CompleteConstructorCall(Constructor, Args, Loc,
ConvertedArgs))
return ExprError();
return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
ConvertedArgs,
HadMultipleCandidates,
ListInitialization,
RequiresZeroInit, ConstructKind,
ParenRange);
}
/// \brief Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo,
LParenLoc,
Args,
RParenLoc);
}
/// \brief Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo,
LParenLoc,
Args,
RParenLoc);
}
/// \brief Build a new member reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
OperatorLoc, IsArrow,
SS, TemplateKWLoc,
FirstQualifierInScope,
MemberNameInfo,
TemplateArgs);
}
/// \brief Build a new member reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
SourceLocation OperatorLoc,
bool IsArrow,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
OperatorLoc, IsArrow,
SS, TemplateKWLoc,
FirstQualifierInScope,
R, TemplateArgs);
}
/// \brief Build a new noexcept expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
}
/// \brief Build a new expression to compute the length of a parameter pack.
ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
SourceLocation PackLoc,
SourceLocation RParenLoc,
Optional<unsigned> Length) {
if (Length)
return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
OperatorLoc, Pack, PackLoc,
RParenLoc, *Length);
return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
OperatorLoc, Pack, PackLoc,
RParenLoc);
}
/// \brief Build a new Objective-C boxed expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
}
/// \brief Build a new Objective-C array literal.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCArrayLiteral(SourceRange Range,
Expr **Elements, unsigned NumElements) {
return getSema().BuildObjCArrayLiteral(Range,
MultiExprArg(Elements, NumElements));
}
ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
Expr *Base, Expr *Key,
ObjCMethodDecl *getterMethod,
ObjCMethodDecl *setterMethod) {
return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
getterMethod, setterMethod);
}
/// \brief Build a new Objective-C dictionary literal.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
ObjCDictionaryElement *Elements,
unsigned NumElements) {
return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements);
}
/// \brief Build a new Objective-C \@encode expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
TypeSourceInfo *EncodeTypeInfo,
SourceLocation RParenLoc) {
return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo,
RParenLoc));
}
/// \brief Build a new Objective-C class message.
ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return SemaRef.BuildClassMessage(ReceiverTypeInfo,
ReceiverTypeInfo->getType(),
/*SuperLoc=*/SourceLocation(),
Sel, Method, LBracLoc, SelectorLocs,
RBracLoc, Args);
}
/// \brief Build a new Objective-C instance message.
ExprResult RebuildObjCMessageExpr(Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return SemaRef.BuildInstanceMessage(Receiver,
Receiver->getType(),
/*SuperLoc=*/SourceLocation(),
Sel, Method, LBracLoc, SelectorLocs,
RBracLoc, Args);
}
/// \brief Build a new Objective-C ivar reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
SourceLocation IvarLoc,
bool IsArrow, bool IsFreeIvar) {
// FIXME: We lose track of the IsFreeIvar bit.
CXXScopeSpec SS;
ExprResult Base = getSema().Owned(BaseArg);
LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc,
Sema::LookupMemberName);
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
/*FIME:*/IvarLoc,
SS, 0,
false);
if (Result.isInvalid() || Base.isInvalid())
return ExprError();
if (Result.get())
return Result;
return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
/*FIXME:*/IvarLoc, IsArrow,
SS, SourceLocation(),
/*FirstQualifierInScope=*/0,
R,
/*TemplateArgs=*/0);
}
/// \brief Build a new Objective-C property reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
ObjCPropertyDecl *Property,
SourceLocation PropertyLoc) {
CXXScopeSpec SS;
ExprResult Base = getSema().Owned(BaseArg);
LookupResult R(getSema(), Property->getDeclName(), PropertyLoc,
Sema::LookupMemberName);
bool IsArrow = false;
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
/*FIME:*/PropertyLoc,
SS, 0, false);
if (Result.isInvalid() || Base.isInvalid())
return ExprError();
if (Result.get())
return Result;
return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
/*FIXME:*/PropertyLoc, IsArrow,
SS, SourceLocation(),
/*FirstQualifierInScope=*/0,
R,
/*TemplateArgs=*/0);
}
/// \brief Build a new Objective-C property reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
ObjCMethodDecl *Getter,
ObjCMethodDecl *Setter,
SourceLocation PropertyLoc) {
// Since these expressions can only be value-dependent, we do not
// need to perform semantic analysis again.
return Owned(
new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
VK_LValue, OK_ObjCProperty,
PropertyLoc, Base));
}
/// \brief Build a new Objective-C "isa" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
SourceLocation OpLoc,
bool IsArrow) {
CXXScopeSpec SS;
ExprResult Base = getSema().Owned(BaseArg);
LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc,
Sema::LookupMemberName);
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
OpLoc,
SS, 0, false);
if (Result.isInvalid() || Base.isInvalid())
return ExprError();
if (Result.get())
return Result;
return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
OpLoc, IsArrow,
SS, SourceLocation(),
/*FirstQualifierInScope=*/0,
R,
/*TemplateArgs=*/0);
}
/// \brief Build a new shuffle vector expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
MultiExprArg SubExprs,
SourceLocation RParenLoc) {
// Find the declaration for __builtin_shufflevector
const IdentifierInfo &Name
= SemaRef.Context.Idents.get("__builtin_shufflevector");
TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
assert(!Lookup.empty() && "No __builtin_shufflevector?");
// Build a reference to the __builtin_shufflevector builtin
FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false,
SemaRef.Context.BuiltinFnTy,
VK_RValue, BuiltinLoc);
QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
CK_BuiltinFnToFnPtr).take();
// Build the CallExpr
ExprResult TheCall = SemaRef.Owned(
new (SemaRef.Context) CallExpr(SemaRef.Context, Callee, SubExprs,
Builtin->getCallResultType(),
Expr::getValueKindForType(Builtin->getResultType()),
RParenLoc));
// Type-check the __builtin_shufflevector expression.
return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.take()));
}
/// \brief Build a new template argument pack expansion.
///
/// By default, performs semantic analysis to build a new pack expansion
/// for a template argument. Subclasses may override this routine to provide
/// different behavior.
TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions) {
switch (Pattern.getArgument().getKind()) {
case TemplateArgument::Expression: {
ExprResult Result
= getSema().CheckPackExpansion(Pattern.getSourceExpression(),
EllipsisLoc, NumExpansions);
if (Result.isInvalid())
return TemplateArgumentLoc();
return TemplateArgumentLoc(Result.get(), Result.get());
}
case TemplateArgument::Template:
return TemplateArgumentLoc(TemplateArgument(
Pattern.getArgument().getAsTemplate(),
NumExpansions),
Pattern.getTemplateQualifierLoc(),
Pattern.getTemplateNameLoc(),
EllipsisLoc);
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::Pack:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::NullPtr:
llvm_unreachable("Pack expansion pattern has no parameter packs");
case TemplateArgument::Type:
if (TypeSourceInfo *Expansion
= getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
EllipsisLoc,
NumExpansions))
return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
Expansion);
break;
}
return TemplateArgumentLoc();
}
/// \brief Build a new expression pack expansion.
///
/// By default, performs semantic analysis to build a new pack expansion
/// for an expression. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions) {
return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
}
/// \brief Build a new atomic operation expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc,
MultiExprArg SubExprs,
QualType RetTy,
AtomicExpr::AtomicOp Op,
SourceLocation RParenLoc) {
// Just create the expression; there is not any interesting semantic
// analysis here because we can't actually build an AtomicExpr until
// we are sure it is semantically sound.
return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op,
RParenLoc);
}
private:
TypeLoc TransformTypeInObjectScope(TypeLoc TL,
QualType ObjectType,
NamedDecl *FirstQualifierInScope,
CXXScopeSpec &SS);
TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
QualType ObjectType,
NamedDecl *FirstQualifierInScope,
CXXScopeSpec &SS);
};
template<typename Derived>
StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
if (!S)
return SemaRef.Owned(S);
switch (S->getStmtClass()) {
case Stmt::NoStmtClass: break;
// Transform individual statement nodes
#define STMT(Node, Parent) \
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
#define ABSTRACT_STMT(Node)
#define EXPR(Node, Parent)
#include "clang/AST/StmtNodes.inc"
// Transform expressions by calling TransformExpr.
#define STMT(Node, Parent)
#define ABSTRACT_STMT(Stmt)
#define EXPR(Node, Parent) case Stmt::Node##Class:
#include "clang/AST/StmtNodes.inc"
{
ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
if (E.isInvalid())
return StmtError();
return getSema().ActOnExprStmt(E);
}
}
return SemaRef.Owned(S);
}
template<typename Derived>
ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
if (!E)
return SemaRef.Owned(E);
switch (E->getStmtClass()) {
case Stmt::NoStmtClass: break;
#define STMT(Node, Parent) case Stmt::Node##Class: break;
#define ABSTRACT_STMT(Stmt)
#define EXPR(Node, Parent) \
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
#include "clang/AST/StmtNodes.inc"
}
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
bool CXXDirectInit) {
// Initializers are instantiated like expressions, except that various outer
// layers are stripped.
if (!Init)
return SemaRef.Owned(Init);
if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
Init = ExprTemp->getSubExpr();
while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
Init = Binder->getSubExpr();
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
Init = ICE->getSubExprAsWritten();
// If this is not a direct-initializer, we only need to reconstruct
// InitListExprs. Other forms of copy-initialization will be a no-op if
// the initializer is already the right type.
CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
if (!CXXDirectInit && !(Construct && Construct->isListInitialization()))
return getDerived().TransformExpr(Init);
// Revert value-initialization back to empty parens.
if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
SourceRange Parens = VIE->getSourceRange();
return getDerived().RebuildParenListExpr(Parens.getBegin(), MultiExprArg(),
Parens.getEnd());
}
// FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
if (isa<ImplicitValueInitExpr>(Init))
return getDerived().RebuildParenListExpr(SourceLocation(), MultiExprArg(),
SourceLocation());
// Revert initialization by constructor back to a parenthesized or braced list
// of expressions. Any other form of initializer can just be reused directly.
if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
return getDerived().TransformExpr(Init);
SmallVector<Expr*, 8> NewArgs;
bool ArgChanged = false;
if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
/*IsCall*/true, NewArgs, &ArgChanged))
return ExprError();
// If this was list initialization, revert to list form.
if (Construct->isListInitialization())
return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs,
Construct->getLocEnd(),
Construct->getType());
// Build a ParenListExpr to represent anything else.
SourceRange Parens = Construct->getParenRange();
return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
Parens.getEnd());
}
template<typename Derived>
bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
unsigned NumInputs,
bool IsCall,
SmallVectorImpl<Expr *> &Outputs,
bool *ArgChanged) {
for (unsigned I = 0; I != NumInputs; ++I) {
// If requested, drop call arguments that need to be dropped.
if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
if (ArgChanged)
*ArgChanged = true;
break;
}
if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
Expr *Pattern = Expansion->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
Optional<unsigned> NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
Pattern->getSourceRange(),
Unexpanded,
Expand, RetainExpansion,
NumExpansions))
return true;
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
ExprResult OutPattern = getDerived().TransformExpr(Pattern);
if (OutPattern.isInvalid())
return true;
ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
Expansion->getEllipsisLoc(),
NumExpansions);
if (Out.isInvalid())
return true;
if (ArgChanged)
*ArgChanged = true;
Outputs.push_back(Out.get());
continue;
}
// Record right away that the argument was changed. This needs
// to happen even if the array expands to nothing.
if (ArgChanged) *ArgChanged = true;
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
if (Out.get()->containsUnexpandedParameterPack()) {
Out = RebuildPackExpansion(Out.get(), Expansion->getEllipsisLoc(),
OrigNumExpansions);
if (Out.isInvalid())
return true;
}
Outputs.push_back(Out.get());
}
continue;
}
ExprResult Result =
IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
: getDerived().TransformExpr(Inputs[I]);
if (Result.isInvalid())
return true;
if (Result.get() != Inputs[I] && ArgChanged)
*ArgChanged = true;
Outputs.push_back(Result.get());
}
return false;
}
template<typename Derived>
NestedNameSpecifierLoc
TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS,
QualType ObjectType,
NamedDecl *FirstQualifierInScope) {
SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
Qualifier = Qualifier.getPrefix())
Qualifiers.push_back(Qualifier);
CXXScopeSpec SS;
while (!Qualifiers.empty()) {
NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
switch (QNNS->getKind()) {
case NestedNameSpecifier::Identifier:
if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/0,
*QNNS->getAsIdentifier(),
Q.getLocalBeginLoc(),
Q.getLocalEndLoc(),
ObjectType, false, SS,
FirstQualifierInScope, false))
return NestedNameSpecifierLoc();
break;
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS
= cast_or_null<NamespaceDecl>(
getDerived().TransformDecl(
Q.getLocalBeginLoc(),
QNNS->getAsNamespace()));
SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias
= cast_or_null<NamespaceAliasDecl>(
getDerived().TransformDecl(Q.getLocalBeginLoc(),
QNNS->getAsNamespaceAlias()));
SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
Q.getLocalEndLoc());
break;
}
case NestedNameSpecifier::Global:
// There is no meaningful transformation that one could perform on the
// global scope.
SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
break;
case NestedNameSpecifier::TypeSpecWithTemplate:
case NestedNameSpecifier::TypeSpec: {
TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
FirstQualifierInScope, SS);
if (!TL)
return NestedNameSpecifierLoc();
if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
(SemaRef.getLangOpts().CPlusPlus11 &&
TL.getType()->isEnumeralType())) {
assert(!TL.getType().hasLocalQualifiers() &&
"Can't get cv-qualifiers here");
if (TL.getType()->isEnumeralType())
SemaRef.Diag(TL.getBeginLoc(),
diag::warn_cxx98_compat_enum_nested_name_spec);
SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
Q.getLocalEndLoc());
break;
}
// If the nested-name-specifier is an invalid type def, don't emit an
// error because a previous error should have already been emitted.
TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
<< TL.getType() << SS.getRange();
}
return NestedNameSpecifierLoc();
}
}
// The qualifier-in-scope and object type only apply to the leftmost entity.
FirstQualifierInScope = 0;
ObjectType = QualType();
}
// Don't rebuild the nested-name-specifier if we don't have to.
if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
!getDerived().AlwaysRebuild())
return NNS;
// If we can re-use the source-location data from the original
// nested-name-specifier, do so.
if (SS.location_size() == NNS.getDataLength() &&
memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
// Allocate new nested-name-specifier location information.
return SS.getWithLocInContext(SemaRef.Context);
}
template<typename Derived>
DeclarationNameInfo
TreeTransform<Derived>
::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
DeclarationName Name = NameInfo.getName();
if (!Name)
return DeclarationNameInfo();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
return NameInfo;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName: {
TypeSourceInfo *NewTInfo;
CanQualType NewCanTy;
if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
NewTInfo = getDerived().TransformType(OldTInfo);
if (!NewTInfo)
return DeclarationNameInfo();
NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
}
else {
NewTInfo = 0;
TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
QualType NewT = getDerived().TransformType(Name.getCXXNameType());
if (NewT.isNull())
return DeclarationNameInfo();
NewCanTy = SemaRef.Context.getCanonicalType(NewT);
}
DeclarationName NewName
= SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
NewCanTy);
DeclarationNameInfo NewNameInfo(NameInfo);
NewNameInfo.setName(NewName);
NewNameInfo.setNamedTypeInfo(NewTInfo);
return NewNameInfo;
}
}
llvm_unreachable("Unknown name kind.");
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
TemplateName Name,
SourceLocation NameLoc,
QualType ObjectType,
NamedDecl *FirstQualifierInScope) {
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
TemplateDecl *Template = QTN->getTemplateDecl();
assert(Template && "qualified template name must refer to a template");
TemplateDecl *TransTemplate
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
Template));
if (!TransTemplate)
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
SS.getScopeRep() == QTN->getQualifier() &&
TransTemplate == Template)
return Name;
return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
TransTemplate);
}
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
if (SS.getScopeRep()) {
// These apply to the scope specifier, not the template.
ObjectType = QualType();
FirstQualifierInScope = 0;
}
if (!getDerived().AlwaysRebuild() &&
SS.getScopeRep() == DTN->getQualifier() &&
ObjectType.isNull())
return Name;
if (DTN->isIdentifier()) {
return getDerived().RebuildTemplateName(SS,
*DTN->getIdentifier(),
NameLoc,
ObjectType,
FirstQualifierInScope);
}
return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
ObjectType);
}
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
TemplateDecl *TransTemplate
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
Template));
if (!TransTemplate)
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
TransTemplate == Template)
return Name;
return TemplateName(TransTemplate);
}
if (SubstTemplateTemplateParmPackStorage *SubstPack
= Name.getAsSubstTemplateTemplateParmPack()) {
TemplateTemplateParmDecl *TransParam
= cast_or_null<TemplateTemplateParmDecl>(
getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
if (!TransParam)
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
TransParam == SubstPack->getParameterPack())
return Name;
return getDerived().RebuildTemplateName(TransParam,
SubstPack->getArgumentPack());
}
// These should be getting filtered out before they reach the AST.
llvm_unreachable("overloaded function decl survived to here");
}
template<typename Derived>
void TreeTransform<Derived>::InventTemplateArgumentLoc(
const TemplateArgument &Arg,
TemplateArgumentLoc &Output) {
SourceLocation Loc = getDerived().getBaseLocation();
switch (Arg.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("null template argument in TreeTransform");
break;
case TemplateArgument::Type:
Output = TemplateArgumentLoc(Arg,
SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
break;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion: {
NestedNameSpecifierLocBuilder Builder;
TemplateName Template = Arg.getAsTemplate();
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
if (Arg.getKind() == TemplateArgument::Template)
Output = TemplateArgumentLoc(Arg,
Builder.getWithLocInContext(SemaRef.Context),
Loc);
else
Output = TemplateArgumentLoc(Arg,
Builder.getWithLocInContext(SemaRef.Context),
Loc, Loc);
break;
}
case TemplateArgument::Expression:
Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
break;
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::Pack:
case TemplateArgument::NullPtr:
Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
break;
}
}
template<typename Derived>
bool TreeTransform<Derived>::TransformTemplateArgument(
const TemplateArgumentLoc &Input,
TemplateArgumentLoc &Output) {
const TemplateArgument &Arg = Input.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Pack:
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
llvm_unreachable("Unexpected TemplateArgument");
case TemplateArgument::Type: {
TypeSourceInfo *DI = Input.getTypeSourceInfo();
if (DI == NULL)
DI = InventTypeSourceInfo(Input.getArgument().getAsType());
DI = getDerived().TransformType(DI);
if (!DI) return true;
Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
return false;
}
case TemplateArgument::Template: {
NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
if (QualifierLoc) {
QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
if (!QualifierLoc)
return true;
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
TemplateName Template
= getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
Input.getTemplateNameLoc());
if (Template.isNull())
return true;
Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
Input.getTemplateNameLoc());
return false;
}
case TemplateArgument::TemplateExpansion:
llvm_unreachable("Caller should expand pack expansions");
case TemplateArgument::Expression: {
// Template argument expressions are constant expressions.
EnterExpressionEvaluationContext Unevaluated(getSema(),
Sema::ConstantEvaluated);
Expr *InputExpr = Input.getSourceExpression();
if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
ExprResult E = getDerived().TransformExpr(InputExpr);
E = SemaRef.ActOnConstantExpression(E);
if (E.isInvalid()) return true;
Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take());
return false;
}
}
// Work around bogus GCC warning
return true;
}
/// \brief Iterator adaptor that invents template argument location information
/// for each of the template arguments in its underlying iterator.
template<typename Derived, typename InputIterator>
class TemplateArgumentLocInventIterator {
TreeTransform<Derived> &Self;
InputIterator Iter;
public:
typedef TemplateArgumentLoc value_type;
typedef TemplateArgumentLoc reference;
typedef typename std::iterator_traits<InputIterator>::difference_type
difference_type;
typedef std::input_iterator_tag iterator_category;
class pointer {
TemplateArgumentLoc Arg;
public:
explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
const TemplateArgumentLoc *operator->() const { return &Arg; }
};
TemplateArgumentLocInventIterator() { }
explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
InputIterator Iter)
: Self(Self), Iter(Iter) { }
TemplateArgumentLocInventIterator &operator++() {
++Iter;
return *this;
}
TemplateArgumentLocInventIterator operator++(int) {
TemplateArgumentLocInventIterator Old(*this);
++(*this);
return Old;
}
reference operator*() const {
TemplateArgumentLoc Result;
Self.InventTemplateArgumentLoc(*Iter, Result);
return Result;
}
pointer operator->() const { return pointer(**this); }
friend bool operator==(const TemplateArgumentLocInventIterator &X,
const TemplateArgumentLocInventIterator &Y) {
return X.Iter == Y.Iter;
}
friend bool operator!=(const TemplateArgumentLocInventIterator &X,
const TemplateArgumentLocInventIterator &Y) {
return X.Iter != Y.Iter;
}
};
template<typename Derived>
template<typename InputIterator>
bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
InputIterator Last,
TemplateArgumentListInfo &Outputs) {
for (; First != Last; ++First) {
TemplateArgumentLoc Out;
TemplateArgumentLoc In = *First;
if (In.getArgument().getKind() == TemplateArgument::Pack) {
// Unpack argument packs, which we translate them into separate
// arguments.
// FIXME: We could do much better if we could guarantee that the
// TemplateArgumentLocInfo for the pack expansion would be usable for
// all of the template arguments in the argument pack.
typedef TemplateArgumentLocInventIterator<Derived,
TemplateArgument::pack_iterator>
PackLocIterator;
if (TransformTemplateArguments(PackLocIterator(*this,
In.getArgument().pack_begin()),
PackLocIterator(*this,
In.getArgument().pack_end()),
Outputs))
return true;
continue;
}
if (In.getArgument().isPackExpansion()) {
// We have a pack expansion, for which we will be substituting into
// the pattern.
SourceLocation Ellipsis;
Optional<unsigned> OrigNumExpansions;
TemplateArgumentLoc Pattern
= In.getPackExpansionPattern(Ellipsis, OrigNumExpansions,
getSema().Context);
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
Optional<unsigned> NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(Ellipsis,
Pattern.getSourceRange(),
Unexpanded,
Expand,
RetainExpansion,
NumExpansions))
return true;
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
TemplateArgumentLoc OutPattern;
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
return true;
Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
NumExpansions);
if (Out.getArgument().isNull())
return true;
Outputs.addArgument(Out);
continue;
}
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
if (getDerived().TransformTemplateArgument(Pattern, Out))
return true;
if (Out.getArgument().containsUnexpandedParameterPack()) {
Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
OrigNumExpansions);
if (Out.getArgument().isNull())
return true;
}
Outputs.addArgument(Out);
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
if (getDerived().TransformTemplateArgument(Pattern, Out))
return true;
Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
OrigNumExpansions);
if (Out.getArgument().isNull())
return true;
Outputs.addArgument(Out);
}
continue;
}
// The simple case:
if (getDerived().TransformTemplateArgument(In, Out))
return true;
Outputs.addArgument(Out);
}
return false;
}
//===----------------------------------------------------------------------===//
// Type transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
QualType TreeTransform<Derived>::TransformType(QualType T) {
if (getDerived().AlreadyTransformed(T))
return T;
// Temporary workaround. All of these transformations should
// eventually turn into transformations on TypeLocs.
TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
getDerived().getBaseLocation());
TypeSourceInfo *NewDI = getDerived().TransformType(DI);
if (!NewDI)
return QualType();
return NewDI->getType();
}
template<typename Derived>
TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
// Refine the base location to the type's location.
TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
getDerived().getBaseEntity());
if (getDerived().AlreadyTransformed(DI->getType()))
return DI;
TypeLocBuilder TLB;
TypeLoc TL = DI->getTypeLoc();
TLB.reserve(TL.getFullDataSize());
QualType Result = getDerived().TransformType(TLB, TL);
if (Result.isNull())
return 0;
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
switch (T.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
case TypeLoc::CLASS: \
return getDerived().Transform##CLASS##Type(TLB, \
T.castAs<CLASS##TypeLoc>());
#include "clang/AST/TypeLocNodes.def"
}
llvm_unreachable("unhandled type loc!");
}
/// FIXME: By default, this routine adds type qualifiers only to types
/// that can have qualifiers, and silently suppresses those qualifiers
/// that are not permitted (e.g., qualifiers on reference or function
/// types). This is the right thing for template instantiation, but
/// probably not for other clients.
template<typename Derived>
QualType
TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
QualifiedTypeLoc T) {
Qualifiers Quals = T.getType().getLocalQualifiers();
QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
if (Result.isNull())
return QualType();
// Silently suppress qualifiers if the result type can't be qualified.
// FIXME: this is the right thing for template instantiation, but
// probably not for other clients.
if (Result->isFunctionType() || Result->isReferenceType())
return Result;
// Suppress Objective-C lifetime qualifiers if they don't make sense for the
// resulting type.
if (Quals.hasObjCLifetime()) {
if (!Result->isObjCLifetimeType() && !Result->isDependentType())
Quals.removeObjCLifetime();
else if (Result.getObjCLifetime()) {
// Objective-C ARC:
// A lifetime qualifier applied to a substituted template parameter
// overrides the lifetime qualifier from the template argument.
const AutoType *AutoTy;
if (const SubstTemplateTypeParmType *SubstTypeParam
= dyn_cast<SubstTemplateTypeParmType>(Result)) {
QualType Replacement = SubstTypeParam->getReplacementType();
Qualifiers Qs = Replacement.getQualifiers();
Qs.removeObjCLifetime();
Replacement
= SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
Qs);
Result = SemaRef.Context.getSubstTemplateTypeParmType(
SubstTypeParam->getReplacedParameter(),
Replacement);
TLB.TypeWasModifiedSafely(Result);
} else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) {
// 'auto' types behave the same way as template parameters.
QualType Deduced = AutoTy->getDeducedType();
Qualifiers Qs = Deduced.getQualifiers();
Qs.removeObjCLifetime();
Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
Qs);
Result = SemaRef.Context.getAutoType(Deduced);
TLB.TypeWasModifiedSafely(Result);
} else {
// Otherwise, complain about the addition of a qualifier to an
// already-qualified type.
SourceRange R = TLB.getTemporaryTypeLoc(Result).getSourceRange();
SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
<< Result << R;
Quals.removeObjCLifetime();
}
}
}
if (!Quals.empty()) {
Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
// BuildQualifiedType might not add qualifiers if they are invalid.
if (Result.hasLocalQualifiers())
TLB.push<QualifiedTypeLoc>(Result);
// No location information to preserve.
}
return Result;
}
template<typename Derived>
TypeLoc
TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
QualType ObjectType,
NamedDecl *UnqualLookup,
CXXScopeSpec &SS) {
QualType T = TL.getType();
if (getDerived().AlreadyTransformed(T))
return TL;
TypeLocBuilder TLB;
QualType Result;
if (isa<TemplateSpecializationType>(T)) {
TemplateSpecializationTypeLoc SpecTL =
TL.castAs<TemplateSpecializationTypeLoc>();
TemplateName Template =
getDerived().TransformTemplateName(SS,
SpecTL.getTypePtr()->getTemplateName(),
SpecTL.getTemplateNameLoc(),
ObjectType, UnqualLookup);
if (Template.isNull())
return TypeLoc();
Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
Template);
} else if (isa<DependentTemplateSpecializationType>(T)) {
DependentTemplateSpecializationTypeLoc SpecTL =
TL.castAs<DependentTemplateSpecializationTypeLoc>();
TemplateName Template
= getDerived().RebuildTemplateName(SS,
*SpecTL.getTypePtr()->getIdentifier(),
SpecTL.getTemplateNameLoc(),
ObjectType, UnqualLookup);
if (Template.isNull())
return TypeLoc();
Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
SpecTL,
Template,
SS);
} else {
// Nothing special needs to be done for these.
Result = getDerived().TransformType(TLB, TL);
}
if (Result.isNull())
return TypeLoc();
return TLB.getTypeSourceInfo(SemaRef.Context, Result)->getTypeLoc();
}
template<typename Derived>
TypeSourceInfo *
TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
QualType ObjectType,
NamedDecl *UnqualLookup,
CXXScopeSpec &SS) {
// FIXME: Painfully copy-paste from the above!
QualType T = TSInfo->getType();
if (getDerived().AlreadyTransformed(T))
return TSInfo;
TypeLocBuilder TLB;
QualType Result;
TypeLoc TL = TSInfo->getTypeLoc();
if (isa<TemplateSpecializationType>(T)) {
TemplateSpecializationTypeLoc SpecTL =
TL.castAs<TemplateSpecializationTypeLoc>();
TemplateName Template
= getDerived().TransformTemplateName(SS,
SpecTL.getTypePtr()->getTemplateName(),
SpecTL.getTemplateNameLoc(),
ObjectType, UnqualLookup);
if (Template.isNull())
return 0;
Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
Template);
} else if (isa<DependentTemplateSpecializationType>(T)) {
DependentTemplateSpecializationTypeLoc SpecTL =
TL.castAs<DependentTemplateSpecializationTypeLoc>();
TemplateName Template
= getDerived().RebuildTemplateName(SS,
*SpecTL.getTypePtr()->getIdentifier(),
SpecTL.getTemplateNameLoc(),
ObjectType, UnqualLookup);
if (Template.isNull())
return 0;
Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
SpecTL,
Template,
SS);
} else {
// Nothing special needs to be done for these.
Result = getDerived().TransformType(TLB, TL);
}
if (Result.isNull())
return 0;
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
}
template <class TyLoc> static inline
QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
TyLoc NewT = TLB.push<TyLoc>(T.getType());
NewT.setNameLoc(T.getNameLoc());
return T.getType();
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
BuiltinTypeLoc T) {
BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
NewT.setBuiltinLoc(T.getBuiltinLoc());
if (T.needsExtraLocalData())
NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
return T.getType();
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
ComplexTypeLoc T) {
// FIXME: recurse?
return TransformTypeSpecType(TLB, T);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
PointerTypeLoc TL) {
QualType PointeeType
= getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (PointeeType->getAs<ObjCObjectType>()) {
// A dependent pointer type 'T *' has is being transformed such
// that an Objective-C class type is being replaced for 'T'. The
// resulting pointer type is an ObjCObjectPointerType, not a
// PointerType.
Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
NewT.setStarLoc(TL.getStarLoc());
return Result;
}
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
// Objective-C ARC can add lifetime qualifiers to the type that we're
// pointing to.
TLB.TypeWasModifiedSafely(Result->getPointeeType());
PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
NewT.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
BlockPointerTypeLoc TL) {
QualType PointeeType
= getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildBlockPointerType(PointeeType,
TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
NewT.setSigilLoc(TL.getSigilLoc());
return Result;
}
/// Transforms a reference type. Note that somewhat paradoxically we
/// don't care whether the type itself is an l-value type or an r-value
/// type; we only care if the type was *written* as an l-value type
/// or an r-value type.
template<typename Derived>
QualType
TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
ReferenceTypeLoc TL) {
const ReferenceType *T = TL.getTypePtr();
// Note that this works with the pointee-as-written.
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != T->getPointeeTypeAsWritten()) {
Result = getDerived().RebuildReferenceType(PointeeType,
T->isSpelledAsLValue(),
TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
// Objective-C ARC can add lifetime qualifiers to the type that we're
// referring to.
TLB.TypeWasModifiedSafely(
Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
// r-value references can be rebuilt as l-value references.
ReferenceTypeLoc NewTL;
if (isa<LValueReferenceType>(Result))
NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
else
NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
NewTL.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
LValueReferenceTypeLoc TL) {
return TransformReferenceType(TLB, TL);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
RValueReferenceTypeLoc TL) {
return TransformReferenceType(TLB, TL);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
MemberPointerTypeLoc TL) {
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
TypeSourceInfo* NewClsTInfo = 0;
if (OldClsTInfo) {
NewClsTInfo = getDerived().TransformType(OldClsTInfo);
if (!NewClsTInfo)
return QualType();
}
const MemberPointerType *T = TL.getTypePtr();
QualType OldClsType = QualType(T->getClass(), 0);
QualType NewClsType;
if (NewClsTInfo)
NewClsType = NewClsTInfo->getType();
else {
NewClsType = getDerived().TransformType(OldClsType);
if (NewClsType.isNull())
return QualType();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != T->getPointeeType() ||
NewClsType != OldClsType) {
Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
TL.getStarLoc());
if (Result.isNull())
return QualType();
}
MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
NewTL.setSigilLoc(TL.getSigilLoc());
NewTL.setClassTInfo(NewClsTInfo);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
ConstantArrayTypeLoc TL) {
const ConstantArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildConstantArrayType(ElementType,
T->getSizeModifier(),
T->getSize(),
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
// We might have either a ConstantArrayType or a VariableArrayType now:
// a ConstantArrayType is allowed to have an element type which is a
// VariableArrayType if the type is dependent. Fortunately, all array
// types have the same location layout.
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
Expr *Size = TL.getSizeExpr();
if (Size) {
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Sema::ConstantEvaluated);
Size = getDerived().TransformExpr(Size).template takeAs<Expr>();
Size = SemaRef.ActOnConstantExpression(Size).take();
}
NewTL.setSizeExpr(Size);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformIncompleteArrayType(
TypeLocBuilder &TLB,
IncompleteArrayTypeLoc TL) {
const IncompleteArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildIncompleteArrayType(ElementType,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(0);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
VariableArrayTypeLoc TL) {
const VariableArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
ExprResult SizeResult
= getDerived().TransformExpr(T->getSizeExpr());
if (SizeResult.isInvalid())
return QualType();
Expr *Size = SizeResult.take();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size != T->getSizeExpr()) {
Result = getDerived().RebuildVariableArrayType(ElementType,
T->getSizeModifier(),
Size,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(Size);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
DependentSizedArrayTypeLoc TL) {
const DependentSizedArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
// Array bounds are constant expressions.
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Sema::ConstantEvaluated);
// Prefer the expression from the TypeLoc; the other may have been uniqued.
Expr *origSize = TL.getSizeExpr();
if (!origSize) origSize = T->getSizeExpr();
ExprResult sizeResult
= getDerived().TransformExpr(origSize);
sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
if (sizeResult.isInvalid())
return QualType();
Expr *size = sizeResult.get();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
size != origSize) {
Result = getDerived().RebuildDependentSizedArrayType(ElementType,
T->getSizeModifier(),
size,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
// We might have any sort of array type now, but fortunately they
// all have the same location layout.
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(size);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
TypeLocBuilder &TLB,
DependentSizedExtVectorTypeLoc TL) {
const DependentSizedExtVectorType *T = TL.getTypePtr();
// FIXME: ext vector locs should be nested
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
// Vector sizes are constant expressions.
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Sema::ConstantEvaluated);
ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
Size = SemaRef.ActOnConstantExpression(Size);
if (Size.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size.get() != T->getSizeExpr()) {
Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
Size.take(),
T->getAttributeLoc());
if (Result.isNull())
return QualType();
}
// Result might be dependent or not.
if (isa<DependentSizedExtVectorType>(Result)) {
DependentSizedExtVectorTypeLoc NewTL
= TLB.push<DependentSizedExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
} else {
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
VectorTypeLoc TL) {
const VectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
T->getVectorKind());
if (Result.isNull())
return QualType();
}
VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
ExtVectorTypeLoc TL) {
const VectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildExtVectorType(ElementType,
T->getNumElements(),
/*FIXME*/ SourceLocation());
if (Result.isNull())
return QualType();
}
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template <typename Derived>
ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
bool ExpectParameterPack) {
TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
TypeSourceInfo *NewDI = 0;
if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
// If we're substituting into a pack expansion type and we know the
// length we want to expand to, just substitute for the pattern.
TypeLoc OldTL = OldDI->getTypeLoc();
PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
TypeLocBuilder TLB;
TypeLoc NewTL = OldDI->getTypeLoc();
TLB.reserve(NewTL.getFullDataSize());
QualType Result = getDerived().TransformType(TLB,
OldExpansionTL.getPatternLoc());
if (Result.isNull())
return 0;
Result = RebuildPackExpansionType(Result,
OldExpansionTL.getPatternLoc().getSourceRange(),
OldExpansionTL.getEllipsisLoc(),
NumExpansions);
if (Result.isNull())
return 0;
PackExpansionTypeLoc NewExpansionTL
= TLB.push<PackExpansionTypeLoc>(Result);
NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
} else
NewDI = getDerived().TransformType(OldDI);
if (!NewDI)
return 0;
if (NewDI == OldDI && indexAdjustment == 0)
return OldParm;
ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
OldParm->getDeclContext(),
OldParm->getInnerLocStart(),
OldParm->getLocation(),
OldParm->getIdentifier(),
NewDI->getType(),
NewDI,
OldParm->getStorageClass(),
/* DefArg */ NULL);
newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
OldParm->getFunctionScopeIndex() + indexAdjustment);
return newParm;
}
template<typename Derived>
bool TreeTransform<Derived>::
TransformFunctionTypeParams(SourceLocation Loc,
ParmVarDecl **Params, unsigned NumParams,
const QualType *ParamTypes,
SmallVectorImpl<QualType> &OutParamTypes,
SmallVectorImpl<ParmVarDecl*> *PVars) {
int indexAdjustment = 0;
for (unsigned i = 0; i != NumParams; ++i) {
if (ParmVarDecl *OldParm = Params[i]) {
assert(OldParm->getFunctionScopeIndex() == i);
Optional<unsigned> NumExpansions;
ParmVarDecl *NewParm = 0;
if (OldParm->isParameterPack()) {
// We have a function parameter pack that may need to be expanded.
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
// Find the parameter packs that could be expanded.
TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
TypeLoc Pattern = ExpansionTL.getPatternLoc();
SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
// Determine whether we should expand the parameter packs.
bool ShouldExpand = false;
bool RetainExpansion = false;
Optional<unsigned> OrigNumExpansions =
ExpansionTL.getTypePtr()->getNumExpansions();
NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
Pattern.getSourceRange(),
Unexpanded,
ShouldExpand,
RetainExpansion,
NumExpansions)) {
return true;
}
if (ShouldExpand) {
// Expand the function parameter pack into multiple, separate
// parameters.
getDerived().ExpandingFunctionParameterPack(OldParm);
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
ParmVarDecl *NewParm
= getDerived().TransformFunctionTypeParam(OldParm,
indexAdjustment++,
OrigNumExpansions,
/*ExpectParameterPack=*/false);
if (!NewParm)
return true;
OutParamTypes.push_back(NewParm->getType());
if (PVars)
PVars->push_back(NewParm);
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
ParmVarDecl *NewParm
= getDerived().TransformFunctionTypeParam(OldParm,
indexAdjustment++,
OrigNumExpansions,
/*ExpectParameterPack=*/false);
if (!NewParm)
return true;
OutParamTypes.push_back(NewParm->getType());
if (PVars)
PVars->push_back(NewParm);
}
// The next parameter should have the same adjustment as the
// last thing we pushed, but we post-incremented indexAdjustment
// on every push. Also, if we push nothing, the adjustment should
// go down by one.
indexAdjustment--;
// We're done with the pack expansion.
continue;
}
// We'll substitute the parameter now without expanding the pack
// expansion.
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
NewParm = getDerived().TransformFunctionTypeParam(OldParm,
indexAdjustment,
NumExpansions,
/*ExpectParameterPack=*/true);
} else {
NewParm = getDerived().TransformFunctionTypeParam(
OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
}
if (!NewParm)
return true;
OutParamTypes.push_back(NewParm->getType());
if (PVars)
PVars->push_back(NewParm);
continue;
}
// Deal with the possibility that we don't have a parameter
// declaration for this parameter.
QualType OldType = ParamTypes[i];
bool IsPackExpansion = false;
Optional<unsigned> NumExpansions;
QualType NewType;
if (const PackExpansionType *Expansion
= dyn_cast<PackExpansionType>(OldType)) {
// We have a function parameter pack that may need to be expanded.
QualType Pattern = Expansion->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
// Determine whether we should expand the parameter packs.
bool ShouldExpand = false;
bool RetainExpansion = false;
if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
Unexpanded,
ShouldExpand,
RetainExpansion,
NumExpansions)) {
return true;
}
if (ShouldExpand) {
// Expand the function parameter pack into multiple, separate
// parameters.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
QualType NewType = getDerived().TransformType(Pattern);
if (NewType.isNull())
return true;
OutParamTypes.push_back(NewType);
if (PVars)
PVars->push_back(0);
}
// We're done with the pack expansion.
continue;
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
QualType NewType = getDerived().TransformType(Pattern);
if (NewType.isNull())
return true;
OutParamTypes.push_back(NewType);
if (PVars)
PVars->push_back(0);
}
// We'll substitute the parameter now without expanding the pack
// expansion.
OldType = Expansion->getPattern();
IsPackExpansion = true;
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
NewType = getDerived().TransformType(OldType);
} else {
NewType = getDerived().TransformType(OldType);
}
if (NewType.isNull())
return true;
if (IsPackExpansion)
NewType = getSema().Context.getPackExpansionType(NewType,
NumExpansions);
OutParamTypes.push_back(NewType);
if (PVars)
PVars->push_back(0);
}
#ifndef NDEBUG
if (PVars) {
for (unsigned i = 0, e = PVars->size(); i != e; ++i)
if (ParmVarDecl *parm = (*PVars)[i])
assert(parm->getFunctionScopeIndex() == i);
}
#endif
return false;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL) {
return getDerived().TransformFunctionProtoType(TLB, TL, 0, 0);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL,
CXXRecordDecl *ThisContext,
unsigned ThisTypeQuals) {
// Transform the parameters and return type.
//
// We are required to instantiate the params and return type in source order.
// When the function has a trailing return type, we instantiate the
// parameters before the return type, since the return type can then refer
// to the parameters themselves (via decltype, sizeof, etc.).
//
SmallVector<QualType, 4> ParamTypes;
SmallVector<ParmVarDecl*, 4> ParamDecls;
const FunctionProtoType *T = TL.getTypePtr();
QualType ResultType;
if (T->hasTrailingReturn()) {
if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
TL.getParmArray(),
TL.getNumArgs(),
TL.getTypePtr()->arg_type_begin(),
ParamTypes, &ParamDecls))
return QualType();
{
// C++11 [expr.prim.general]p3:
// If a declaration declares a member function or member function
// template of a class X, the expression this is a prvalue of type
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
// and the end of the function-definition, member-declarator, or
// declarator.
Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
if (ResultType.isNull())
return QualType();
}
}
else {
ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
if (ResultType.isNull())
return QualType();
if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
TL.getParmArray(),
TL.getNumArgs(),
TL.getTypePtr()->arg_type_begin(),
ParamTypes, &ParamDecls))
return QualType();
}
// FIXME: Need to transform the exception-specification too.
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ResultType != T->getResultType() ||
T->getNumArgs() != ParamTypes.size() ||
!std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) {
Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes,
T->getExtProtoInfo());
if (Result.isNull())
return QualType();
}
FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i)
NewTL.setArg(i, ParamDecls[i]);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
TypeLocBuilder &TLB,
FunctionNoProtoTypeLoc TL) {
const FunctionNoProtoType *T = TL.getTypePtr();
QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
if (ResultType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ResultType != T->getResultType())
Result = getDerived().RebuildFunctionNoProtoType(ResultType);
FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
return Result;
}
template<typename Derived> QualType
TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
UnresolvedUsingTypeLoc TL) {
const UnresolvedUsingType *T = TL.getTypePtr();
Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
if (!D)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
Result = getDerived().RebuildUnresolvedUsingType(D);
if (Result.isNull())
return QualType();
}
// We might get an arbitrary type spec type back. We should at
// least always get a type spec type, though.
TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
TypedefTypeLoc TL) {
const TypedefType *T = TL.getTypePtr();
TypedefNameDecl *Typedef
= cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Typedef)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Typedef != T->getDecl()) {
Result = getDerived().RebuildTypedefType(Typedef);
if (Result.isNull())
return QualType();
}
TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
TypeOfExprTypeLoc TL) {
// typeof expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
Sema::ReuseLambdaContextDecl);
ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
if (E.isInvalid())
return QualType();
E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
if (E.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
E.get() != TL.getUnderlyingExpr()) {
Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
if (Result.isNull())
return QualType();
}
else E.take();
TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
NewTL.setTypeofLoc(TL.getTypeofLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
TypeOfTypeLoc TL) {
TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
if (!New_Under_TI)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
if (Result.isNull())
return QualType();
}
TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
NewTL.setTypeofLoc(TL.getTypeofLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setUnderlyingTInfo(New_Under_TI);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
DecltypeTypeLoc TL) {
const DecltypeType *T = TL.getTypePtr();
// decltype expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, 0,
/*IsDecltype=*/ true);
ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
if (E.isInvalid())
return QualType();
E = getSema().ActOnDecltypeExpression(E.take());
if (E.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
E.get() != T->getUnderlyingExpr()) {
Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
if (Result.isNull())
return QualType();
}
else E.take();
DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformUnaryTransformType(
TypeLocBuilder &TLB,
UnaryTransformTypeLoc TL) {
QualType Result = TL.getType();
if (Result->isDependentType()) {
const UnaryTransformType *T = TL.getTypePtr();
QualType NewBase =
getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
Result = getDerived().RebuildUnaryTransformType(NewBase,
T->getUTTKind(),
TL.getKWLoc());
if (Result.isNull())
return QualType();
}
UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
NewTL.setKWLoc(TL.getKWLoc());
NewTL.setParensRange(TL.getParensRange());
NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
AutoTypeLoc TL) {
const AutoType *T = TL.getTypePtr();
QualType OldDeduced = T->getDeducedType();
QualType NewDeduced;
if (!OldDeduced.isNull()) {
NewDeduced = getDerived().TransformType(OldDeduced);
if (NewDeduced.isNull())
return QualType();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced) {
Result = getDerived().RebuildAutoType(NewDeduced);
if (Result.isNull())
return QualType();
}
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
RecordTypeLoc TL) {
const RecordType *T = TL.getTypePtr();
RecordDecl *Record
= cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Record)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Record != T->getDecl()) {
Result = getDerived().RebuildRecordType(Record);
if (Result.isNull())
return QualType();
}
RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
EnumTypeLoc TL) {
const EnumType *T = TL.getTypePtr();
EnumDecl *Enum
= cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Enum)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Enum != T->getDecl()) {
Result = getDerived().RebuildEnumType(Enum);
if (Result.isNull())
return QualType();
}
EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformInjectedClassNameType(
TypeLocBuilder &TLB,
InjectedClassNameTypeLoc TL) {
Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
TL.getTypePtr()->getDecl());
if (!D) return QualType();
QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
return T;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL) {
return TransformTypeSpecType(TLB, TL);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
TypeLocBuilder &TLB,
SubstTemplateTypeParmTypeLoc TL) {
const SubstTemplateTypeParmType *T = TL.getTypePtr();
// Substitute into the replacement type, which itself might involve something
// that needs to be transformed. This only tends to occur with default
// template arguments of template template parameters.
TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
QualType Replacement = getDerived().TransformType(T->getReplacementType());
if (Replacement.isNull())
return QualType();
// Always canonicalize the replacement type.
Replacement = SemaRef.Context.getCanonicalType(Replacement);
QualType Result
= SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
Replacement);
// Propagate type-source information.
SubstTemplateTypeParmTypeLoc NewTL
= TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
TypeLocBuilder &TLB,
SubstTemplateTypeParmPackTypeLoc TL) {
return TransformTypeSpecType(TLB, TL);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL) {
const TemplateSpecializationType *T = TL.getTypePtr();
// The nested-name-specifier never matters in a TemplateSpecializationType,
// because we can't have a dependent nested-name-specifier anyway.
CXXScopeSpec SS;
TemplateName Template
= getDerived().TransformTemplateName(SS, T->getTemplateName(),
TL.getTemplateNameLoc());
if (Template.isNull())
return QualType();
return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
AtomicTypeLoc TL) {
QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
if (ValueType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ValueType != TL.getValueLoc().getType()) {
Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
if (Result.isNull())
return QualType();
}
AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
NewTL.setKWLoc(TL.getKWLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
/// \brief Simple iterator that traverses the template arguments in a
/// container that provides a \c getArgLoc() member function.
///
/// This iterator is intended to be used with the iterator form of
/// \c TreeTransform<Derived>::TransformTemplateArguments().
template<typename ArgLocContainer>
class TemplateArgumentLocContainerIterator {
ArgLocContainer *Container;
unsigned Index;
public:
typedef TemplateArgumentLoc value_type;
typedef TemplateArgumentLoc reference;
typedef int difference_type;
typedef std::input_iterator_tag iterator_category;
class pointer {
TemplateArgumentLoc Arg;
public:
explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
const TemplateArgumentLoc *operator->() const {
return &Arg;
}
};
TemplateArgumentLocContainerIterator() {}
TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
unsigned Index)
: Container(&Container), Index(Index) { }
TemplateArgumentLocContainerIterator &operator++() {
++Index;
return *this;
}
TemplateArgumentLocContainerIterator operator++(int) {
TemplateArgumentLocContainerIterator Old(*this);
++(*this);
return Old;
}
TemplateArgumentLoc operator*() const {
return Container->getArgLoc(Index);
}
pointer operator->() const {
return pointer(Container->getArgLoc(Index));
}
friend bool operator==(const TemplateArgumentLocContainerIterator &X,
const TemplateArgumentLocContainerIterator &Y) {
return X.Container == Y.Container && X.Index == Y.Index;
}
friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
const TemplateArgumentLocContainerIterator &Y) {
return !(X == Y);
}
};
template <typename Derived>
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL,
TemplateName Template) {
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
ArgIterator;
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
ArgIterator(TL, TL.getNumArgs()),
NewTemplateArgs))
return QualType();
// FIXME: maybe don't rebuild if all the template arguments are the same.
QualType Result =
getDerived().RebuildTemplateSpecializationType(Template,
TL.getTemplateNameLoc(),
NewTemplateArgs);
if (!Result.isNull()) {
// Specializations of template template parameters are represented as
// TemplateSpecializationTypes, and substitution of type alias templates
// within a dependent context can transform them into
// DependentTemplateSpecializationTypes.
if (isa<DependentTemplateSpecializationType>(Result)) {
DependentTemplateSpecializationTypeLoc NewTL
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(SourceLocation());
NewTL.setQualifierLoc(NestedNameSpecifierLoc());
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
return Result;
}
TemplateSpecializationTypeLoc NewTL
= TLB.push<TemplateSpecializationTypeLoc>(Result);
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
}
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
TemplateName Template,
CXXScopeSpec &SS) {
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
typedef TemplateArgumentLocContainerIterator<
DependentTemplateSpecializationTypeLoc> ArgIterator;
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
ArgIterator(TL, TL.getNumArgs()),
NewTemplateArgs))
return QualType();
// FIXME: maybe don't rebuild if all the template arguments are the same.
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
QualType Result
= getSema().Context.getDependentTemplateSpecializationType(
TL.getTypePtr()->getKeyword(),
DTN->getQualifier(),
DTN->getIdentifier(),
NewTemplateArgs);
DependentTemplateSpecializationTypeLoc NewTL
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
return Result;
}
QualType Result
= getDerived().RebuildTemplateSpecializationType(Template,
TL.getTemplateNameLoc(),
NewTemplateArgs);
if (!Result.isNull()) {
/// FIXME: Wrap this in an elaborated-type-specifier?
TemplateSpecializationTypeLoc NewTL
= TLB.push<TemplateSpecializationTypeLoc>(Result);
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
}
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
ElaboratedTypeLoc TL) {
const ElaboratedType *T = TL.getTypePtr();
NestedNameSpecifierLoc QualifierLoc;
// NOTE: the qualifier in an ElaboratedType is optional.
if (TL.getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
if (!QualifierLoc)
return QualType();
}
QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
if (NamedT.isNull())
return QualType();
// C++0x [dcl.type.elab]p2:
// If the identifier resolves to a typedef-name or the simple-template-id
// resolves to an alias template specialization, the
// elaborated-type-specifier is ill-formed.
if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
if (const TemplateSpecializationType *TST =
NamedT->getAs<TemplateSpecializationType>()) {
TemplateName Template = TST->getTemplateName();
if (TypeAliasTemplateDecl *TAT =
dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
diag::err_tag_reference_non_tag) << 4;
SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
}
}
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
QualifierLoc != TL.getQualifierLoc() ||
NamedT != T->getNamedType()) {
Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
T->getKeyword(),
QualifierLoc, NamedT);
if (Result.isNull())
return QualType();
}
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformAttributedType(
TypeLocBuilder &TLB,
AttributedTypeLoc TL) {
const AttributedType *oldType = TL.getTypePtr();
QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
if (modifiedType.isNull())
return QualType();
QualType result = TL.getType();
// FIXME: dependent operand expressions?
if (getDerived().AlwaysRebuild() ||
modifiedType != oldType->getModifiedType()) {
// TODO: this is really lame; we should really be rebuilding the
// equivalent type from first principles.
QualType equivalentType
= getDerived().TransformType(oldType->getEquivalentType());
if (equivalentType.isNull())
return QualType();
result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
modifiedType,
equivalentType);
}
AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
newTL.setAttrNameLoc(TL.getAttrNameLoc());
if (TL.hasAttrOperand())
newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
if (TL.hasAttrExprOperand())
newTL.setAttrExprOperand(TL.getAttrExprOperand());
else if (TL.hasAttrEnumOperand())
newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
return result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
ParenTypeLoc TL) {
QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
if (Inner.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Inner != TL.getInnerLoc().getType()) {
Result = getDerived().RebuildParenType(Inner);
if (Result.isNull())
return QualType();
}
ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
DependentNameTypeLoc TL) {
const DependentNameType *T = TL.getTypePtr();
NestedNameSpecifierLoc QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
if (!QualifierLoc)
return QualType();
QualType Result
= getDerived().RebuildDependentNameType(T->getKeyword(),
TL.getElaboratedKeywordLoc(),
QualifierLoc,
T->getIdentifier(),
TL.getNameLoc());
if (Result.isNull())
return QualType();
if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
QualType NamedT = ElabT->getNamedType();
TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
} else {
DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL) {
NestedNameSpecifierLoc QualifierLoc;
if (TL.getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
if (!QualifierLoc)
return QualType();
}
return getDerived()
.TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
}
template<typename Derived>
QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
NestedNameSpecifierLoc QualifierLoc) {
const DependentTemplateSpecializationType *T = TL.getTypePtr();
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
typedef TemplateArgumentLocContainerIterator<
DependentTemplateSpecializationTypeLoc> ArgIterator;
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
ArgIterator(TL, TL.getNumArgs()),
NewTemplateArgs))
return QualType();
QualType Result
= getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
QualifierLoc,
T->getIdentifier(),
TL.getTemplateNameLoc(),
NewTemplateArgs);
if (Result.isNull())
return QualType();
if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
QualType NamedT = ElabT->getNamedType();
// Copy information relevant to the template specialization.
TemplateSpecializationTypeLoc NamedTL
= TLB.push<TemplateSpecializationTypeLoc>(NamedT);
NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NamedTL.setLAngleLoc(TL.getLAngleLoc());
NamedTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
// Copy information relevant to the elaborated type.
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
} else if (isa<DependentTemplateSpecializationType>(Result)) {
DependentTemplateSpecializationTypeLoc SpecTL
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
SpecTL.setQualifierLoc(QualifierLoc);
SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
SpecTL.setLAngleLoc(TL.getLAngleLoc());
SpecTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
} else {
TemplateSpecializationTypeLoc SpecTL
= TLB.push<TemplateSpecializationTypeLoc>(Result);
SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
SpecTL.setLAngleLoc(TL.getLAngleLoc());
SpecTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
PackExpansionTypeLoc TL) {
QualType Pattern
= getDerived().TransformType(TLB, TL.getPatternLoc());
if (Pattern.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Pattern != TL.getPatternLoc().getType()) {
Result = getDerived().RebuildPackExpansionType(Pattern,
TL.getPatternLoc().getSourceRange(),
TL.getEllipsisLoc(),
TL.getTypePtr()->getNumExpansions());
if (Result.isNull())
return QualType();
}
PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
NewT.setEllipsisLoc(TL.getEllipsisLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
ObjCInterfaceTypeLoc TL) {
// ObjCInterfaceType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
ObjCObjectTypeLoc TL) {
// ObjCObjectType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
ObjCObjectPointerTypeLoc TL) {
// ObjCObjectPointerType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
//===----------------------------------------------------------------------===//
// Statement transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
return getDerived().TransformCompoundStmt(S, false);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
bool IsStmtExpr) {
Sema::CompoundScopeRAII CompoundScope(getSema());
bool SubStmtInvalid = false;
bool SubStmtChanged = false;
SmallVector<Stmt*, 8> Statements;
for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
B != BEnd; ++B) {
StmtResult Result = getDerived().TransformStmt(*B);
if (Result.isInvalid()) {
// Immediately fail if this was a DeclStmt, since it's very
// likely that this will cause problems for future statements.
if (isa<DeclStmt>(*B))
return StmtError();
// Otherwise, just keep processing substatements and fail later.
SubStmtInvalid = true;
continue;
}
SubStmtChanged = SubStmtChanged || Result.get() != *B;
Statements.push_back(Result.takeAs<Stmt>());
}
if (SubStmtInvalid)
return StmtError();
if (!getDerived().AlwaysRebuild() &&
!SubStmtChanged)
return SemaRef.Owned(S);
return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
Statements,
S->getRBracLoc(),
IsStmtExpr);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
ExprResult LHS, RHS;
{
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Sema::ConstantEvaluated);
// Transform the left-hand case value.
LHS = getDerived().TransformExpr(S->getLHS());
LHS = SemaRef.ActOnConstantExpression(LHS);
if (LHS.isInvalid())
return StmtError();
// Transform the right-hand case value (for the GNU case-range extension).
RHS = getDerived().TransformExpr(S->getRHS());
RHS = SemaRef.ActOnConstantExpression(RHS);
if (RHS.isInvalid())
return StmtError();
}
// Build the case statement.
// Case statements are always rebuilt so that they will attached to their
// transformed switch statement.
StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
LHS.get(),
S->getEllipsisLoc(),
RHS.get(),
S->getColonLoc());
if (Case.isInvalid())
return StmtError();
// Transform the statement following the case
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// Attach the body to the case statement
return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
// Transform the statement following the default case
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// Default statements are always rebuilt
return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
S->getDecl());
if (!LD)
return StmtError();
// FIXME: Pass the real colon location in.
return getDerived().RebuildLabelStmt(S->getIdentLoc(),
cast<LabelDecl>(LD), SourceLocation(),
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) {
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// TODO: transform attributes
if (SubStmt.get() == S->getSubStmt() /* && attrs are the same */)
return S;
return getDerived().RebuildAttributedStmt(S->getAttrLoc(),
S->getAttrs(),
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
// Transform the condition
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
// Convert the condition to a boolean value.
if (S->getCond()) {
ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getIfLoc(),
Cond.get());
if (CondE.isInvalid())
return StmtError();
Cond = CondE.get();
}
}
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
return StmtError();
// Transform the "then" branch.
StmtResult Then = getDerived().TransformStmt(S->getThen());
if (Then.isInvalid())
return StmtError();
// Transform the "else" branch.
StmtResult Else = getDerived().TransformStmt(S->getElse());
if (Else.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
FullCond.get() == S->getCond() &&
ConditionVar == S->getConditionVariable() &&
Then.get() == S->getThen() &&
Else.get() == S->getElse())
return SemaRef.Owned(S);
return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
Then.get(),
S->getElseLoc(), Else.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
// Transform the condition.
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
}
// Rebuild the switch statement.
StmtResult Switch
= getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
ConditionVar);
if (Switch.isInvalid())
return StmtError();
// Transform the body of the switch statement.
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Complete the switch statement.
return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
// Transform the condition
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (S->getCond()) {
// Convert the condition to a boolean value.
ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getWhileLoc(),
Cond.get());
if (CondE.isInvalid())
return StmtError();
Cond = CondE;
}
}
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
return StmtError();
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
FullCond.get() == S->getCond() &&
ConditionVar == S->getConditionVariable() &&
Body.get() == S->getBody())
return Owned(S);
return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
ConditionVar, Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Transform the condition
ExprResult Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == S->getCond() &&
Body.get() == S->getBody())
return SemaRef.Owned(S);
return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
/*FIXME:*/S->getWhileLoc(), Cond.get(),
S->getRParenLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
// Transform the initialization statement
StmtResult Init = getDerived().TransformStmt(S->getInit());
if (Init.isInvalid())
return StmtError();
// Transform the condition
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (S->getCond()) {
// Convert the condition to a boolean value.
ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getForLoc(),
Cond.get());
if (CondE.isInvalid())
return StmtError();
Cond = CondE.get();
}
}
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
return StmtError();
// Transform the increment
ExprResult Inc = getDerived().TransformExpr(S->getInc());
if (Inc.isInvalid())
return StmtError();
Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
if (S->getInc() && !FullInc.get())
return StmtError();
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Init.get() == S->getInit() &&
FullCond.get() == S->getCond() &&
Inc.get() == S->getInc() &&
Body.get() == S->getBody())
return SemaRef.Owned(S);
return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
Init.get(), FullCond, ConditionVar,
FullInc, S->getRParenLoc(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
S->getLabel());
if (!LD)
return StmtError();
// Goto statements must always be rebuilt, to resolve the label.
return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
cast<LabelDecl>(LD));
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
ExprResult Target = getDerived().TransformExpr(S->getTarget());
if (Target.isInvalid())
return StmtError();
Target = SemaRef.MaybeCreateExprWithCleanups(Target.take());
if (!getDerived().AlwaysRebuild() &&
Target.get() == S->getTarget())
return SemaRef.Owned(S);
return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
Target.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
ExprResult Result = getDerived().TransformExpr(S->getRetValue());
if (Result.isInvalid())
return StmtError();
// FIXME: We always rebuild the return statement because there is no way
// to tell whether the return type of the function has changed.
return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
bool DeclChanged = false;
SmallVector<Decl *, 4> Decls;
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(),
*D);
if (!Transformed)
return StmtError();
if (Transformed != *D)
DeclChanged = true;
Decls.push_back(Transformed);
}
if (!getDerived().AlwaysRebuild() && !DeclChanged)
return SemaRef.Owned(S);
return getDerived().RebuildDeclStmt(Decls.data(), Decls.size(),
S->getStartLoc(), S->getEndLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
SmallVector<Expr*, 8> Constraints;
SmallVector<Expr*, 8> Exprs;
SmallVector<IdentifierInfo *, 4> Names;
ExprResult AsmString;
SmallVector<Expr*, 8> Clobbers;
bool ExprsChanged = false;
// Go through the outputs.
for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
Names.push_back(S->getOutputIdentifier(I));
// No need to transform the constraint literal.
Constraints.push_back(S->getOutputConstraintLiteral(I));
// Transform the output expr.
Expr *OutputExpr = S->getOutputExpr(I);
ExprResult Result = getDerived().TransformExpr(OutputExpr);
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != OutputExpr;
Exprs.push_back(Result.get());
}
// Go through the inputs.
for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
Names.push_back(S->getInputIdentifier(I));
// No need to transform the constraint literal.
Constraints.push_back(S->getInputConstraintLiteral(I));
// Transform the input expr.
Expr *InputExpr = S->getInputExpr(I);
ExprResult Result = getDerived().TransformExpr(InputExpr);
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != InputExpr;
Exprs.push_back(Result.get());
}
if (!getDerived().AlwaysRebuild() && !ExprsChanged)
return SemaRef.Owned(S);
// Go through the clobbers.
for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
Clobbers.push_back(S->getClobberStringLiteral(I));
// No need to transform the asm string literal.
AsmString = SemaRef.Owned(S->getAsmString());
return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
S->isVolatile(), S->getNumOutputs(),
S->getNumInputs(), Names.data(),
Constraints, Exprs, AsmString.get(),
Clobbers, S->getRParenLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
ArrayRef<Token> AsmToks =
llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
AsmToks, S->getEndLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
// Transform the body of the @try.
StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
if (TryBody.isInvalid())
return StmtError();
// Transform the @catch statements (if present).
bool AnyCatchChanged = false;
SmallVector<Stmt*, 8> CatchStmts;
for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
if (Catch.isInvalid())
return StmtError();
if (Catch.get() != S->getCatchStmt(I))
AnyCatchChanged = true;
CatchStmts.push_back(Catch.release());
}
// Transform the @finally statement (if present).
StmtResult Finally;
if (S->getFinallyStmt()) {
Finally = getDerived().TransformStmt(S->getFinallyStmt());
if (Finally.isInvalid())
return StmtError();
}
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
TryBody.get() == S->getTryBody() &&
!AnyCatchChanged &&
Finally.get() == S->getFinallyStmt())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
CatchStmts, Finally.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
// Transform the @catch parameter, if there is one.
VarDecl *Var = 0;
if (VarDecl *FromVar = S->getCatchParamDecl()) {
TypeSourceInfo *TSInfo = 0;
if (FromVar->getTypeSourceInfo()) {
TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
if (!TSInfo)
return StmtError();
}
QualType T;
if (TSInfo)
T = TSInfo->getType();
else {
T = getDerived().TransformType(FromVar->getType());
if (T.isNull())
return StmtError();
}
Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
if (!Var)
return StmtError();
}
StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
if (Body.isInvalid())
return StmtError();
return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
S->getRParenLoc(),
Var, Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Body.get() == S->getFinallyBody())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
ExprResult Operand;
if (S->getThrowExpr()) {
Operand = getDerived().TransformExpr(S->getThrowExpr());
if (Operand.isInvalid())
return StmtError();
}
if (!getDerived().AlwaysRebuild() &&
Operand.get() == S->getThrowExpr())
return getSema().Owned(S);
return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
ObjCAtSynchronizedStmt *S) {
// Transform the object we are locking.
ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
if (Object.isInvalid())
return StmtError();
Object =
getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
Object.get());
if (Object.isInvalid())
return StmtError();
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
if (Body.isInvalid())
return StmtError();
// If nothing change, just retain the current statement.
if (!getDerived().AlwaysRebuild() &&
Object.get() == S->getSynchExpr() &&
Body.get() == S->getSynchBody())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
Object.get(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
ObjCAutoreleasePoolStmt *S) {
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Body.get() == S->getSubStmt())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAutoreleasePoolStmt(
S->getAtLoc(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCForCollectionStmt(
ObjCForCollectionStmt *S) {
// Transform the element statement.
StmtResult Element = getDerived().TransformStmt(S->getElement());
if (Element.isInvalid())
return StmtError();
// Transform the collection expression.
ExprResult Collection = getDerived().TransformExpr(S->getCollection());
if (Collection.isInvalid())
return StmtError();
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Element.get() == S->getElement() &&
Collection.get() == S->getCollection() &&
Body.get() == S->getBody())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
Element.get(),
Collection.get(),
S->getRParenLoc(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
// Transform the exception declaration, if any.
VarDecl *Var = 0;
if (S->getExceptionDecl()) {
VarDecl *ExceptionDecl = S->getExceptionDecl();
TypeSourceInfo *T = getDerived().TransformType(
ExceptionDecl->getTypeSourceInfo());
if (!T)
return StmtError();
Var = getDerived().RebuildExceptionDecl(ExceptionDecl, T,
ExceptionDecl->getInnerLocStart(),
ExceptionDecl->getLocation(),
ExceptionDecl->getIdentifier());
if (!Var || Var->isInvalidDecl())
return StmtError();
}
// Transform the actual exception handler.
StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
if (Handler.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
!Var &&
Handler.get() == S->getHandlerBlock())
return SemaRef.Owned(S);
return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(),
Var,
Handler.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
// Transform the try block itself.
StmtResult TryBlock
= getDerived().TransformCompoundStmt(S->getTryBlock());
if (TryBlock.isInvalid())
return StmtError();
// Transform the handlers.
bool HandlerChanged = false;
SmallVector<Stmt*, 8> Handlers;
for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
StmtResult Handler
= getDerived().TransformCXXCatchStmt(S->getHandler(I));
if (Handler.isInvalid())
return StmtError();
HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
Handlers.push_back(Handler.takeAs<Stmt>());
}
if (!getDerived().AlwaysRebuild() &&
TryBlock.get() == S->getTryBlock() &&
!HandlerChanged)
return SemaRef.Owned(S);
return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
Handlers);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
if (Range.isInvalid())
return StmtError();
StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
if (BeginEnd.isInvalid())
return StmtError();
ExprResult Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (Cond.get())
Cond = SemaRef.CheckBooleanCondition(Cond.take(), S->getColonLoc());
if (Cond.isInvalid())
return StmtError();
if (Cond.get())
Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.take());
ExprResult Inc = getDerived().TransformExpr(S->getInc());
if (Inc.isInvalid())
return StmtError();
if (Inc.get())
Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.take());
StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
if (LoopVar.isInvalid())
return StmtError();
StmtResult NewStmt = S;
if (getDerived().AlwaysRebuild() ||
Range.get() != S->getRangeStmt() ||
BeginEnd.get() != S->getBeginEndStmt() ||
Cond.get() != S->getCond() ||
Inc.get() != S->getInc() ||
LoopVar.get() != S->getLoopVarStmt())
NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
S->getColonLoc(), Range.get(),
BeginEnd.get(), Cond.get(),
Inc.get(), LoopVar.get(),
S->getRParenLoc());
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Body has changed but we didn't rebuild the for-range statement. Rebuild
// it now so we have a new statement to attach the body to.
if (Body.get() != S->getBody() && NewStmt.get() == S)
NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
S->getColonLoc(), Range.get(),
BeginEnd.get(), Cond.get(),
Inc.get(), LoopVar.get(),
S->getRParenLoc());
if (NewStmt.get() == S)
return SemaRef.Owned(S);
return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformMSDependentExistsStmt(
MSDependentExistsStmt *S) {
// Transform the nested-name-specifier, if any.
NestedNameSpecifierLoc QualifierLoc;
if (S->getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
if (!QualifierLoc)
return StmtError();
}
// Transform the declaration name.
DeclarationNameInfo NameInfo = S->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return StmtError();
}
// Check whether anything changed.
if (!getDerived().AlwaysRebuild() &&
QualifierLoc == S->getQualifierLoc() &&
NameInfo.getName() == S->getNameInfo().getName())
return S;
// Determine whether this name exists, if we can.
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
bool Dependent = false;
switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/0, SS, NameInfo)) {
case Sema::IER_Exists:
if (S->isIfExists())
break;
return new (getSema().Context) NullStmt(S->getKeywordLoc());
case Sema::IER_DoesNotExist:
if (S->isIfNotExists())
break;
return new (getSema().Context) NullStmt(S->getKeywordLoc());
case Sema::IER_Dependent:
Dependent = true;
break;
case Sema::IER_Error:
return StmtError();
}
// We need to continue with the instantiation, so do so now.
StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// If we have resolved the name, just transform to the substatement.
if (!Dependent)
return SubStmt;
// The name is still dependent, so build a dependent expression again.
return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
S->isIfExists(),
QualifierLoc,
NameInfo,
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
StmtResult TryBlock; // = getDerived().TransformCompoundStmt(S->getTryBlock());
if(TryBlock.isInvalid()) return StmtError();
StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
if(!getDerived().AlwaysRebuild() &&
TryBlock.get() == S->getTryBlock() &&
Handler.get() == S->getHandler())
return SemaRef.Owned(S);
return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(),
S->getTryLoc(),
TryBlock.take(),
Handler.take());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock());
if(Block.isInvalid()) return StmtError();
return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(),
Block.take());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
if(FilterExpr.isInvalid()) return StmtError();
StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock());
if(Block.isInvalid()) return StmtError();
return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(),
FilterExpr.take(),
Block.take());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
if(isa<SEHFinallyStmt>(Handler))
return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
else
return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
}
//===----------------------------------------------------------------------===//
// Expression transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
NestedNameSpecifierLoc QualifierLoc;
if (E->getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
ValueDecl *ND
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
E->getDecl()));
if (!ND)
return ExprError();
DeclarationNameInfo NameInfo = E->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
QualifierLoc == E->getQualifierLoc() &&
ND == E->getDecl() &&
NameInfo.getName() == E->getDecl()->getDeclName() &&
!E->hasExplicitTemplateArgs()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkDeclRefReferenced(E);
return SemaRef.Owned(E);
}
TemplateArgumentListInfo TransArgs, *TemplateArgs = 0;
if (E->hasExplicitTemplateArgs()) {
TemplateArgs = &TransArgs;
TransArgs.setLAngleLoc(E->getLAngleLoc());
TransArgs.setRAngleLoc(E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
}
return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
TemplateArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
if (FunctionDecl *FD = E->getDirectCallee())
SemaRef.MarkFunctionReferenced(E->getLocStart(), FD);
return SemaRef.MaybeBindToTemporary(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
ExprResult ControllingExpr =
getDerived().TransformExpr(E->getControllingExpr());
if (ControllingExpr.isInvalid())
return ExprError();
SmallVector<Expr *, 4> AssocExprs;
SmallVector<TypeSourceInfo *, 4> AssocTypes;
for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
if (TS) {
TypeSourceInfo *AssocType = getDerived().TransformType(TS);
if (!AssocType)
return ExprError();
AssocTypes.push_back(AssocType);
} else {
AssocTypes.push_back(0);
}
ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
if (AssocExpr.isInvalid())
return ExprError();
AssocExprs.push_back(AssocExpr.release());
}
return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
E->getDefaultLoc(),
E->getRParenLoc(),
ControllingExpr.release(),
AssocTypes.data(),
AssocExprs.data(),
E->getNumAssocs());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
E->getRParen());
}
/// \brief The operand of a unary address-of operator has special rules: it's
/// allowed to refer to a non-static member of a class even if there's no 'this'
/// object available.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
return getDerived().TransformDependentScopeDeclRefExpr(DRE, true);
else
return getDerived().TransformExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
ExprResult SubExpr = TransformAddressOfOperand(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
E->getOpcode(),
SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
// Transform the type.
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
if (!Type)
return ExprError();
// Transform all of the components into components similar to what the
// parser uses.
// FIXME: It would be slightly more efficient in the non-dependent case to
// just map FieldDecls, rather than requiring the rebuilder to look for
// the fields again. However, __builtin_offsetof is rare enough in
// template code that we don't care.
bool ExprChanged = false;
typedef Sema::OffsetOfComponent Component;
typedef OffsetOfExpr::OffsetOfNode Node;
SmallVector<Component, 4> Components;
for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
const Node &ON = E->getComponent(I);
Component Comp;
Comp.isBrackets = true;
Comp.LocStart = ON.getSourceRange().getBegin();
Comp.LocEnd = ON.getSourceRange().getEnd();
switch (ON.getKind()) {
case Node::Array: {
Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
ExprResult Index = getDerived().TransformExpr(FromIndex);
if (Index.isInvalid())
return ExprError();
ExprChanged = ExprChanged || Index.get() != FromIndex;
Comp.isBrackets = true;
Comp.U.E = Index.get();
break;
}
case Node::Field:
case Node::Identifier:
Comp.isBrackets = false;
Comp.U.IdentInfo = ON.getFieldName();
if (!Comp.U.IdentInfo)
continue;
break;
case Node::Base:
// Will be recomputed during the rebuild.
continue;
}
Components.push_back(Comp);
}
// If nothing changed, retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeSourceInfo() &&
!ExprChanged)
return SemaRef.Owned(E);
// Build a new offsetof expression.
return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
Components.data(), Components.size(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
assert(getDerived().AlreadyTransformed(E->getType()) &&
"opaque value expression requires transformation");
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
// Rebuild the syntactic form. The original syntactic form has
// opaque-value expressions in it, so strip those away and rebuild
// the result. This is a really awful way of doing this, but the
// better solution (rebuilding the semantic expressions and
// rebinding OVEs as necessary) doesn't work; we'd need
// TreeTransform to not strip away implicit conversions.
Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
ExprResult result = getDerived().TransformExpr(newSyntacticForm);
if (result.isInvalid()) return ExprError();
// If that gives us a pseudo-object result back, the pseudo-object
// expression must have been an lvalue-to-rvalue conversion which we
// should reapply.
if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
result = SemaRef.checkPseudoObjectRValue(result.take());
return result;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTraitExpr *E) {
if (E->isArgumentType()) {
TypeSourceInfo *OldT = E->getArgumentTypeInfo();
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
if (!NewT)
return ExprError();
if (!getDerived().AlwaysRebuild() && OldT == NewT)
return SemaRef.Owned(E);
return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
E->getKind(),
E->getSourceRange());
}
// C++0x [expr.sizeof]p1:
// The operand is either an expression, which is an unevaluated operand
// [...]
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
Sema::ReuseLambdaContextDecl);
ExprResult SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
return SemaRef.Owned(E);
return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
E->getOperatorLoc(),
E->getKind(),
E->getSourceRange());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildArraySubscriptExpr(LHS.get(),
/*FIXME:*/E->getLHS()->getLocStart(),
RHS.get(),
E->getRBracketLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
// Transform the callee.
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
// Transform arguments.
bool ArgChanged = false;
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
!ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// FIXME: Wrong source location information for the '('.
SourceLocation FakeLParenLoc
= ((Expr *)Callee.get())->getSourceRange().getBegin();
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
Args,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
NestedNameSpecifierLoc QualifierLoc;
if (E->hasQualifier()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
ValueDecl *Member
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
E->getMemberDecl()));
if (!Member)
return ExprError();
NamedDecl *FoundDecl = E->getFoundDecl();
if (FoundDecl == E->getMemberDecl()) {
FoundDecl = Member;
} else {
FoundDecl = cast_or_null<NamedDecl>(
getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
if (!FoundDecl)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase() &&
QualifierLoc == E->getQualifierLoc() &&
Member == E->getMemberDecl() &&
FoundDecl == E->getFoundDecl() &&
!E->hasExplicitTemplateArgs()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkMemberReferenced(E);
return SemaRef.Owned(E);
}
TemplateArgumentListInfo TransArgs;
if (E->hasExplicitTemplateArgs()) {
TransArgs.setLAngleLoc(E->getLAngleLoc());
TransArgs.setRAngleLoc(E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
}
// FIXME: Bogus source location for the operator
SourceLocation FakeOperatorLoc
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
// FIXME: to do this check properly, we will need to preserve the
// first-qualifier-in-scope here, just in case we had a dependent
// base (and therefore couldn't do the check) and a
// nested-name-qualifier (and therefore could do the lookup).
NamedDecl *FirstQualifierInScope = 0;
return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
E->isArrow(),
QualifierLoc,
TemplateKWLoc,
E->getMemberNameInfo(),
Member,
FoundDecl,
(E->hasExplicitTemplateArgs()
? &TransArgs : 0),
FirstQualifierInScope);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
Sema::FPContractStateRAII FPContractState(getSema());
getSema().FPFeatures.fp_contract = E->isFPContractable();
return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
LHS.get(), RHS.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCompoundAssignOperator(
CompoundAssignOperator *E) {
return getDerived().TransformBinaryOperator(E);
}
template<typename Derived>
ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
// Just rebuild the common and RHS expressions and see whether we
// get any changes.
ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
if (commonExpr.isInvalid())
return ExprError();
ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
if (rhs.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
commonExpr.get() == e->getCommon() &&
rhs.get() == e->getFalseExpr())
return SemaRef.Owned(e);
return getDerived().RebuildConditionalOperator(commonExpr.take(),
e->getQuestionLoc(),
0,
e->getColonLoc(),
rhs.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
ExprResult Cond = getDerived().TransformExpr(E->getCond());
if (Cond.isInvalid())
return ExprError();
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == E->getCond() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildConditionalOperator(Cond.get(),
E->getQuestionLoc(),
LHS.get(),
E->getColonLoc(),
RHS.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
// Implicit casts are eliminated during transformation, since they
// will be recomputed by semantic analysis after transformation.
return getDerived().TransformExpr(E->getSubExprAsWritten());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
Type,
E->getRParenLoc(),
SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
TypeSourceInfo *OldT = E->getTypeSourceInfo();
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
if (!NewT)
return ExprError();
ExprResult Init = getDerived().TransformExpr(E->getInitializer());
if (Init.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
OldT == NewT &&
Init.get() == E->getInitializer())
return SemaRef.MaybeBindToTemporary(E);
// Note: the expression type doesn't necessarily match the
// type-as-written, but that's okay, because it should always be
// derivable from the initializer.
return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
/*FIXME:*/E->getInitializer()->getLocEnd(),
Init.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
// FIXME: Bad source location
SourceLocation FakeOperatorLoc
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd());
return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
E->getAccessorLoc(),
E->getAccessor());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
bool InitChanged = false;
SmallVector<Expr*, 4> Inits;
if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
Inits, &InitChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() && !InitChanged)
return SemaRef.Owned(E);
return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
E->getRBraceLoc(), E->getType());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
Designation Desig;
// transform the initializer value
ExprResult Init = getDerived().TransformExpr(E->getInit());
if (Init.isInvalid())
return ExprError();
// transform the designators.
SmallVector<Expr*, 4> ArrayExprs;
bool ExprChanged = false;
for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
DEnd = E->designators_end();
D != DEnd; ++D) {
if (D->isFieldDesignator()) {
Desig.AddDesignator(Designator::getField(D->getFieldName(),
D->getDotLoc(),
D->getFieldLoc()));
continue;
}
if (D->isArrayDesignator()) {
ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
if (Index.isInvalid())
return ExprError();
Desig.AddDesignator(Designator::getArray(Index.get(),
D->getLBracketLoc()));
ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
ArrayExprs.push_back(Index.release());
continue;
}
assert(D->isArrayRangeDesignator() && "New kind of designator?");
ExprResult Start
= getDerived().TransformExpr(E->getArrayRangeStart(*D));
if (Start.isInvalid())
return ExprError();
ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
if (End.isInvalid())
return ExprError();
Desig.AddDesignator(Designator::getArrayRange(Start.get(),
End.get(),
D->getLBracketLoc(),
D->getEllipsisLoc()));
ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
End.get() != E->getArrayRangeEnd(*D);
ArrayExprs.push_back(Start.release());
ArrayExprs.push_back(End.release());
}
if (!getDerived().AlwaysRebuild() &&
Init.get() == E->getInit() &&
!ExprChanged)
return SemaRef.Owned(E);
return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
E->getEqualOrColonLoc(),
E->usesGNUSyntax(), Init.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImplicitValueInitExpr(
ImplicitValueInitExpr *E) {
TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
// FIXME: Will we ever have proper type location here? Will we actually
// need to transform the type?
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getType())
return SemaRef.Owned(E);
return getDerived().RebuildImplicitValueInitExpr(T);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
if (!TInfo)
return ExprError();
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getWrittenTypeInfo() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
TInfo, E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
bool ArgumentChanged = false;
SmallVector<Expr*, 4> Inits;
if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
&ArgumentChanged))
return ExprError();
return getDerived().RebuildParenListExpr(E->getLParenLoc(),
Inits,
E->getRParenLoc());
}
/// \brief Transform an address-of-label expression.
///
/// By default, the transformation of an address-of-label expression always
/// rebuilds the expression, so that the label identifier can be resolved to
/// the corresponding label statement by semantic analysis.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
E->getLabel());
if (!LD)
return ExprError();
return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
cast<LabelDecl>(LD));
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
SemaRef.ActOnStartStmtExpr();
StmtResult SubStmt
= getDerived().TransformCompoundStmt(E->getSubStmt(), true);
if (SubStmt.isInvalid()) {
SemaRef.ActOnStmtExprError();
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
SubStmt.get() == E->getSubStmt()) {
// Calling this an 'error' is unintuitive, but it does the right thing.
SemaRef.ActOnStmtExprError();
return SemaRef.MaybeBindToTemporary(E);
}
return getDerived().RebuildStmtExpr(E->getLParenLoc(),
SubStmt.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
ExprResult Cond = getDerived().TransformExpr(E->getCond());
if (Cond.isInvalid())
return ExprError();
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == E->getCond() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
Cond.get(), LHS.get(), RHS.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
switch (E->getOperator()) {
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
case OO_Call: {
// This is a call to an object's operator().
assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
// Transform the object itself.
ExprResult Object = getDerived().TransformExpr(E->getArg(0));
if (Object.isInvalid())
return ExprError();
// FIXME: Poor location information
SourceLocation FakeLParenLoc
= SemaRef.PP.getLocForEndOfToken(
static_cast<Expr *>(Object.get())->getLocEnd());
// Transform the call arguments.
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
Args))
return ExprError();
return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
Args,
E->getLocEnd());
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case OO_##Name:
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case OO_Subscript:
// Handled below.
break;
case OO_Conditional:
llvm_unreachable("conditional operator is not actually overloadable");
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("not an overloaded operator?");
}
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
ExprResult First;
if (E->getOperator() == OO_Amp)
First = getDerived().TransformAddressOfOperand(E->getArg(0));
else
First = getDerived().TransformExpr(E->getArg(0));
if (First.isInvalid())
return ExprError();
ExprResult Second;
if (E->getNumArgs() == 2) {
Second = getDerived().TransformExpr(E->getArg(1));
if (Second.isInvalid())
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
First.get() == E->getArg(0) &&
(E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
return SemaRef.MaybeBindToTemporary(E);
Sema::FPContractStateRAII FPContractState(getSema());
getSema().FPFeatures.fp_contract = E->isFPContractable();
return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
E->getOperatorLoc(),
Callee.get(),
First.get(),
Second.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
return getDerived().TransformCallExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
// Transform the callee.
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
// Transform exec config.
ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
if (EC.isInvalid())
return ExprError();
// Transform arguments.
bool ArgChanged = false;
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
!ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// FIXME: Wrong source location information for the '('.
SourceLocation FakeLParenLoc
= ((Expr *)Callee.get())->getSourceRange().getBegin();
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
Args,
E->getRParenLoc(), EC.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
E->getStmtClass(),
E->getAngleBrackets().getBegin(),
Type,
E->getAngleBrackets().getEnd(),
// FIXME. this should be '(' location
E->getAngleBrackets().getEnd(),
SubExpr.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
CXXReinterpretCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
CXXFunctionalCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCXXFunctionalCastExpr(Type,
/*FIXME:*/E->getSubExpr()->getLocStart(),
SubExpr.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
if (E->isTypeOperand()) {
TypeSourceInfo *TInfo
= getDerived().TransformType(E->getTypeOperandSourceInfo());
if (!TInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getTypeOperandSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildCXXTypeidExpr(E->getType(),
E->getLocStart(),
TInfo,
E->getLocEnd());
}
// We don't know whether the subexpression is potentially evaluated until
// after we perform semantic analysis. We speculatively assume it is
// unevaluated; it will get fixed later if the subexpression is in fact
// potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
Sema::ReuseLambdaContextDecl);
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getExprOperand())
return SemaRef.Owned(E);
return getDerived().RebuildCXXTypeidExpr(E->getType(),
E->getLocStart(),
SubExpr.get(),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
if (E->isTypeOperand()) {
TypeSourceInfo *TInfo
= getDerived().TransformType(E->getTypeOperandSourceInfo());
if (!TInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getTypeOperandSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildCXXUuidofExpr(E->getType(),
E->getLocStart(),
TInfo,
E->getLocEnd());
}
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getExprOperand())
return SemaRef.Owned(E);
return getDerived().RebuildCXXUuidofExpr(E->getType(),
E->getLocStart(),
SubExpr.get(),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
CXXNullPtrLiteralExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
DeclContext *DC = getSema().getFunctionLevelDeclContext();
QualType T;
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
T = MD->getThisType(getSema().Context);
else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
T = getSema().Context.getPointerType(
getSema().Context.getRecordType(Record));
} else {
assert(SemaRef.Context.getDiagnostics().hasErrorOccurred() &&
"this in the wrong scope?");
return ExprError();
}
if (!getDerived().AlwaysRebuild() && T == E->getType()) {
// Make sure that we capture 'this'.
getSema().CheckCXXThisCapture(E->getLocStart());
return SemaRef.Owned(E);
}
return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
E->isThrownVariableInScope());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
ParmVarDecl *Param
= cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
E->getParam()));
if (!Param)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Param == E->getParam())
return SemaRef.Owned(E);
return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
CXXScalarValueInitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildCXXScalarValueInitExpr(T,
/*FIXME:*/T->getTypeLoc().getEndLoc(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
// Transform the type that we're allocating
TypeSourceInfo *AllocTypeInfo
= getDerived().TransformType(E->getAllocatedTypeSourceInfo());
if (!AllocTypeInfo)
return ExprError();
// Transform the size of the array we're allocating (if any).
ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
if (ArraySize.isInvalid())
return ExprError();
// Transform the placement arguments (if any).
bool ArgumentChanged = false;
SmallVector<Expr*, 8> PlacementArgs;
if (getDerived().TransformExprs(E->getPlacementArgs(),
E->getNumPlacementArgs(), true,
PlacementArgs, &ArgumentChanged))
return ExprError();
// Transform the initializer (if any).
Expr *OldInit = E->getInitializer();
ExprResult NewInit;
if (OldInit)
NewInit = getDerived().TransformExpr(OldInit);
if (NewInit.isInvalid())
return ExprError();
// Transform new operator and delete operator.
FunctionDecl *OperatorNew = 0;
if (E->getOperatorNew()) {
OperatorNew = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getOperatorNew()));
if (!OperatorNew)
return ExprError();
}
FunctionDecl *OperatorDelete = 0;
if (E->getOperatorDelete()) {
OperatorDelete = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getOperatorDelete()));
if (!OperatorDelete)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
ArraySize.get() == E->getArraySize() &&
NewInit.get() == OldInit &&
OperatorNew == E->getOperatorNew() &&
OperatorDelete == E->getOperatorDelete() &&
!ArgumentChanged) {
// Mark any declarations we need as referenced.
// FIXME: instantiation-specific.
if (OperatorNew)
SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew);
if (OperatorDelete)
SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
QualType ElementType
= SemaRef.Context.getBaseElementType(E->getAllocatedType());
if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor);
}
}
}
return SemaRef.Owned(E);
}
QualType AllocType = AllocTypeInfo->getType();
if (!ArraySize.get()) {
// If no array size was specified, but the new expression was
// instantiated with an array type (e.g., "new T" where T is
// instantiated with "int[4]"), extract the outer bound from the
// array type as our array size. We do this with constant and
// dependently-sized array types.
const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
if (!ArrayT) {
// Do nothing
} else if (const ConstantArrayType *ConsArrayT
= dyn_cast<ConstantArrayType>(ArrayT)) {
ArraySize
= SemaRef.Owned(IntegerLiteral::Create(SemaRef.Context,
ConsArrayT->getSize(),
SemaRef.Context.getSizeType(),
/*FIXME:*/E->getLocStart()));
AllocType = ConsArrayT->getElementType();
} else if (const DependentSizedArrayType *DepArrayT
= dyn_cast<DependentSizedArrayType>(ArrayT)) {
if (DepArrayT->getSizeExpr()) {
ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr());
AllocType = DepArrayT->getElementType();
}
}
}
return getDerived().RebuildCXXNewExpr(E->getLocStart(),
E->isGlobalNew(),
/*FIXME:*/E->getLocStart(),
PlacementArgs,
/*FIXME:*/E->getLocStart(),
E->getTypeIdParens(),
AllocType,
AllocTypeInfo,
ArraySize.get(),
E->getDirectInitRange(),
NewInit.take());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
ExprResult Operand = getDerived().TransformExpr(E->getArgument());
if (Operand.isInvalid())
return ExprError();
// Transform the delete operator, if known.
FunctionDecl *OperatorDelete = 0;
if (E->getOperatorDelete()) {
OperatorDelete = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getOperatorDelete()));
if (!OperatorDelete)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Operand.get() == E->getArgument() &&
OperatorDelete == E->getOperatorDelete()) {
// Mark any declarations we need as referenced.
// FIXME: instantiation-specific.
if (OperatorDelete)
SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
if (!E->getArgument()->isTypeDependent()) {
QualType Destroyed = SemaRef.Context.getBaseElementType(
E->getDestroyedType());
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
SemaRef.MarkFunctionReferenced(E->getLocStart(),
SemaRef.LookupDestructor(Record));
}
}
return SemaRef.Owned(E);
}
return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
E->isGlobalDelete(),
E->isArrayForm(),
Operand.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
CXXPseudoDestructorExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
ParsedType ObjectTypePtr;
bool MayBePseudoDestructor = false;
Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
E->getOperatorLoc(),
E->isArrow()? tok::arrow : tok::period,
ObjectTypePtr,
MayBePseudoDestructor);
if (Base.isInvalid())
return ExprError();
QualType ObjectType = ObjectTypePtr.get();
NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
if (QualifierLoc) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
if (!QualifierLoc)
return ExprError();
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
PseudoDestructorTypeStorage Destroyed;
if (E->getDestroyedTypeInfo()) {
TypeSourceInfo *DestroyedTypeInfo
= getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
ObjectType, 0, SS);
if (!DestroyedTypeInfo)
return ExprError();
Destroyed = DestroyedTypeInfo;
} else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
// We aren't likely to be able to resolve the identifier down to a type
// now anyway, so just retain the identifier.
Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
E->getDestroyedTypeLoc());
} else {
// Look for a destructor known with the given name.
ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
*E->getDestroyedTypeIdentifier(),
E->getDestroyedTypeLoc(),
/*Scope=*/0,
SS, ObjectTypePtr,
false);
if (!T)
return ExprError();
Destroyed
= SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
E->getDestroyedTypeLoc());
}
TypeSourceInfo *ScopeTypeInfo = 0;
if (E->getScopeTypeInfo()) {
CXXScopeSpec EmptySS;
ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
E->getScopeTypeInfo(), ObjectType, 0, EmptySS);
if (!ScopeTypeInfo)
return ExprError();
}
return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
E->getOperatorLoc(),
E->isArrow(),
SS,
ScopeTypeInfo,
E->getColonColonLoc(),
E->getTildeLoc(),
Destroyed);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnresolvedLookupExpr(
UnresolvedLookupExpr *Old) {
LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
Sema::LookupOrdinaryName);
// Transform all the decls.
for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
E = Old->decls_end(); I != E; ++I) {
NamedDecl *InstD = static_cast<NamedDecl*>(
getDerived().TransformDecl(Old->getNameLoc(),
*I));
if (!InstD) {
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
// This can happen because of dependent hiding.
if (isa<UsingShadowDecl>(*I))
continue;
else
return ExprError();
}
// Expand using declarations.
if (isa<UsingDecl>(InstD)) {
UsingDecl *UD = cast<UsingDecl>(InstD);
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
E = UD->shadow_end(); I != E; ++I)
R.addDecl(*I);
continue;
}
R.addDecl(InstD);
}
// Resolve a kind, but don't do any further analysis. If it's
// ambiguous, the callee needs to deal with it.
R.resolveKind();
// Rebuild the nested-name qualifier, if present.
CXXScopeSpec SS;
if (Old->getQualifierLoc()) {
NestedNameSpecifierLoc QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
SS.Adopt(QualifierLoc);
}
if (Old->getNamingClass()) {
CXXRecordDecl *NamingClass
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
Old->getNameLoc(),
Old->getNamingClass()));
if (!NamingClass)
return ExprError();
R.setNamingClass(NamingClass);
}
SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
// If we have neither explicit template arguments, nor the template keyword,
// it's a normal declaration name.
if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
// If we have template arguments, rebuild them, then rebuild the
// templateid expression.
TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
if (Old->hasExplicitTemplateArgs() &&
getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
Old->getNumTemplateArgs(),
TransArgs))
return ExprError();
return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
Old->requiresADL(), &TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getQueriedTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildUnaryTypeTrait(E->getTrait(),
E->getLocStart(),
T,
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) {
TypeSourceInfo *LhsT = getDerived().TransformType(E->getLhsTypeSourceInfo());
if (!LhsT)
return ExprError();
TypeSourceInfo *RhsT = getDerived().TransformType(E->getRhsTypeSourceInfo());
if (!RhsT)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LhsT == E->getLhsTypeSourceInfo() && RhsT == E->getRhsTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildBinaryTypeTrait(E->getTrait(),
E->getLocStart(),
LhsT, RhsT,
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
bool ArgChanged = false;
SmallVector<TypeSourceInfo *, 4> Args;
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
TypeSourceInfo *From = E->getArg(I);
TypeLoc FromTL = From->getTypeLoc();
if (!FromTL.getAs<PackExpansionTypeLoc>()) {
TypeLocBuilder TLB;
TLB.reserve(FromTL.getFullDataSize());
QualType To = getDerived().TransformType(TLB, FromTL);
if (To.isNull())
return ExprError();
if (To == From->getType())
Args.push_back(From);
else {
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
ArgChanged = true;
}
continue;
}
ArgChanged = true;
// We have a pack expansion. Instantiate it.
PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
TypeLoc PatternTL = ExpansionTL.getPatternLoc();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
Optional<unsigned> OrigNumExpansions =
ExpansionTL.getTypePtr()->getNumExpansions();
Optional<unsigned> NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
PatternTL.getSourceRange(),
Unexpanded,
Expand, RetainExpansion,
NumExpansions))
return ExprError();
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
TypeLocBuilder TLB;
TLB.reserve(From->getTypeLoc().getFullDataSize());
QualType To = getDerived().TransformType(TLB, PatternTL);
if (To.isNull())
return ExprError();
To = getDerived().RebuildPackExpansionType(To,
PatternTL.getSourceRange(),
ExpansionTL.getEllipsisLoc(),
NumExpansions);
if (To.isNull())
return ExprError();
PackExpansionTypeLoc ToExpansionTL
= TLB.push<PackExpansionTypeLoc>(To);
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
continue;
}
// Expand the pack expansion by substituting for each argument in the
// pack(s).
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
TypeLocBuilder TLB;
TLB.reserve(PatternTL.getFullDataSize());
QualType To = getDerived().TransformType(TLB, PatternTL);
if (To.isNull())
return ExprError();
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
}
if (!RetainExpansion)
continue;
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
TypeLocBuilder TLB;
TLB.reserve(From->getTypeLoc().getFullDataSize());
QualType To = getDerived().TransformType(TLB, PatternTL);
if (To.isNull())
return ExprError();
To = getDerived().RebuildPackExpansionType(To,
PatternTL.getSourceRange(),
ExpansionTL.getEllipsisLoc(),
NumExpansions);
if (To.isNull())
return ExprError();
PackExpansionTypeLoc ToExpansionTL
= TLB.push<PackExpansionTypeLoc>(To);
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
}
if (!getDerived().AlwaysRebuild() && !ArgChanged)
return SemaRef.Owned(E);
return getDerived().RebuildTypeTrait(E->getTrait(),
E->getLocStart(),
Args,
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getQueriedTypeSourceInfo())
return SemaRef.Owned(E);
ExprResult SubExpr;
{
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
return SemaRef.Owned(E);
}
return getDerived().RebuildArrayTypeTrait(E->getTrait(),
E->getLocStart(),
T,
SubExpr.get(),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
ExprResult SubExpr;
{
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
return SemaRef.Owned(E);
}
return getDerived().RebuildExpressionTrait(
E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
DependentScopeDeclRefExpr *E) {
return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand*/false);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
DependentScopeDeclRefExpr *E,
bool IsAddressOfOperand) {
NestedNameSpecifierLoc QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
// TODO: If this is a conversion-function-id, verify that the
// destination type name (if present) resolves the same way after
// instantiation as it did in the local scope.
DeclarationNameInfo NameInfo
= getDerived().TransformDeclarationNameInfo(E->getNameInfo());
if (!NameInfo.getName())
return ExprError();
if (!E->hasExplicitTemplateArgs()) {
if (!getDerived().AlwaysRebuild() &&
QualifierLoc == E->getQualifierLoc() &&
// Note: it is sufficient to compare the Name component of NameInfo:
// if name has not changed, DNLoc has not changed either.
NameInfo.getName() == E->getDeclName())
return SemaRef.Owned(E);
return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
TemplateKWLoc,
NameInfo,
/*TemplateArgs*/ 0,
IsAddressOfOperand);
}
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
TemplateKWLoc,
NameInfo,
&TransArgs,
IsAddressOfOperand);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
// CXXConstructExprs other than for list-initialization and
// CXXTemporaryObjectExpr are always implicit, so when we have
// a 1-argument construction we just transform that argument.
if ((E->getNumArgs() == 1 ||
(E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
(!getDerived().DropCallArgument(E->getArg(0))) &&
!E->isListInitialization())
return getDerived().TransformExpr(E->getArg(0));
TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
CXXConstructorDecl *Constructor
= cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getConstructor()));
if (!Constructor)
return ExprError();
bool ArgumentChanged = false;
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getType() &&
Constructor == E->getConstructor() &&
!ArgumentChanged) {
// Mark the constructor as referenced.
// FIXME: Instantiation-specific
SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
return SemaRef.Owned(E);
}
return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
Constructor, E->isElidable(),
Args,
E->hadMultipleCandidates(),
E->isListInitialization(),
E->requiresZeroInitialization(),
E->getConstructionKind(),
E->getParenRange());
}
/// \brief Transform a C++ temporary-binding expression.
///
/// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
/// transform the subexpression and return that.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
/// \brief Transform a C++ expression that contains cleanups that should
/// be run after the expression is evaluated.
///
/// Since ExprWithCleanups nodes are implicitly generated, we
/// just transform the subexpression and return that.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
CXXTemporaryObjectExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
CXXConstructorDecl *Constructor
= cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getConstructor()));
if (!Constructor)
return ExprError();
bool ArgumentChanged = false;
SmallVector<Expr*, 8> Args;
Args.reserve(E->getNumArgs());
if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo() &&
Constructor == E->getConstructor() &&
!ArgumentChanged) {
// FIXME: Instantiation-specific
SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
return SemaRef.MaybeBindToTemporary(E);
}
// FIXME: Pass in E->isListInitialization().
return getDerived().RebuildCXXTemporaryObjectExpr(T,
/*FIXME:*/T->getTypeLoc().getEndLoc(),
Args,
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
// Transform the type of the lambda parameters and start the definition of
// the lambda itself.
TypeSourceInfo *MethodTy
= TransformType(E->getCallOperator()->getTypeSourceInfo());
if (!MethodTy)
return ExprError();
// Create the local class that will describe the lambda.
CXXRecordDecl *Class
= getSema().createLambdaClosureType(E->getIntroducerRange(),
MethodTy,
/*KnownDependent=*/false);
getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
// Transform lambda parameters.
SmallVector<QualType, 4> ParamTypes;
SmallVector<ParmVarDecl *, 4> Params;
if (getDerived().TransformFunctionTypeParams(E->getLocStart(),
E->getCallOperator()->param_begin(),
E->getCallOperator()->param_size(),
0, ParamTypes, &Params))
return ExprError();
// Build the call operator.
CXXMethodDecl *CallOperator
= getSema().startLambdaDefinition(Class, E->getIntroducerRange(),
MethodTy,
E->getCallOperator()->getLocEnd(),
Params);
getDerived().transformAttrs(E->getCallOperator(), CallOperator);
return getDerived().TransformLambdaScope(E, CallOperator);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E,
CXXMethodDecl *CallOperator) {
// Introduce the context of the call operator.
Sema::ContextRAII SavedContext(getSema(), CallOperator);
// Enter the scope of the lambda.
sema::LambdaScopeInfo *LSI
= getSema().enterLambdaScope(CallOperator, E->getIntroducerRange(),
E->getCaptureDefault(),
E->hasExplicitParameters(),
E->hasExplicitResultType(),
E->isMutable());
// Transform captures.
bool Invalid = false;
bool FinishedExplicitCaptures = false;
for (LambdaExpr::capture_iterator C = E->capture_begin(),
CEnd = E->capture_end();
C != CEnd; ++C) {
// When we hit the first implicit capture, tell Sema that we've finished
// the list of explicit captures.
if (!FinishedExplicitCaptures && C->isImplicit()) {
getSema().finishLambdaExplicitCaptures(LSI);
FinishedExplicitCaptures = true;
}
// Capturing 'this' is trivial.
if (C->capturesThis()) {
getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit());
continue;
}
// Determine the capture kind for Sema.
Sema::TryCaptureKind Kind
= C->isImplicit()? Sema::TryCapture_Implicit
: C->getCaptureKind() == LCK_ByCopy
? Sema::TryCapture_ExplicitByVal
: Sema::TryCapture_ExplicitByRef;
SourceLocation EllipsisLoc;
if (C->isPackExpansion()) {
UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
bool ShouldExpand = false;
bool RetainExpansion = false;
Optional<unsigned> NumExpansions;
if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
C->getLocation(),
Unexpanded,
ShouldExpand, RetainExpansion,
NumExpansions))
return ExprError();
if (ShouldExpand) {
// The transform has determined that we should perform an expansion;
// transform and capture each of the arguments.
// expansion of the pattern. Do so.
VarDecl *Pack = C->getCapturedVar();
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
VarDecl *CapturedVar
= cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
Pack));
if (!CapturedVar) {
Invalid = true;
continue;
}
// Capture the transformed variable.
getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
}
continue;
}
EllipsisLoc = C->getEllipsisLoc();
}
// Transform the captured variable.
VarDecl *CapturedVar
= cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
C->getCapturedVar()));
if (!CapturedVar) {
Invalid = true;
continue;
}
// Capture the transformed variable.
getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
}
if (!FinishedExplicitCaptures)
getSema().finishLambdaExplicitCaptures(LSI);
// Enter a new evaluation context to insulate the lambda from any
// cleanups from the enclosing full-expression.
getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
if (Invalid) {
getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0,
/*IsInstantiation=*/true);
return ExprError();
}
// Instantiate the body of the lambda expression.
StmtResult Body = getDerived().TransformStmt(E->getBody());
if (Body.isInvalid()) {
getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0,
/*IsInstantiation=*/true);
return ExprError();
}
return getSema().ActOnLambdaExpr(E->getLocStart(), Body.take(),
/*CurScope=*/0, /*IsInstantiation=*/true);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
CXXUnresolvedConstructExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
bool ArgumentChanged = false;
SmallVector<Expr*, 8> Args;
Args.reserve(E->arg_size());
if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
&ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo() &&
!ArgumentChanged)
return SemaRef.Owned(E);
// FIXME: we're faking the locations of the commas
return getDerived().RebuildCXXUnresolvedConstructExpr(T,
E->getLParenLoc(),
Args,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
CXXDependentScopeMemberExpr *E) {
// Transform the base of the expression.
ExprResult Base((Expr*) 0);
Expr *OldBase;
QualType BaseType;
QualType ObjectType;
if (!E->isImplicitAccess()) {
OldBase = E->getBase();
Base = getDerived().TransformExpr(OldBase);
if (Base.isInvalid())
return ExprError();
// Start the member reference and compute the object's type.
ParsedType ObjectTy;
bool MayBePseudoDestructor = false;
Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
E->getOperatorLoc(),
E->isArrow()? tok::arrow : tok::period,
ObjectTy,
MayBePseudoDestructor);
if (Base.isInvalid())
return ExprError();
ObjectType = ObjectTy.get();
BaseType = ((Expr*) Base.get())->getType();
} else {
OldBase = 0;
BaseType = getDerived().TransformType(E->getBaseType());
ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
}
// Transform the first part of the nested-name-specifier that qualifies
// the member name.
NamedDecl *FirstQualifierInScope
= getDerived().TransformFirstQualifierInScope(
E->getFirstQualifierFoundInScope(),
E->getQualifierLoc().getBeginLoc());
NestedNameSpecifierLoc QualifierLoc;
if (E->getQualifier()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
ObjectType,
FirstQualifierInScope);
if (!QualifierLoc)
return ExprError();
}
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
// TODO: If this is a conversion-function-id, verify that the
// destination type name (if present) resolves the same way after
// instantiation as it did in the local scope.
DeclarationNameInfo NameInfo
= getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
if (!NameInfo.getName())
return ExprError();
if (!E->hasExplicitTemplateArgs()) {
// This is a reference to a member without an explicitly-specified
// template argument list. Optimize for this common case.
if (!getDerived().AlwaysRebuild() &&
Base.get() == OldBase &&
BaseType == E->getBaseType() &&
QualifierLoc == E->getQualifierLoc() &&
NameInfo.getName() == E->getMember() &&
FirstQualifierInScope == E->getFirstQualifierFoundInScope())
return SemaRef.Owned(E);
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
BaseType,
E->isArrow(),
E->getOperatorLoc(),
QualifierLoc,
TemplateKWLoc,
FirstQualifierInScope,
NameInfo,
/*TemplateArgs*/ 0);
}
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
BaseType,
E->isArrow(),
E->getOperatorLoc(),
QualifierLoc,
TemplateKWLoc,
FirstQualifierInScope,
NameInfo,
&TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
// Transform the base of the expression.
ExprResult Base((Expr*) 0);
QualType BaseType;
if (!Old->isImplicitAccess()) {
Base = getDerived().TransformExpr(Old->getBase());
if (Base.isInvalid())
return ExprError();
Base = getSema().PerformMemberExprBaseConversion(Base.take(),
Old->isArrow());
if (Base.isInvalid())
return ExprError();
BaseType = Base.get()->getType();
} else {
BaseType = getDerived().TransformType(Old->getBaseType());
}
NestedNameSpecifierLoc QualifierLoc;
if (Old->getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
LookupResult R(SemaRef, Old->getMemberNameInfo(),
Sema::LookupOrdinaryName);
// Transform all the decls.
for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
E = Old->decls_end(); I != E; ++I) {
NamedDecl *InstD = static_cast<NamedDecl*>(
getDerived().TransformDecl(Old->getMemberLoc(),
*I));
if (!InstD) {
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
// This can happen because of dependent hiding.
if (isa<UsingShadowDecl>(*I))
continue;
else {
R.clear();
return ExprError();
}
}
// Expand using declarations.
if (isa<UsingDecl>(InstD)) {
UsingDecl *UD = cast<UsingDecl>(InstD);
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
E = UD->shadow_end(); I != E; ++I)
R.addDecl(*I);
continue;
}
R.addDecl(InstD);
}
R.resolveKind();
// Determine the naming class.
if (Old->getNamingClass()) {
CXXRecordDecl *NamingClass
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
Old->getMemberLoc(),
Old->getNamingClass()));
if (!NamingClass)
return ExprError();
R.setNamingClass(NamingClass);
}
TemplateArgumentListInfo TransArgs;
if (Old->hasExplicitTemplateArgs()) {
TransArgs.setLAngleLoc(Old->getLAngleLoc());
TransArgs.setRAngleLoc(Old->getRAngleLoc());
if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
Old->getNumTemplateArgs(),
TransArgs))
return ExprError();
}
// FIXME: to do this check properly, we will need to preserve the
// first-qualifier-in-scope here, just in case we had a dependent
// base (and therefore couldn't do the check) and a
// nested-name-qualifier (and therefore could do the lookup).
NamedDecl *FirstQualifierInScope = 0;
return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
BaseType,
Old->getOperatorLoc(),
Old->isArrow(),
QualifierLoc,
TemplateKWLoc,
FirstQualifierInScope,
R,
(Old->hasExplicitTemplateArgs()
? &TransArgs : 0));
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
return SemaRef.Owned(E);
return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
if (Pattern.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
return SemaRef.Owned(E);
return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
E->getNumExpansions());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
// If E is not value-dependent, then nothing will change when we transform it.
// Note: This is an instantiation-centric view.
if (!E->isValueDependent())
return SemaRef.Owned(E);
// Note: None of the implementations of TryExpandParameterPacks can ever
// produce a diagnostic when given only a single unexpanded parameter pack,
// so
UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
bool ShouldExpand = false;
bool RetainExpansion = false;
Optional<unsigned> NumExpansions;
if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
Unexpanded,
ShouldExpand, RetainExpansion,
NumExpansions))
return ExprError();
if (RetainExpansion)
return SemaRef.Owned(E);
NamedDecl *Pack = E->getPack();
if (!ShouldExpand) {
Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(),
Pack));
if (!Pack)
return ExprError();
}
// We now know the length of the parameter pack, so build a new expression
// that stores that length.
return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
E->getPackLoc(), E->getRParenLoc(),
NumExpansions);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
SubstNonTypeTemplateParmPackExpr *E) {
// Default behavior is to do nothing with this transformation.
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
SubstNonTypeTemplateParmExpr *E) {
// Default behavior is to do nothing with this transformation.
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
// Default behavior is to do nothing with this transformation.
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
MaterializeTemporaryExpr *E) {
return getDerived().TransformExpr(E->GetTemporaryExpr());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
return SemaRef.MaybeBindToTemporary(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
// Transform each of the elements.
SmallVector<Expr *, 8> Elements;
bool ArgChanged = false;
if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
/*IsCall=*/false, Elements, &ArgChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
Elements.data(),
Elements.size());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCDictionaryLiteral(
ObjCDictionaryLiteral *E) {
// Transform each of the elements.
SmallVector<ObjCDictionaryElement, 8> Elements;
bool ArgChanged = false;
for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
if (OrigElement.isPackExpansion()) {
// This key/value element is a pack expansion.
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can
// and should be expanded.
bool Expand = true;
bool RetainExpansion = false;
Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
Optional<unsigned> NumExpansions = OrigNumExpansions;
SourceRange PatternRange(OrigElement.Key->getLocStart(),
OrigElement.Value->getLocEnd());
if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
PatternRange,
Unexpanded,
Expand, RetainExpansion,
NumExpansions))
return ExprError();
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
if (Key.isInvalid())
return ExprError();
if (Key.get() != OrigElement.Key)
ArgChanged = true;
ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
if (Value.isInvalid())
return ExprError();
if (Value.get() != OrigElement.Value)
ArgChanged = true;
ObjCDictionaryElement Expansion = {
Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
};
Elements.push_back(Expansion);
continue;
}
// Record right away that the argument was changed. This needs
// to happen even if the array expands to nothing.
ArgChanged = true;
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
if (Key.isInvalid())
return ExprError();
ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
if (Value.isInvalid())
return ExprError();
ObjCDictionaryElement Element = {
Key.get(), Value.get(), SourceLocation(), NumExpansions
};
// If any unexpanded parameter packs remain, we still have a
// pack expansion.
if (Key.get()->containsUnexpandedParameterPack() ||
Value.get()->containsUnexpandedParameterPack())
Element.EllipsisLoc = OrigElement.EllipsisLoc;
Elements.push_back(Element);
}
// We've finished with this pack expansion.
continue;
}
// Transform and check key.
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
if (Key.isInvalid())
return ExprError();
if (Key.get() != OrigElement.Key)
ArgChanged = true;
// Transform and check value.
ExprResult Value
= getDerived().TransformExpr(OrigElement.Value);
if (Value.isInvalid())
return ExprError();
if (Value.get() != OrigElement.Value)
ArgChanged = true;
ObjCDictionaryElement Element = {
Key.get(), Value.get(), SourceLocation(), None
};
Elements.push_back(Element);
}
if (!getDerived().AlwaysRebuild() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
Elements.data(),
Elements.size());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
TypeSourceInfo *EncodedTypeInfo
= getDerived().TransformType(E->getEncodedTypeSourceInfo());
if (!EncodedTypeInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
EncodedTypeInfo == E->getEncodedTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
EncodedTypeInfo,
E->getRParenLoc());
}
template<typename Derived>
ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
ExprResult result = getDerived().TransformExpr(E->getSubExpr());
if (result.isInvalid()) return ExprError();
Expr *subExpr = result.take();
if (!getDerived().AlwaysRebuild() &&
subExpr == E->getSubExpr())
return SemaRef.Owned(E);
return SemaRef.Owned(new(SemaRef.Context)
ObjCIndirectCopyRestoreExpr(subExpr, E->getType(), E->shouldCopy()));
}
template<typename Derived>
ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
TypeSourceInfo *TSInfo
= getDerived().TransformType(E->getTypeInfoAsWritten());
if (!TSInfo)
return ExprError();
ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
if (Result.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TSInfo == E->getTypeInfoAsWritten() &&
Result.get() == E->getSubExpr())
return SemaRef.Owned(E);
return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
E->getBridgeKeywordLoc(), TSInfo,
Result.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
// Transform arguments.
bool ArgChanged = false;
SmallVector<Expr*, 8> Args;
Args.reserve(E->getNumArgs());
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
&ArgChanged))
return ExprError();
if (E->getReceiverKind() == ObjCMessageExpr::Class) {
// Class message: transform the receiver type.
TypeSourceInfo *ReceiverTypeInfo
= getDerived().TransformType(E->getClassReceiverTypeInfo());
if (!ReceiverTypeInfo)
return ExprError();
// If nothing changed, just retain the existing message send.
if (!getDerived().AlwaysRebuild() &&
ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// Build a new class message send.
SmallVector<SourceLocation, 16> SelLocs;
E->getSelectorLocs(SelLocs);
return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
E->getSelector(),
SelLocs,
E->getMethodDecl(),
E->getLeftLoc(),
Args,
E->getRightLoc());
}
// Instance message: transform the receiver
assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
"Only class and instance messages may be instantiated");
ExprResult Receiver
= getDerived().TransformExpr(E->getInstanceReceiver());
if (Receiver.isInvalid())
return ExprError();
// If nothing changed, just retain the existing message send.
if (!getDerived().AlwaysRebuild() &&
Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// Build a new instance message send.
SmallVector<SourceLocation, 16> SelLocs;
E->getSelectorLocs(SelLocs);
return getDerived().RebuildObjCMessageExpr(Receiver.get(),
E->getSelector(),
SelLocs,
E->getMethodDecl(),
E->getLeftLoc(),
Args,
E->getRightLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the ivar; it will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
E->getLocation(),
E->isArrow(), E->isFreeIvar());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
// 'super' and types never change. Property never changes. Just
// retain the existing expression.
if (!E->isObjectReceiver())
return SemaRef.Owned(E);
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the property; it will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
if (E->isExplicitProperty())
return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
E->getExplicitProperty(),
E->getLocation());
return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
SemaRef.Context.PseudoObjectTy,
E->getImplicitPropertyGetter(),
E->getImplicitPropertySetter(),
E->getLocation());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
if (Base.isInvalid())
return ExprError();
// Transform the key expression.
ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
if (Key.isInvalid())
return ExprError();
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
return SemaRef.Owned(E);
return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
Base.get(), Key.get(),
E->getAtIndexMethodDecl(),
E->setAtIndexMethodDecl());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
E->getOpLoc(),
E->isArrow());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
bool ArgumentChanged = false;
SmallVector<Expr*, 8> SubExprs;
SubExprs.reserve(E->getNumSubExprs());
if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
SubExprs, &ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
!ArgumentChanged)
return SemaRef.Owned(E);
return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
SubExprs,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
BlockDecl *oldBlock = E->getBlockDecl();
SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/0);
BlockScopeInfo *blockScope = SemaRef.getCurBlock();
blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
blockScope->TheDecl->setBlockMissingReturnType(
oldBlock->blockMissingReturnType());
SmallVector<ParmVarDecl*, 4> params;
SmallVector<QualType, 4> paramTypes;
// Parameter substitution.
if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
oldBlock->param_begin(),
oldBlock->param_size(),
0, paramTypes, &params)) {
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
return ExprError();
}
const FunctionProtoType *exprFunctionType = E->getFunctionType();
QualType exprResultType =
getDerived().TransformType(exprFunctionType->getResultType());
// Don't allow returning a objc interface by value.
if (exprResultType->isObjCObjectType()) {
getSema().Diag(E->getCaretLocation(),
diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << exprResultType;
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
return ExprError();
}
QualType functionType =
getDerived().RebuildFunctionProtoType(exprResultType, paramTypes,
exprFunctionType->getExtProtoInfo());
blockScope->FunctionType = functionType;
// Set the parameters on the block decl.
if (!params.empty())
blockScope->TheDecl->setParams(params);
if (!oldBlock->blockMissingReturnType()) {
blockScope->HasImplicitReturnType = false;
blockScope->ReturnType = exprResultType;
}
// Transform the body
StmtResult body = getDerived().TransformStmt(E->getBody());
if (body.isInvalid()) {
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
return ExprError();
}
#ifndef NDEBUG
// In builds with assertions, make sure that we captured everything we
// captured before.
if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
for (BlockDecl::capture_iterator i = oldBlock->capture_begin(),
e = oldBlock->capture_end(); i != e; ++i) {
VarDecl *oldCapture = i->getVariable();
// Ignore parameter packs.
if (isa<ParmVarDecl>(oldCapture) &&
cast<ParmVarDecl>(oldCapture)->isParameterPack())
continue;
VarDecl *newCapture =
cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
oldCapture));
assert(blockScope->CaptureMap.count(newCapture));
}
assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
}
#endif
return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
/*Scope=*/0);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
llvm_unreachable("Cannot transform asType expressions yet");
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
QualType RetTy = getDerived().TransformType(E->getType());
bool ArgumentChanged = false;
SmallVector<Expr*, 8> SubExprs;
SubExprs.reserve(E->getNumSubExprs());
if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
SubExprs, &ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
!ArgumentChanged)
return SemaRef.Owned(E);
return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
RetTy, E->getOp(), E->getRParenLoc());
}
//===----------------------------------------------------------------------===//
// Type reconstruction
//===----------------------------------------------------------------------===//
template<typename Derived>
QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
SourceLocation Star) {
return SemaRef.BuildPointerType(PointeeType, Star,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
SourceLocation Star) {
return SemaRef.BuildBlockPointerType(PointeeType, Star,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
bool WrittenAsLValue,
SourceLocation Sigil) {
return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
Sigil, getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
QualType ClassType,
SourceLocation Sigil) {
return SemaRef.BuildMemberPointerType(PointeeType, ClassType,
Sigil, getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt *Size,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
if (SizeExpr || !Size)
return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
IndexTypeQuals, BracketsRange,
getDerived().getBaseEntity());
QualType Types[] = {
SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
};
const unsigned NumTypes = sizeof(Types) / sizeof(QualType);
QualType SizeType;
for (unsigned I = 0; I != NumTypes; ++I)
if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
SizeType = Types[I];
break;
}
// Note that we can return a VariableArrayType here in the case where
// the element type was a dependent VariableArrayType.
IntegerLiteral *ArraySize
= IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
/*FIXME*/BracketsRange.getBegin());
return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
IndexTypeQuals, BracketsRange,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt &Size,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
SizeExpr,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
SizeExpr,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
unsigned NumElements,
VectorType::VectorKind VecKind) {
// FIXME: semantic checking!
return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
unsigned NumElements,
SourceLocation AttributeLoc) {
llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
NumElements, true);
IntegerLiteral *VectorSize
= IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
AttributeLoc);
return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
Expr *SizeExpr,
SourceLocation AttributeLoc) {
return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildFunctionProtoType(
QualType T,
llvm::MutableArrayRef<QualType> ParamTypes,
const FunctionProtoType::ExtProtoInfo &EPI) {
return SemaRef.BuildFunctionType(T, ParamTypes,
getDerived().getBaseLocation(),
getDerived().getBaseEntity(),
EPI);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
return SemaRef.Context.getFunctionNoProtoType(T);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
assert(D && "no decl found");
if (D->isInvalidDecl()) return QualType();
// FIXME: Doesn't account for ObjCInterfaceDecl!
TypeDecl *Ty;
if (isa<UsingDecl>(D)) {
UsingDecl *Using = cast<UsingDecl>(D);
assert(Using->isTypeName() &&
"UnresolvedUsingTypenameDecl transformed to non-typename using");
// A valid resolved using typename decl points to exactly one type decl.
assert(++Using->shadow_begin() == Using->shadow_end());
Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
} else {
assert(isa<UnresolvedUsingTypenameDecl>(D) &&
"UnresolvedUsingTypenameDecl transformed to non-using decl");
Ty = cast<UnresolvedUsingTypenameDecl>(D);
}
return SemaRef.Context.getTypeDeclType(Ty);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
SourceLocation Loc) {
return SemaRef.BuildTypeofExprType(E, Loc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
return SemaRef.Context.getTypeOfType(Underlying);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
SourceLocation Loc) {
return SemaRef.BuildDecltypeType(E, Loc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
TemplateName Template,
SourceLocation TemplateNameLoc,
TemplateArgumentListInfo &TemplateArgs) {
return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
SourceLocation KWLoc) {
return SemaRef.BuildAtomicType(ValueType, KWLoc);
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
bool TemplateKW,
TemplateDecl *Template) {
return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
Template);
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
const IdentifierInfo &Name,
SourceLocation NameLoc,
QualType ObjectType,
NamedDecl *FirstQualifierInScope) {
UnqualifiedId TemplateName;
TemplateName.setIdentifier(&Name, NameLoc);
Sema::TemplateTy Template;
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
getSema().ActOnDependentTemplateName(/*Scope=*/0,
SS, TemplateKWLoc, TemplateName,
ParsedType::make(ObjectType),
/*EnteringContext=*/false,
Template);
return Template.get();
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
OverloadedOperatorKind Operator,
SourceLocation NameLoc,
QualType ObjectType) {
UnqualifiedId Name;
// FIXME: Bogus location information.
SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
Sema::TemplateTy Template;
getSema().ActOnDependentTemplateName(/*Scope=*/0,
SS, TemplateKWLoc, Name,
ParsedType::make(ObjectType),
/*EnteringContext=*/false,
Template);
return Template.template getAsVal<TemplateName>();
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr *OrigCallee,
Expr *First,
Expr *Second) {
Expr *Callee = OrigCallee->IgnoreParenCasts();
bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
// Determine whether this should be a builtin operation.
if (Op == OO_Subscript) {
if (!First->getType()->isOverloadableType() &&
!Second->getType()->isOverloadableType())
return getSema().CreateBuiltinArraySubscriptExpr(First,
Callee->getLocStart(),
Second, OpLoc);
} else if (Op == OO_Arrow) {
// -> is never a builtin operation.
return SemaRef.BuildOverloadedArrowExpr(0, First, OpLoc);
} else if (Second == 0 || isPostIncDec) {
if (!First->getType()->isOverloadableType()) {
// The argument is not of overloadable type, so try to create a
// built-in unary operation.
UnaryOperatorKind Opc
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
}
} else {
if (!First->getType()->isOverloadableType() &&
!Second->getType()->isOverloadableType()) {
// Neither of the arguments is an overloadable type, so try to
// create a built-in binary operation.
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
ExprResult Result
= SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
if (Result.isInvalid())
return ExprError();
return Result;
}
}
// Compute the transformed set of functions (and function templates) to be
// used during overload resolution.
UnresolvedSet<16> Functions;
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
assert(ULE->requiresADL());
// FIXME: Do we have to check
// IsAcceptableNonMemberOperatorCandidate for each of these?
Functions.append(ULE->decls_begin(), ULE->decls_end());
} else {
// If we've resolved this to a particular non-member function, just call
// that function. If we resolved it to a member function,
// CreateOverloaded* will find that function for us.
NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
if (!isa<CXXMethodDecl>(ND))
Functions.addDecl(ND);
}
// Add any functions found via argument-dependent lookup.
Expr *Args[2] = { First, Second };
unsigned NumArgs = 1 + (Second != 0);
// Create the overloaded operator invocation for unary operators.
if (NumArgs == 1 || isPostIncDec) {
UnaryOperatorKind Opc
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
}
if (Op == OO_Subscript) {
SourceLocation LBrace;
SourceLocation RBrace;
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo();
LBrace = SourceLocation::getFromRawEncoding(
NameLoc.CXXOperatorName.BeginOpNameLoc);
RBrace = SourceLocation::getFromRawEncoding(
NameLoc.CXXOperatorName.EndOpNameLoc);
} else {
LBrace = Callee->getLocStart();
RBrace = OpLoc;
}
return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
First, Second);
}
// Create the overloaded operator invocation for binary operators.
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
ExprResult Result
= SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
if (Result.isInvalid())
return ExprError();
return Result;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
SourceLocation OperatorLoc,
bool isArrow,
CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destroyed) {
QualType BaseType = Base->getType();
if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
(!isArrow && !BaseType->getAs<RecordType>()) ||
(isArrow && BaseType->getAs<PointerType>() &&
!BaseType->getAs<PointerType>()->getPointeeType()
->template getAs<RecordType>())){
// This pseudo-destructor expression is still a pseudo-destructor.
return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc,
isArrow? tok::arrow : tok::period,
SS, ScopeType, CCLoc, TildeLoc,
Destroyed,
/*FIXME?*/true);
}
TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
SemaRef.Context.getCanonicalType(DestroyedType->getType())));
DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
NameInfo.setNamedTypeInfo(DestroyedType);
// The scope type is now known to be a valid nested name specifier
// component. Tack it on to the end of the nested name specifier.
if (ScopeType)
SS.Extend(SemaRef.Context, SourceLocation(),
ScopeType->getTypeLoc(), CCLoc);
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
return getSema().BuildMemberReferenceExpr(Base, BaseType,
OperatorLoc, isArrow,
SS, TemplateKWLoc,
/*FIXME: FirstQualifier*/ 0,
NameInfo,
/*TemplateArgs*/ 0);
}
} // end namespace clang
#endif // LLVM_CLANG_SEMA_TREETRANSFORM_H