llvm-project/lld/ELF/Symbols.h

595 lines
21 KiB
C++

//===- Symbols.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various types of Symbols.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_SYMBOLS_H
#define LLD_ELF_SYMBOLS_H
#include "InputFiles.h"
#include "lld/Common/LLVM.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Object/ELF.h"
#include <tuple>
namespace lld {
// Returns a string representation for a symbol for diagnostics.
std::string toString(const elf::Symbol &);
namespace elf {
class CommonSymbol;
class Defined;
class OutputSection;
class SectionBase;
class SharedSymbol;
class Symbol;
class Undefined;
// Some index properties of a symbol are stored separately in this auxiliary
// struct to decrease sizeof(SymbolUnion) in the majority of cases.
struct SymbolAux {
uint32_t gotIdx = -1;
uint32_t pltIdx = -1;
uint32_t tlsDescIdx = -1;
uint32_t tlsGdIdx = -1;
};
extern SmallVector<SymbolAux, 0> symAux;
// The base class for real symbol classes.
class Symbol {
public:
enum Kind {
PlaceholderKind,
DefinedKind,
CommonKind,
SharedKind,
UndefinedKind,
LazyObjectKind,
};
Kind kind() const { return static_cast<Kind>(symbolKind); }
// The file from which this symbol was created.
InputFile *file;
protected:
const char *nameData;
// 32-bit size saves space.
uint32_t nameSize;
public:
// Symbol binding. This is not overwritten by replace() to track
// changes during resolution. In particular:
// - An undefined weak is still weak when it resolves to a shared library.
// - An undefined weak will not extract archive members, but we have to
// remember it is weak.
uint8_t binding;
// The following fields have the same meaning as the ELF symbol attributes.
uint8_t type; // symbol type
uint8_t stOther; // st_other field value
uint8_t symbolKind;
// The partition whose dynamic symbol table contains this symbol's definition.
uint8_t partition = 1;
// Symbol visibility. This is the computed minimum visibility of all
// observed non-DSO symbols.
uint8_t visibility : 2;
// True if this symbol is preemptible at load time.
uint8_t isPreemptible : 1;
// True if the symbol was used for linking and thus need to be added to the
// output file's symbol table. This is true for all symbols except for
// unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
// are unreferenced except by other bitcode objects.
uint8_t isUsedInRegularObj : 1;
// True if an undefined or shared symbol is used from a live section.
//
// NOTE: In Writer.cpp the field is used to mark local defined symbols
// which are referenced by relocations when -r or --emit-relocs is given.
uint8_t used : 1;
// Used by a Defined symbol with protected or default visibility, to record
// whether it is required to be exported into .dynsym. This is set when any of
// the following conditions hold:
//
// - If there is an interposable symbol from a DSO. Note: We also do this for
// STV_PROTECTED symbols which can't be interposed (to match BFD behavior).
// - If -shared or --export-dynamic is specified, any symbol in an object
// file/bitcode sets this property, unless suppressed by LTO
// canBeOmittedFromSymbolTable().
uint8_t exportDynamic : 1;
// True if the symbol is in the --dynamic-list file. A Defined symbol with
// protected or default visibility with this property is required to be
// exported into .dynsym.
uint8_t inDynamicList : 1;
// Used to track if there has been at least one undefined reference to the
// symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
// if the first undefined reference from a non-shared object is weak.
//
// This is also used to retain __wrap_foo when foo is referenced.
uint8_t referenced : 1;
// True if this symbol is specified by --trace-symbol option.
uint8_t traced : 1;
// True if the name contains '@'.
uint8_t hasVersionSuffix : 1;
inline void replace(const Symbol &other);
bool includeInDynsym() const;
uint8_t computeBinding() const;
bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
bool isUndefined() const { return symbolKind == UndefinedKind; }
bool isCommon() const { return symbolKind == CommonKind; }
bool isDefined() const { return symbolKind == DefinedKind; }
bool isShared() const { return symbolKind == SharedKind; }
bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
bool isLazy() const { return symbolKind == LazyObjectKind; }
// True if this is an undefined weak symbol. This only works once
// all input files have been added.
bool isUndefWeak() const { return isWeak() && isUndefined(); }
StringRef getName() const { return {nameData, nameSize}; }
void setName(StringRef s) {
nameData = s.data();
nameSize = s.size();
}
void parseSymbolVersion();
// Get the NUL-terminated version suffix ("", "@...", or "@@...").
//
// For @@, the name has been truncated by insert(). For @, the name has been
// truncated by Symbol::parseSymbolVersion().
const char *getVersionSuffix() const { return nameData + nameSize; }
uint32_t getGotIdx() const {
return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].gotIdx;
}
uint32_t getPltIdx() const {
return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].pltIdx;
}
uint32_t getTlsDescIdx() const {
return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].tlsDescIdx;
}
uint32_t getTlsGdIdx() const {
return auxIdx == uint32_t(-1) ? uint32_t(-1) : symAux[auxIdx].tlsGdIdx;
}
bool isInGot() const { return getGotIdx() != uint32_t(-1); }
bool isInPlt() const { return getPltIdx() != uint32_t(-1); }
uint64_t getVA(int64_t addend = 0) const;
uint64_t getGotOffset() const;
uint64_t getGotVA() const;
uint64_t getGotPltOffset() const;
uint64_t getGotPltVA() const;
uint64_t getPltVA() const;
uint64_t getSize() const;
OutputSection *getOutputSection() const;
// The following two functions are used for symbol resolution.
//
// You are expected to call mergeProperties for all symbols in input
// files so that attributes that are attached to names rather than
// indivisual symbol (such as visibility) are merged together.
//
// Every time you read a new symbol from an input, you are supposed
// to call resolve() with the new symbol. That function replaces
// "this" object as a result of name resolution if the new symbol is
// more appropriate to be included in the output.
//
// For example, if "this" is an undefined symbol and a new symbol is
// a defined symbol, "this" is replaced with the new symbol.
void mergeProperties(const Symbol &other);
void resolve(const Symbol &other);
// If this is a lazy symbol, extract an input file and add the symbol
// in the file to the symbol table. Calling this function on
// non-lazy object causes a runtime error.
void extract() const;
void checkDuplicate(const Defined &other) const;
private:
void resolveUndefined(const Undefined &other);
void resolveCommon(const CommonSymbol &other);
void resolveDefined(const Defined &other);
template <class LazyT> void resolveLazy(const LazyT &other);
void resolveShared(const SharedSymbol &other);
int compare(const Symbol *other) const;
inline size_t getSymbolSize() const;
protected:
Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding,
uint8_t stOther, uint8_t type)
: file(file), nameData(name.data()), nameSize(name.size()),
binding(binding), type(type), stOther(stOther), symbolKind(k),
visibility(stOther & 3), isPreemptible(false),
isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
used(false), exportDynamic(false), inDynamicList(false),
referenced(false), traced(false), hasVersionSuffix(false),
isInIplt(false), gotInIgot(false), folded(false),
needsTocRestore(false), scriptDefined(false), needsCopy(false),
needsGot(false), needsPlt(false), needsTlsDesc(false),
needsTlsGd(false), needsTlsGdToIe(false), needsGotDtprel(false),
needsTlsIe(false), hasDirectReloc(false) {}
public:
// True if this symbol is in the Iplt sub-section of the Plt and the Igot
// sub-section of the .got.plt or .got.
uint8_t isInIplt : 1;
// True if this symbol needs a GOT entry and its GOT entry is actually in
// Igot. This will be true only for certain non-preemptible ifuncs.
uint8_t gotInIgot : 1;
// True if defined relative to a section discarded by ICF.
uint8_t folded : 1;
// True if a call to this symbol needs to be followed by a restore of the
// PPC64 toc pointer.
uint8_t needsTocRestore : 1;
// True if this symbol is defined by a symbol assignment or wrapped by --wrap.
//
// LTO shouldn't inline the symbol because it doesn't know the final content
// of the symbol.
uint8_t scriptDefined : 1;
// True if this symbol needs a canonical PLT entry, or (during
// postScanRelocations) a copy relocation.
uint8_t needsCopy : 1;
// Temporary flags used to communicate which symbol entries need PLT and GOT
// entries during postScanRelocations();
uint8_t needsGot : 1;
uint8_t needsPlt : 1;
uint8_t needsTlsDesc : 1;
uint8_t needsTlsGd : 1;
uint8_t needsTlsGdToIe : 1;
uint8_t needsGotDtprel : 1;
uint8_t needsTlsIe : 1;
uint8_t hasDirectReloc : 1;
// A symAux index used to access GOT/PLT entry indexes. This is allocated in
// postScanRelocations().
uint32_t auxIdx = -1;
uint32_t dynsymIndex = 0;
// This field is a index to the symbol's version definition.
uint16_t verdefIndex = -1;
// Version definition index.
uint16_t versionId;
bool needsDynReloc() const {
return needsCopy || needsGot || needsPlt || needsTlsDesc || needsTlsGd ||
needsTlsGdToIe || needsGotDtprel || needsTlsIe;
}
void allocateAux() {
assert(auxIdx == uint32_t(-1));
auxIdx = symAux.size();
symAux.emplace_back();
}
bool isSection() const { return type == llvm::ELF::STT_SECTION; }
bool isTls() const { return type == llvm::ELF::STT_TLS; }
bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
bool isFile() const { return type == llvm::ELF::STT_FILE; }
};
// Represents a symbol that is defined in the current output file.
class Defined : public Symbol {
public:
Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
: Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
size(size), section(section) {
exportDynamic = config->shared || config->exportDynamic;
}
static bool classof(const Symbol *s) { return s->isDefined(); }
uint64_t value;
uint64_t size;
SectionBase *section;
};
// Represents a common symbol.
//
// On Unix, it is traditionally allowed to write variable definitions
// without initialization expressions (such as "int foo;") to header
// files. Such definition is called "tentative definition".
//
// Using tentative definition is usually considered a bad practice
// because you should write only declarations (such as "extern int
// foo;") to header files. Nevertheless, the linker and the compiler
// have to do something to support bad code by allowing duplicate
// definitions for this particular case.
//
// Common symbols represent variable definitions without initializations.
// The compiler creates common symbols when it sees variable definitions
// without initialization (you can suppress this behavior and let the
// compiler create a regular defined symbol by -fno-common).
//
// The linker allows common symbols to be replaced by regular defined
// symbols. If there are remaining common symbols after name resolution is
// complete, they are converted to regular defined symbols in a .bss
// section. (Therefore, the later passes don't see any CommonSymbols.)
class CommonSymbol : public Symbol {
public:
CommonSymbol(InputFile *file, StringRef name, uint8_t binding,
uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
: Symbol(CommonKind, file, name, binding, stOther, type),
alignment(alignment), size(size) {
exportDynamic = config->shared || config->exportDynamic;
}
static bool classof(const Symbol *s) { return s->isCommon(); }
uint32_t alignment;
uint64_t size;
};
class Undefined : public Symbol {
public:
Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
uint8_t type, uint32_t discardedSecIdx = 0)
: Symbol(UndefinedKind, file, name, binding, stOther, type),
discardedSecIdx(discardedSecIdx) {}
static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
// The section index if in a discarded section, 0 otherwise.
uint32_t discardedSecIdx;
};
class SharedSymbol : public Symbol {
public:
static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
uint32_t alignment)
: Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
size(size), alignment(alignment) {
exportDynamic = true;
// GNU ifunc is a mechanism to allow user-supplied functions to
// resolve PLT slot values at load-time. This is contrary to the
// regular symbol resolution scheme in which symbols are resolved just
// by name. Using this hook, you can program how symbols are solved
// for you program. For example, you can make "memcpy" to be resolved
// to a SSE-enabled version of memcpy only when a machine running the
// program supports the SSE instruction set.
//
// Naturally, such symbols should always be called through their PLT
// slots. What GNU ifunc symbols point to are resolver functions, and
// calling them directly doesn't make sense (unless you are writing a
// loader).
//
// For DSO symbols, we always call them through PLT slots anyway.
// So there's no difference between GNU ifunc and regular function
// symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
if (this->type == llvm::ELF::STT_GNU_IFUNC)
this->type = llvm::ELF::STT_FUNC;
}
SharedFile &getFile() const { return *cast<SharedFile>(file); }
uint64_t value; // st_value
uint64_t size; // st_size
uint32_t alignment;
};
// LazyObject symbols represent symbols in object files between --start-lib and
// --end-lib options. LLD also handles traditional archives as if all the files
// in the archive are surrounded by --start-lib and --end-lib.
//
// A special complication is the handling of weak undefined symbols. They should
// not load a file, but we have to remember we have seen both the weak undefined
// and the lazy. We represent that with a lazy symbol with a weak binding. This
// means that code looking for undefined symbols normally also has to take lazy
// symbols into consideration.
class LazyObject : public Symbol {
public:
LazyObject(InputFile &file)
: Symbol(LazyObjectKind, &file, {}, llvm::ELF::STB_GLOBAL,
llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {
isUsedInRegularObj = false;
}
static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
};
// Some linker-generated symbols need to be created as
// Defined symbols.
struct ElfSym {
// __bss_start
static Defined *bss;
// etext and _etext
static Defined *etext1;
static Defined *etext2;
// edata and _edata
static Defined *edata1;
static Defined *edata2;
// end and _end
static Defined *end1;
static Defined *end2;
// The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
// be at some offset from the base of the .got section, usually 0 or
// the end of the .got.
static Defined *globalOffsetTable;
// _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
static Defined *mipsGp;
static Defined *mipsGpDisp;
static Defined *mipsLocalGp;
// __rel{,a}_iplt_{start,end} symbols.
static Defined *relaIpltStart;
static Defined *relaIpltEnd;
// __global_pointer$ for RISC-V.
static Defined *riscvGlobalPointer;
// _TLS_MODULE_BASE_ on targets that support TLSDESC.
static Defined *tlsModuleBase;
};
// A buffer class that is large enough to hold any Symbol-derived
// object. We allocate memory using this class and instantiate a symbol
// using the placement new.
union SymbolUnion {
alignas(Defined) char a[sizeof(Defined)];
alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
alignas(Undefined) char c[sizeof(Undefined)];
alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
alignas(LazyObject) char e[sizeof(LazyObject)];
};
// It is important to keep the size of SymbolUnion small for performance and
// memory usage reasons. 64 bytes is a soft limit based on the size of Defined
// on a 64-bit system.
static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large");
template <typename T> struct AssertSymbol {
static_assert(std::is_trivially_destructible<T>(),
"Symbol types must be trivially destructible");
static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
static_assert(alignof(T) <= alignof(SymbolUnion),
"SymbolUnion not aligned enough");
};
static inline void assertSymbols() {
AssertSymbol<Defined>();
AssertSymbol<CommonSymbol>();
AssertSymbol<Undefined>();
AssertSymbol<SharedSymbol>();
AssertSymbol<LazyObject>();
}
void printTraceSymbol(const Symbol &sym, StringRef name);
size_t Symbol::getSymbolSize() const {
switch (kind()) {
case CommonKind:
return sizeof(CommonSymbol);
case DefinedKind:
return sizeof(Defined);
case LazyObjectKind:
return sizeof(LazyObject);
case SharedKind:
return sizeof(SharedSymbol);
case UndefinedKind:
return sizeof(Undefined);
case PlaceholderKind:
return sizeof(Symbol);
}
llvm_unreachable("unknown symbol kind");
}
// replace() replaces "this" object with a given symbol by memcpy'ing
// it over to "this". This function is called as a result of name
// resolution, e.g. to replace an undefind symbol with a defined symbol.
void Symbol::replace(const Symbol &other) {
using llvm::ELF::STT_TLS;
// st_value of STT_TLS represents the assigned offset, not the actual address
// which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be
// referenced by special TLS relocations. It is usually an error if a STT_TLS
// symbol is replaced by a non-STT_TLS symbol, vice versa. There are two
// exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a
// STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a
// STT_NOTYPE lazy symbol.
if (symbolKind != PlaceholderKind && !other.isLazy() &&
(type == STT_TLS) != (other.type == STT_TLS) &&
type != llvm::ELF::STT_NOTYPE)
error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
toString(other.file) + "\n>>> defined in " + toString(file));
Symbol old = *this;
memcpy(this, &other, other.getSymbolSize());
// old may be a placeholder. The referenced fields must be initialized in
// SymbolTable::insert.
nameData = old.nameData;
nameSize = old.nameSize;
partition = old.partition;
visibility = old.visibility;
isPreemptible = old.isPreemptible;
isUsedInRegularObj = old.isUsedInRegularObj;
exportDynamic = old.exportDynamic;
inDynamicList = old.inDynamicList;
referenced = old.referenced;
traced = old.traced;
hasVersionSuffix = old.hasVersionSuffix;
scriptDefined = old.scriptDefined;
versionId = old.versionId;
// Print out a log message if --trace-symbol was specified.
// This is for debugging.
if (traced)
printTraceSymbol(*this, getName());
}
template <typename... T> Defined *makeDefined(T &&...args) {
return new (reinterpret_cast<Defined *>(
getSpecificAllocSingleton<SymbolUnion>().Allocate()))
Defined(std::forward<T>(args)...);
}
void reportDuplicate(const Symbol &sym, InputFile *newFile,
InputSectionBase *errSec, uint64_t errOffset);
void maybeWarnUnorderableSymbol(const Symbol *sym);
bool computeIsPreemptible(const Symbol &sym);
void reportBackrefs();
// A mapping from a symbol to an InputFile referencing it backward. Used by
// --warn-backrefs.
extern llvm::DenseMap<const Symbol *,
std::pair<const InputFile *, const InputFile *>>
backwardReferences;
// A tuple of (reference, extractedFile, sym). Used by --why-extract=.
extern SmallVector<std::tuple<std::string, const InputFile *, const Symbol &>,
0>
whyExtract;
} // namespace elf
} // namespace lld
#endif