b675a7628c
Summary: Detect a run of memory tagging instructions for adjacent stack frame slots, and replace them with a shorter instruction sequence * replace STG + STG with ST2G * replace STGloop + STGloop with STGloop This code needs to run when stack slot offsets are already known, but before FrameIndex operands in STG instructions are eliminated; that's the reason for the new hook in PrologueEpilogue. This change modifies STGloop and STZGloop pseudos to take the size as an immediate integer operand, and base address as a FI operand when possible. This is needed to simplify recognizing an STGloop instruction as operating on a stack slot post-regalloc. This improves memtag code size by ~0.25%, and it looks like an additional ~0.1% is possible by rearranging the stack frame such that consecutive STG instructions reference adjacent slots (patch pending). Reviewers: pcc, ostannard Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D70286 |
||
---|---|---|
clang | ||
clang-tools-extra | ||
compiler-rt | ||
debuginfo-tests | ||
libc | ||
libclc | ||
libcxx | ||
libcxxabi | ||
libunwind | ||
lld | ||
lldb | ||
llgo | ||
llvm | ||
mlir | ||
openmp | ||
parallel-libs | ||
polly | ||
pstl | ||
.arcconfig | ||
.clang-format | ||
.clang-tidy | ||
.git-blame-ignore-revs | ||
.gitignore | ||
CONTRIBUTING.md | ||
README.md |
README.md
The LLVM Compiler Infrastructure
This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting Started with the LLVM System
Taken from https://llvm.org/docs/GettingStarted.html.
Overview
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example workflow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related subprojects like Clang):
-
git clone https://github.com/llvm/llvm-project.git
-
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project
-
mkdir build
-
cd build
-
cmake -G <generator> [options] ../llvm
Some common generators are:
Ninja
--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles
--- for generating make-compatible parallel makefiles.Visual Studio
--- for generating Visual Studio projects and solutions.Xcode
--- for generating Xcode projects.
Some Common options:
-
-DLLVM_ENABLE_PROJECTS='...'
--- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi"
. -
-DCMAKE_INSTALL_PREFIX=directory
--- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default/usr/local
). -
-DCMAKE_BUILD_TYPE=type
--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On
--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
Run your build tool of choice!
-
The default target (i.e.
ninja
ormake
) will build all of LLVM. -
The
check-all
target (i.e.ninja check-all
) will run the regression tests to ensure everything is in working order. -
CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>
target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make
, usemake -j NNN
(NNN is the number of parallel jobs, use e.g. number of CPUs you have.)
-
-
For more information see CMake
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.