llvm-project/llvm/lib/IR/Attributes.cpp

1740 lines
55 KiB
C++

//===- Attributes.cpp - Implement AttributesList --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements the Attribute, AttributeImpl, AttrBuilder,
// AttributeListImpl, and AttributeList classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Attributes.h"
#include "AttributeImpl.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Attribute Construction Methods
//===----------------------------------------------------------------------===//
// allocsize has two integer arguments, but because they're both 32 bits, we can
// pack them into one 64-bit value, at the cost of making said value
// nonsensical.
//
// In order to do this, we need to reserve one value of the second (optional)
// allocsize argument to signify "not present."
static const unsigned AllocSizeNumElemsNotPresent = -1;
static uint64_t packAllocSizeArgs(unsigned ElemSizeArg,
const Optional<unsigned> &NumElemsArg) {
assert((!NumElemsArg.hasValue() ||
*NumElemsArg != AllocSizeNumElemsNotPresent) &&
"Attempting to pack a reserved value");
return uint64_t(ElemSizeArg) << 32 |
NumElemsArg.getValueOr(AllocSizeNumElemsNotPresent);
}
static std::pair<unsigned, Optional<unsigned>>
unpackAllocSizeArgs(uint64_t Num) {
unsigned NumElems = Num & std::numeric_limits<unsigned>::max();
unsigned ElemSizeArg = Num >> 32;
Optional<unsigned> NumElemsArg;
if (NumElems != AllocSizeNumElemsNotPresent)
NumElemsArg = NumElems;
return std::make_pair(ElemSizeArg, NumElemsArg);
}
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
uint64_t Val) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddInteger(Kind);
if (Val) ID.AddInteger(Val);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!Val)
PA = new EnumAttributeImpl(Kind);
else
PA = new IntAttributeImpl(Kind, Val);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the Attribute that we found or created.
return Attribute(PA);
}
Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddString(Kind);
if (!Val.empty()) ID.AddString(Val);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
PA = new StringAttributeImpl(Kind, Val);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the Attribute that we found or created.
return Attribute(PA);
}
Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) {
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
return get(Context, Alignment, Align);
}
Attribute Attribute::getWithStackAlignment(LLVMContext &Context,
uint64_t Align) {
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
return get(Context, StackAlignment, Align);
}
Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context,
uint64_t Bytes) {
assert(Bytes && "Bytes must be non-zero.");
return get(Context, Dereferenceable, Bytes);
}
Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context,
uint64_t Bytes) {
assert(Bytes && "Bytes must be non-zero.");
return get(Context, DereferenceableOrNull, Bytes);
}
Attribute
Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg,
const Optional<unsigned> &NumElemsArg) {
assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) &&
"Invalid allocsize arguments -- given allocsize(0, 0)");
return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg));
}
//===----------------------------------------------------------------------===//
// Attribute Accessor Methods
//===----------------------------------------------------------------------===//
bool Attribute::isEnumAttribute() const {
return pImpl && pImpl->isEnumAttribute();
}
bool Attribute::isIntAttribute() const {
return pImpl && pImpl->isIntAttribute();
}
bool Attribute::isStringAttribute() const {
return pImpl && pImpl->isStringAttribute();
}
Attribute::AttrKind Attribute::getKindAsEnum() const {
if (!pImpl) return None;
assert((isEnumAttribute() || isIntAttribute()) &&
"Invalid attribute type to get the kind as an enum!");
return pImpl->getKindAsEnum();
}
uint64_t Attribute::getValueAsInt() const {
if (!pImpl) return 0;
assert(isIntAttribute() &&
"Expected the attribute to be an integer attribute!");
return pImpl->getValueAsInt();
}
StringRef Attribute::getKindAsString() const {
if (!pImpl) return {};
assert(isStringAttribute() &&
"Invalid attribute type to get the kind as a string!");
return pImpl->getKindAsString();
}
StringRef Attribute::getValueAsString() const {
if (!pImpl) return {};
assert(isStringAttribute() &&
"Invalid attribute type to get the value as a string!");
return pImpl->getValueAsString();
}
bool Attribute::hasAttribute(AttrKind Kind) const {
return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None);
}
bool Attribute::hasAttribute(StringRef Kind) const {
if (!isStringAttribute()) return false;
return pImpl && pImpl->hasAttribute(Kind);
}
unsigned Attribute::getAlignment() const {
assert(hasAttribute(Attribute::Alignment) &&
"Trying to get alignment from non-alignment attribute!");
return pImpl->getValueAsInt();
}
unsigned Attribute::getStackAlignment() const {
assert(hasAttribute(Attribute::StackAlignment) &&
"Trying to get alignment from non-alignment attribute!");
return pImpl->getValueAsInt();
}
uint64_t Attribute::getDereferenceableBytes() const {
assert(hasAttribute(Attribute::Dereferenceable) &&
"Trying to get dereferenceable bytes from "
"non-dereferenceable attribute!");
return pImpl->getValueAsInt();
}
uint64_t Attribute::getDereferenceableOrNullBytes() const {
assert(hasAttribute(Attribute::DereferenceableOrNull) &&
"Trying to get dereferenceable bytes from "
"non-dereferenceable attribute!");
return pImpl->getValueAsInt();
}
std::pair<unsigned, Optional<unsigned>> Attribute::getAllocSizeArgs() const {
assert(hasAttribute(Attribute::AllocSize) &&
"Trying to get allocsize args from non-allocsize attribute");
return unpackAllocSizeArgs(pImpl->getValueAsInt());
}
std::string Attribute::getAsString(bool InAttrGrp) const {
if (!pImpl) return {};
if (hasAttribute(Attribute::SanitizeAddress))
return "sanitize_address";
if (hasAttribute(Attribute::SanitizeHWAddress))
return "sanitize_hwaddress";
if (hasAttribute(Attribute::AlwaysInline))
return "alwaysinline";
if (hasAttribute(Attribute::ArgMemOnly))
return "argmemonly";
if (hasAttribute(Attribute::Builtin))
return "builtin";
if (hasAttribute(Attribute::ByVal))
return "byval";
if (hasAttribute(Attribute::Convergent))
return "convergent";
if (hasAttribute(Attribute::SwiftError))
return "swifterror";
if (hasAttribute(Attribute::SwiftSelf))
return "swiftself";
if (hasAttribute(Attribute::InaccessibleMemOnly))
return "inaccessiblememonly";
if (hasAttribute(Attribute::InaccessibleMemOrArgMemOnly))
return "inaccessiblemem_or_argmemonly";
if (hasAttribute(Attribute::InAlloca))
return "inalloca";
if (hasAttribute(Attribute::InlineHint))
return "inlinehint";
if (hasAttribute(Attribute::InReg))
return "inreg";
if (hasAttribute(Attribute::JumpTable))
return "jumptable";
if (hasAttribute(Attribute::MinSize))
return "minsize";
if (hasAttribute(Attribute::Naked))
return "naked";
if (hasAttribute(Attribute::Nest))
return "nest";
if (hasAttribute(Attribute::NoAlias))
return "noalias";
if (hasAttribute(Attribute::NoBuiltin))
return "nobuiltin";
if (hasAttribute(Attribute::NoCapture))
return "nocapture";
if (hasAttribute(Attribute::NoDuplicate))
return "noduplicate";
if (hasAttribute(Attribute::NoImplicitFloat))
return "noimplicitfloat";
if (hasAttribute(Attribute::NoInline))
return "noinline";
if (hasAttribute(Attribute::NonLazyBind))
return "nonlazybind";
if (hasAttribute(Attribute::NonNull))
return "nonnull";
if (hasAttribute(Attribute::NoRedZone))
return "noredzone";
if (hasAttribute(Attribute::NoReturn))
return "noreturn";
if (hasAttribute(Attribute::NoCfCheck))
return "nocf_check";
if (hasAttribute(Attribute::NoRecurse))
return "norecurse";
if (hasAttribute(Attribute::NoUnwind))
return "nounwind";
if (hasAttribute(Attribute::OptForFuzzing))
return "optforfuzzing";
if (hasAttribute(Attribute::OptimizeNone))
return "optnone";
if (hasAttribute(Attribute::OptimizeForSize))
return "optsize";
if (hasAttribute(Attribute::ReadNone))
return "readnone";
if (hasAttribute(Attribute::ReadOnly))
return "readonly";
if (hasAttribute(Attribute::WriteOnly))
return "writeonly";
if (hasAttribute(Attribute::Returned))
return "returned";
if (hasAttribute(Attribute::ReturnsTwice))
return "returns_twice";
if (hasAttribute(Attribute::SExt))
return "signext";
if (hasAttribute(Attribute::SpeculativeLoadHardening))
return "speculative_load_hardening";
if (hasAttribute(Attribute::Speculatable))
return "speculatable";
if (hasAttribute(Attribute::StackProtect))
return "ssp";
if (hasAttribute(Attribute::StackProtectReq))
return "sspreq";
if (hasAttribute(Attribute::StackProtectStrong))
return "sspstrong";
if (hasAttribute(Attribute::SafeStack))
return "safestack";
if (hasAttribute(Attribute::ShadowCallStack))
return "shadowcallstack";
if (hasAttribute(Attribute::StrictFP))
return "strictfp";
if (hasAttribute(Attribute::StructRet))
return "sret";
if (hasAttribute(Attribute::SanitizeThread))
return "sanitize_thread";
if (hasAttribute(Attribute::SanitizeMemory))
return "sanitize_memory";
if (hasAttribute(Attribute::UWTable))
return "uwtable";
if (hasAttribute(Attribute::ZExt))
return "zeroext";
if (hasAttribute(Attribute::Cold))
return "cold";
if (hasAttribute(Attribute::ImmArg))
return "immarg";
// FIXME: These should be output like this:
//
// align=4
// alignstack=8
//
if (hasAttribute(Attribute::Alignment)) {
std::string Result;
Result += "align";
Result += (InAttrGrp) ? "=" : " ";
Result += utostr(getValueAsInt());
return Result;
}
auto AttrWithBytesToString = [&](const char *Name) {
std::string Result;
Result += Name;
if (InAttrGrp) {
Result += "=";
Result += utostr(getValueAsInt());
} else {
Result += "(";
Result += utostr(getValueAsInt());
Result += ")";
}
return Result;
};
if (hasAttribute(Attribute::StackAlignment))
return AttrWithBytesToString("alignstack");
if (hasAttribute(Attribute::Dereferenceable))
return AttrWithBytesToString("dereferenceable");
if (hasAttribute(Attribute::DereferenceableOrNull))
return AttrWithBytesToString("dereferenceable_or_null");
if (hasAttribute(Attribute::AllocSize)) {
unsigned ElemSize;
Optional<unsigned> NumElems;
std::tie(ElemSize, NumElems) = getAllocSizeArgs();
std::string Result = "allocsize(";
Result += utostr(ElemSize);
if (NumElems.hasValue()) {
Result += ',';
Result += utostr(*NumElems);
}
Result += ')';
return Result;
}
// Convert target-dependent attributes to strings of the form:
//
// "kind"
// "kind" = "value"
//
if (isStringAttribute()) {
std::string Result;
Result += (Twine('"') + getKindAsString() + Twine('"')).str();
std::string AttrVal = pImpl->getValueAsString();
if (AttrVal.empty()) return Result;
// Since some attribute strings contain special characters that cannot be
// printable, those have to be escaped to make the attribute value printable
// as is. e.g. "\01__gnu_mcount_nc"
{
raw_string_ostream OS(Result);
OS << "=\"";
printEscapedString(AttrVal, OS);
OS << "\"";
}
return Result;
}
llvm_unreachable("Unknown attribute");
}
bool Attribute::operator<(Attribute A) const {
if (!pImpl && !A.pImpl) return false;
if (!pImpl) return true;
if (!A.pImpl) return false;
return *pImpl < *A.pImpl;
}
//===----------------------------------------------------------------------===//
// AttributeImpl Definition
//===----------------------------------------------------------------------===//
// Pin the vtables to this file.
AttributeImpl::~AttributeImpl() = default;
void EnumAttributeImpl::anchor() {}
void IntAttributeImpl::anchor() {}
void StringAttributeImpl::anchor() {}
bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
if (isStringAttribute()) return false;
return getKindAsEnum() == A;
}
bool AttributeImpl::hasAttribute(StringRef Kind) const {
if (!isStringAttribute()) return false;
return getKindAsString() == Kind;
}
Attribute::AttrKind AttributeImpl::getKindAsEnum() const {
assert(isEnumAttribute() || isIntAttribute());
return static_cast<const EnumAttributeImpl *>(this)->getEnumKind();
}
uint64_t AttributeImpl::getValueAsInt() const {
assert(isIntAttribute());
return static_cast<const IntAttributeImpl *>(this)->getValue();
}
StringRef AttributeImpl::getKindAsString() const {
assert(isStringAttribute());
return static_cast<const StringAttributeImpl *>(this)->getStringKind();
}
StringRef AttributeImpl::getValueAsString() const {
assert(isStringAttribute());
return static_cast<const StringAttributeImpl *>(this)->getStringValue();
}
bool AttributeImpl::operator<(const AttributeImpl &AI) const {
// This sorts the attributes with Attribute::AttrKinds coming first (sorted
// relative to their enum value) and then strings.
if (isEnumAttribute()) {
if (AI.isEnumAttribute()) return getKindAsEnum() < AI.getKindAsEnum();
if (AI.isIntAttribute()) return true;
if (AI.isStringAttribute()) return true;
}
if (isIntAttribute()) {
if (AI.isEnumAttribute()) return false;
if (AI.isIntAttribute()) {
if (getKindAsEnum() == AI.getKindAsEnum())
return getValueAsInt() < AI.getValueAsInt();
return getKindAsEnum() < AI.getKindAsEnum();
}
if (AI.isStringAttribute()) return true;
}
if (AI.isEnumAttribute()) return false;
if (AI.isIntAttribute()) return false;
if (getKindAsString() == AI.getKindAsString())
return getValueAsString() < AI.getValueAsString();
return getKindAsString() < AI.getKindAsString();
}
//===----------------------------------------------------------------------===//
// AttributeSet Definition
//===----------------------------------------------------------------------===//
AttributeSet AttributeSet::get(LLVMContext &C, const AttrBuilder &B) {
return AttributeSet(AttributeSetNode::get(C, B));
}
AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<Attribute> Attrs) {
return AttributeSet(AttributeSetNode::get(C, Attrs));
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C,
Attribute::AttrKind Kind) const {
if (hasAttribute(Kind)) return *this;
AttrBuilder B;
B.addAttribute(Kind);
return addAttributes(C, AttributeSet::get(C, B));
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, StringRef Kind,
StringRef Value) const {
AttrBuilder B;
B.addAttribute(Kind, Value);
return addAttributes(C, AttributeSet::get(C, B));
}
AttributeSet AttributeSet::addAttributes(LLVMContext &C,
const AttributeSet AS) const {
if (!hasAttributes())
return AS;
if (!AS.hasAttributes())
return *this;
AttrBuilder B(AS);
for (const auto I : *this)
B.addAttribute(I);
return get(C, B);
}
AttributeSet AttributeSet::removeAttribute(LLVMContext &C,
Attribute::AttrKind Kind) const {
if (!hasAttribute(Kind)) return *this;
AttrBuilder B(*this);
B.removeAttribute(Kind);
return get(C, B);
}
AttributeSet AttributeSet::removeAttribute(LLVMContext &C,
StringRef Kind) const {
if (!hasAttribute(Kind)) return *this;
AttrBuilder B(*this);
B.removeAttribute(Kind);
return get(C, B);
}
AttributeSet AttributeSet::removeAttributes(LLVMContext &C,
const AttrBuilder &Attrs) const {
AttrBuilder B(*this);
B.remove(Attrs);
return get(C, B);
}
unsigned AttributeSet::getNumAttributes() const {
return SetNode ? SetNode->getNumAttributes() : 0;
}
bool AttributeSet::hasAttribute(Attribute::AttrKind Kind) const {
return SetNode ? SetNode->hasAttribute(Kind) : false;
}
bool AttributeSet::hasAttribute(StringRef Kind) const {
return SetNode ? SetNode->hasAttribute(Kind) : false;
}
Attribute AttributeSet::getAttribute(Attribute::AttrKind Kind) const {
return SetNode ? SetNode->getAttribute(Kind) : Attribute();
}
Attribute AttributeSet::getAttribute(StringRef Kind) const {
return SetNode ? SetNode->getAttribute(Kind) : Attribute();
}
unsigned AttributeSet::getAlignment() const {
return SetNode ? SetNode->getAlignment() : 0;
}
unsigned AttributeSet::getStackAlignment() const {
return SetNode ? SetNode->getStackAlignment() : 0;
}
uint64_t AttributeSet::getDereferenceableBytes() const {
return SetNode ? SetNode->getDereferenceableBytes() : 0;
}
uint64_t AttributeSet::getDereferenceableOrNullBytes() const {
return SetNode ? SetNode->getDereferenceableOrNullBytes() : 0;
}
std::pair<unsigned, Optional<unsigned>> AttributeSet::getAllocSizeArgs() const {
return SetNode ? SetNode->getAllocSizeArgs()
: std::pair<unsigned, Optional<unsigned>>(0, 0);
}
std::string AttributeSet::getAsString(bool InAttrGrp) const {
return SetNode ? SetNode->getAsString(InAttrGrp) : "";
}
AttributeSet::iterator AttributeSet::begin() const {
return SetNode ? SetNode->begin() : nullptr;
}
AttributeSet::iterator AttributeSet::end() const {
return SetNode ? SetNode->end() : nullptr;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void AttributeSet::dump() const {
dbgs() << "AS =\n";
dbgs() << " { ";
dbgs() << getAsString(true) << " }\n";
}
#endif
//===----------------------------------------------------------------------===//
// AttributeSetNode Definition
//===----------------------------------------------------------------------===//
AttributeSetNode::AttributeSetNode(ArrayRef<Attribute> Attrs)
: AvailableAttrs(0), NumAttrs(Attrs.size()) {
// There's memory after the node where we can store the entries in.
llvm::copy(Attrs, getTrailingObjects<Attribute>());
for (const auto I : *this) {
if (!I.isStringAttribute()) {
AvailableAttrs |= ((uint64_t)1) << I.getKindAsEnum();
}
}
}
AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
ArrayRef<Attribute> Attrs) {
if (Attrs.empty())
return nullptr;
// Otherwise, build a key to look up the existing attributes.
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end());
llvm::sort(SortedAttrs);
for (const auto Attr : SortedAttrs)
Attr.Profile(ID);
void *InsertPoint;
AttributeSetNode *PA =
pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!PA) {
// Coallocate entries after the AttributeSetNode itself.
void *Mem = ::operator new(totalSizeToAlloc<Attribute>(SortedAttrs.size()));
PA = new (Mem) AttributeSetNode(SortedAttrs);
pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
}
// Return the AttributeSetNode that we found or created.
return PA;
}
AttributeSetNode *AttributeSetNode::get(LLVMContext &C, const AttrBuilder &B) {
// Add target-independent attributes.
SmallVector<Attribute, 8> Attrs;
for (Attribute::AttrKind Kind = Attribute::None;
Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) {
if (!B.contains(Kind))
continue;
Attribute Attr;
switch (Kind) {
case Attribute::Alignment:
Attr = Attribute::getWithAlignment(C, B.getAlignment());
break;
case Attribute::StackAlignment:
Attr = Attribute::getWithStackAlignment(C, B.getStackAlignment());
break;
case Attribute::Dereferenceable:
Attr = Attribute::getWithDereferenceableBytes(
C, B.getDereferenceableBytes());
break;
case Attribute::DereferenceableOrNull:
Attr = Attribute::getWithDereferenceableOrNullBytes(
C, B.getDereferenceableOrNullBytes());
break;
case Attribute::AllocSize: {
auto A = B.getAllocSizeArgs();
Attr = Attribute::getWithAllocSizeArgs(C, A.first, A.second);
break;
}
default:
Attr = Attribute::get(C, Kind);
}
Attrs.push_back(Attr);
}
// Add target-dependent (string) attributes.
for (const auto &TDA : B.td_attrs())
Attrs.emplace_back(Attribute::get(C, TDA.first, TDA.second));
return get(C, Attrs);
}
bool AttributeSetNode::hasAttribute(StringRef Kind) const {
for (const auto I : *this)
if (I.hasAttribute(Kind))
return true;
return false;
}
Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const {
if (hasAttribute(Kind)) {
for (const auto I : *this)
if (I.hasAttribute(Kind))
return I;
}
return {};
}
Attribute AttributeSetNode::getAttribute(StringRef Kind) const {
for (const auto I : *this)
if (I.hasAttribute(Kind))
return I;
return {};
}
unsigned AttributeSetNode::getAlignment() const {
for (const auto I : *this)
if (I.hasAttribute(Attribute::Alignment))
return I.getAlignment();
return 0;
}
unsigned AttributeSetNode::getStackAlignment() const {
for (const auto I : *this)
if (I.hasAttribute(Attribute::StackAlignment))
return I.getStackAlignment();
return 0;
}
uint64_t AttributeSetNode::getDereferenceableBytes() const {
for (const auto I : *this)
if (I.hasAttribute(Attribute::Dereferenceable))
return I.getDereferenceableBytes();
return 0;
}
uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const {
for (const auto I : *this)
if (I.hasAttribute(Attribute::DereferenceableOrNull))
return I.getDereferenceableOrNullBytes();
return 0;
}
std::pair<unsigned, Optional<unsigned>>
AttributeSetNode::getAllocSizeArgs() const {
for (const auto I : *this)
if (I.hasAttribute(Attribute::AllocSize))
return I.getAllocSizeArgs();
return std::make_pair(0, 0);
}
std::string AttributeSetNode::getAsString(bool InAttrGrp) const {
std::string Str;
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I != begin())
Str += ' ';
Str += I->getAsString(InAttrGrp);
}
return Str;
}
//===----------------------------------------------------------------------===//
// AttributeListImpl Definition
//===----------------------------------------------------------------------===//
/// Map from AttributeList index to the internal array index. Adding one happens
/// to work, but it relies on unsigned integer wrapping. MSVC warns about
/// unsigned wrapping in constexpr functions, so write out the conditional. LLVM
/// folds it to add anyway.
static constexpr unsigned attrIdxToArrayIdx(unsigned Index) {
return Index == AttributeList::FunctionIndex ? 0 : Index + 1;
}
AttributeListImpl::AttributeListImpl(LLVMContext &C,
ArrayRef<AttributeSet> Sets)
: AvailableFunctionAttrs(0), Context(C), NumAttrSets(Sets.size()) {
assert(!Sets.empty() && "pointless AttributeListImpl");
// There's memory after the node where we can store the entries in.
llvm::copy(Sets, getTrailingObjects<AttributeSet>());
// Initialize AvailableFunctionAttrs summary bitset.
static_assert(Attribute::EndAttrKinds <=
sizeof(AvailableFunctionAttrs) * CHAR_BIT,
"Too many attributes");
static_assert(attrIdxToArrayIdx(AttributeList::FunctionIndex) == 0U,
"function should be stored in slot 0");
for (const auto I : Sets[0]) {
if (!I.isStringAttribute())
AvailableFunctionAttrs |= 1ULL << I.getKindAsEnum();
}
}
void AttributeListImpl::Profile(FoldingSetNodeID &ID) const {
Profile(ID, makeArrayRef(begin(), end()));
}
void AttributeListImpl::Profile(FoldingSetNodeID &ID,
ArrayRef<AttributeSet> Sets) {
for (const auto &Set : Sets)
ID.AddPointer(Set.SetNode);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void AttributeListImpl::dump() const {
AttributeList(const_cast<AttributeListImpl *>(this)).dump();
}
#endif
//===----------------------------------------------------------------------===//
// AttributeList Construction and Mutation Methods
//===----------------------------------------------------------------------===//
AttributeList AttributeList::getImpl(LLVMContext &C,
ArrayRef<AttributeSet> AttrSets) {
assert(!AttrSets.empty() && "pointless AttributeListImpl");
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
AttributeListImpl::Profile(ID, AttrSets);
void *InsertPoint;
AttributeListImpl *PA =
pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then
// create a new one and insert it.
if (!PA) {
// Coallocate entries after the AttributeListImpl itself.
void *Mem = ::operator new(
AttributeListImpl::totalSizeToAlloc<AttributeSet>(AttrSets.size()));
PA = new (Mem) AttributeListImpl(C, AttrSets);
pImpl->AttrsLists.InsertNode(PA, InsertPoint);
}
// Return the AttributesList that we found or created.
return AttributeList(PA);
}
AttributeList
AttributeList::get(LLVMContext &C,
ArrayRef<std::pair<unsigned, Attribute>> Attrs) {
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return {};
assert(std::is_sorted(Attrs.begin(), Attrs.end(),
[](const std::pair<unsigned, Attribute> &LHS,
const std::pair<unsigned, Attribute> &RHS) {
return LHS.first < RHS.first;
}) && "Misordered Attributes list!");
assert(llvm::none_of(Attrs,
[](const std::pair<unsigned, Attribute> &Pair) {
return Pair.second.hasAttribute(Attribute::None);
}) &&
"Pointless attribute!");
// Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
// list.
SmallVector<std::pair<unsigned, AttributeSet>, 8> AttrPairVec;
for (ArrayRef<std::pair<unsigned, Attribute>>::iterator I = Attrs.begin(),
E = Attrs.end(); I != E; ) {
unsigned Index = I->first;
SmallVector<Attribute, 4> AttrVec;
while (I != E && I->first == Index) {
AttrVec.push_back(I->second);
++I;
}
AttrPairVec.emplace_back(Index, AttributeSet::get(C, AttrVec));
}
return get(C, AttrPairVec);
}
AttributeList
AttributeList::get(LLVMContext &C,
ArrayRef<std::pair<unsigned, AttributeSet>> Attrs) {
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return {};
assert(std::is_sorted(Attrs.begin(), Attrs.end(),
[](const std::pair<unsigned, AttributeSet> &LHS,
const std::pair<unsigned, AttributeSet> &RHS) {
return LHS.first < RHS.first;
}) &&
"Misordered Attributes list!");
assert(llvm::none_of(Attrs,
[](const std::pair<unsigned, AttributeSet> &Pair) {
return !Pair.second.hasAttributes();
}) &&
"Pointless attribute!");
unsigned MaxIndex = Attrs.back().first;
// If the MaxIndex is FunctionIndex and there are other indices in front
// of it, we need to use the largest of those to get the right size.
if (MaxIndex == FunctionIndex && Attrs.size() > 1)
MaxIndex = Attrs[Attrs.size() - 2].first;
SmallVector<AttributeSet, 4> AttrVec(attrIdxToArrayIdx(MaxIndex) + 1);
for (const auto Pair : Attrs)
AttrVec[attrIdxToArrayIdx(Pair.first)] = Pair.second;
return getImpl(C, AttrVec);
}
AttributeList AttributeList::get(LLVMContext &C, AttributeSet FnAttrs,
AttributeSet RetAttrs,
ArrayRef<AttributeSet> ArgAttrs) {
// Scan from the end to find the last argument with attributes. Most
// arguments don't have attributes, so it's nice if we can have fewer unique
// AttributeListImpls by dropping empty attribute sets at the end of the list.
unsigned NumSets = 0;
for (size_t I = ArgAttrs.size(); I != 0; --I) {
if (ArgAttrs[I - 1].hasAttributes()) {
NumSets = I + 2;
break;
}
}
if (NumSets == 0) {
// Check function and return attributes if we didn't have argument
// attributes.
if (RetAttrs.hasAttributes())
NumSets = 2;
else if (FnAttrs.hasAttributes())
NumSets = 1;
}
// If all attribute sets were empty, we can use the empty attribute list.
if (NumSets == 0)
return {};
SmallVector<AttributeSet, 8> AttrSets;
AttrSets.reserve(NumSets);
// If we have any attributes, we always have function attributes.
AttrSets.push_back(FnAttrs);
if (NumSets > 1)
AttrSets.push_back(RetAttrs);
if (NumSets > 2) {
// Drop the empty argument attribute sets at the end.
ArgAttrs = ArgAttrs.take_front(NumSets - 2);
AttrSets.insert(AttrSets.end(), ArgAttrs.begin(), ArgAttrs.end());
}
return getImpl(C, AttrSets);
}
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
const AttrBuilder &B) {
if (!B.hasAttributes())
return {};
Index = attrIdxToArrayIdx(Index);
SmallVector<AttributeSet, 8> AttrSets(Index + 1);
AttrSets[Index] = AttributeSet::get(C, B);
return getImpl(C, AttrSets);
}
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
ArrayRef<Attribute::AttrKind> Kinds) {
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (const auto K : Kinds)
Attrs.emplace_back(Index, Attribute::get(C, K));
return get(C, Attrs);
}
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
ArrayRef<StringRef> Kinds) {
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (const auto K : Kinds)
Attrs.emplace_back(Index, Attribute::get(C, K));
return get(C, Attrs);
}
AttributeList AttributeList::get(LLVMContext &C,
ArrayRef<AttributeList> Attrs) {
if (Attrs.empty())
return {};
if (Attrs.size() == 1)
return Attrs[0];
unsigned MaxSize = 0;
for (const auto List : Attrs)
MaxSize = std::max(MaxSize, List.getNumAttrSets());
// If every list was empty, there is no point in merging the lists.
if (MaxSize == 0)
return {};
SmallVector<AttributeSet, 8> NewAttrSets(MaxSize);
for (unsigned I = 0; I < MaxSize; ++I) {
AttrBuilder CurBuilder;
for (const auto List : Attrs)
CurBuilder.merge(List.getAttributes(I - 1));
NewAttrSets[I] = AttributeSet::get(C, CurBuilder);
}
return getImpl(C, NewAttrSets);
}
AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Kind) const {
if (hasAttribute(Index, Kind)) return *this;
AttrBuilder B;
B.addAttribute(Kind);
return addAttributes(C, Index, B);
}
AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind,
StringRef Value) const {
AttrBuilder B;
B.addAttribute(Kind, Value);
return addAttributes(C, Index, B);
}
AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index,
Attribute A) const {
AttrBuilder B;
B.addAttribute(A);
return addAttributes(C, Index, B);
}
AttributeList AttributeList::addAttributes(LLVMContext &C, unsigned Index,
const AttrBuilder &B) const {
if (!B.hasAttributes())
return *this;
if (!pImpl)
return AttributeList::get(C, {{Index, AttributeSet::get(C, B)}});
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment. For now, say
// we can't change a known alignment.
unsigned OldAlign = getAttributes(Index).getAlignment();
unsigned NewAlign = B.getAlignment();
assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
"Attempt to change alignment!");
#endif
Index = attrIdxToArrayIdx(Index);
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
if (Index >= AttrSets.size())
AttrSets.resize(Index + 1);
AttrBuilder Merged(AttrSets[Index]);
Merged.merge(B);
AttrSets[Index] = AttributeSet::get(C, Merged);
return getImpl(C, AttrSets);
}
AttributeList AttributeList::addParamAttribute(LLVMContext &C,
ArrayRef<unsigned> ArgNos,
Attribute A) const {
assert(std::is_sorted(ArgNos.begin(), ArgNos.end()));
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
unsigned MaxIndex = attrIdxToArrayIdx(ArgNos.back() + FirstArgIndex);
if (MaxIndex >= AttrSets.size())
AttrSets.resize(MaxIndex + 1);
for (unsigned ArgNo : ArgNos) {
unsigned Index = attrIdxToArrayIdx(ArgNo + FirstArgIndex);
AttrBuilder B(AttrSets[Index]);
B.addAttribute(A);
AttrSets[Index] = AttributeSet::get(C, B);
}
return getImpl(C, AttrSets);
}
AttributeList AttributeList::removeAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Kind) const {
if (!hasAttribute(Index, Kind)) return *this;
Index = attrIdxToArrayIdx(Index);
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
assert(Index < AttrSets.size());
AttrSets[Index] = AttrSets[Index].removeAttribute(C, Kind);
return getImpl(C, AttrSets);
}
AttributeList AttributeList::removeAttribute(LLVMContext &C, unsigned Index,
StringRef Kind) const {
if (!hasAttribute(Index, Kind)) return *this;
Index = attrIdxToArrayIdx(Index);
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
assert(Index < AttrSets.size());
AttrSets[Index] = AttrSets[Index].removeAttribute(C, Kind);
return getImpl(C, AttrSets);
}
AttributeList
AttributeList::removeAttributes(LLVMContext &C, unsigned Index,
const AttrBuilder &AttrsToRemove) const {
if (!pImpl)
return {};
Index = attrIdxToArrayIdx(Index);
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
if (Index >= AttrSets.size())
AttrSets.resize(Index + 1);
AttrSets[Index] = AttrSets[Index].removeAttributes(C, AttrsToRemove);
return getImpl(C, AttrSets);
}
AttributeList AttributeList::removeAttributes(LLVMContext &C,
unsigned WithoutIndex) const {
if (!pImpl)
return {};
WithoutIndex = attrIdxToArrayIdx(WithoutIndex);
if (WithoutIndex >= getNumAttrSets())
return *this;
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
AttrSets[WithoutIndex] = AttributeSet();
return getImpl(C, AttrSets);
}
AttributeList AttributeList::addDereferenceableAttr(LLVMContext &C,
unsigned Index,
uint64_t Bytes) const {
AttrBuilder B;
B.addDereferenceableAttr(Bytes);
return addAttributes(C, Index, B);
}
AttributeList
AttributeList::addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index,
uint64_t Bytes) const {
AttrBuilder B;
B.addDereferenceableOrNullAttr(Bytes);
return addAttributes(C, Index, B);
}
AttributeList
AttributeList::addAllocSizeAttr(LLVMContext &C, unsigned Index,
unsigned ElemSizeArg,
const Optional<unsigned> &NumElemsArg) {
AttrBuilder B;
B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
return addAttributes(C, Index, B);
}
//===----------------------------------------------------------------------===//
// AttributeList Accessor Methods
//===----------------------------------------------------------------------===//
LLVMContext &AttributeList::getContext() const { return pImpl->getContext(); }
AttributeSet AttributeList::getParamAttributes(unsigned ArgNo) const {
return getAttributes(ArgNo + FirstArgIndex);
}
AttributeSet AttributeList::getRetAttributes() const {
return getAttributes(ReturnIndex);
}
AttributeSet AttributeList::getFnAttributes() const {
return getAttributes(FunctionIndex);
}
bool AttributeList::hasAttribute(unsigned Index,
Attribute::AttrKind Kind) const {
return getAttributes(Index).hasAttribute(Kind);
}
bool AttributeList::hasAttribute(unsigned Index, StringRef Kind) const {
return getAttributes(Index).hasAttribute(Kind);
}
bool AttributeList::hasAttributes(unsigned Index) const {
return getAttributes(Index).hasAttributes();
}
bool AttributeList::hasFnAttribute(Attribute::AttrKind Kind) const {
return pImpl && pImpl->hasFnAttribute(Kind);
}
bool AttributeList::hasFnAttribute(StringRef Kind) const {
return hasAttribute(AttributeList::FunctionIndex, Kind);
}
bool AttributeList::hasParamAttribute(unsigned ArgNo,
Attribute::AttrKind Kind) const {
return hasAttribute(ArgNo + FirstArgIndex, Kind);
}
bool AttributeList::hasAttrSomewhere(Attribute::AttrKind Attr,
unsigned *Index) const {
if (!pImpl) return false;
for (unsigned I = index_begin(), E = index_end(); I != E; ++I) {
if (hasAttribute(I, Attr)) {
if (Index)
*Index = I;
return true;
}
}
return false;
}
Attribute AttributeList::getAttribute(unsigned Index,
Attribute::AttrKind Kind) const {
return getAttributes(Index).getAttribute(Kind);
}
Attribute AttributeList::getAttribute(unsigned Index, StringRef Kind) const {
return getAttributes(Index).getAttribute(Kind);
}
unsigned AttributeList::getRetAlignment() const {
return getAttributes(ReturnIndex).getAlignment();
}
unsigned AttributeList::getParamAlignment(unsigned ArgNo) const {
return getAttributes(ArgNo + FirstArgIndex).getAlignment();
}
unsigned AttributeList::getStackAlignment(unsigned Index) const {
return getAttributes(Index).getStackAlignment();
}
uint64_t AttributeList::getDereferenceableBytes(unsigned Index) const {
return getAttributes(Index).getDereferenceableBytes();
}
uint64_t AttributeList::getDereferenceableOrNullBytes(unsigned Index) const {
return getAttributes(Index).getDereferenceableOrNullBytes();
}
std::pair<unsigned, Optional<unsigned>>
AttributeList::getAllocSizeArgs(unsigned Index) const {
return getAttributes(Index).getAllocSizeArgs();
}
std::string AttributeList::getAsString(unsigned Index, bool InAttrGrp) const {
return getAttributes(Index).getAsString(InAttrGrp);
}
AttributeSet AttributeList::getAttributes(unsigned Index) const {
Index = attrIdxToArrayIdx(Index);
if (!pImpl || Index >= getNumAttrSets())
return {};
return pImpl->begin()[Index];
}
AttributeList::iterator AttributeList::begin() const {
return pImpl ? pImpl->begin() : nullptr;
}
AttributeList::iterator AttributeList::end() const {
return pImpl ? pImpl->end() : nullptr;
}
//===----------------------------------------------------------------------===//
// AttributeList Introspection Methods
//===----------------------------------------------------------------------===//
unsigned AttributeList::getNumAttrSets() const {
return pImpl ? pImpl->NumAttrSets : 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void AttributeList::dump() const {
dbgs() << "PAL[\n";
for (unsigned i = index_begin(), e = index_end(); i != e; ++i) {
if (getAttributes(i).hasAttributes())
dbgs() << " { " << i << " => " << getAsString(i) << " }\n";
}
dbgs() << "]\n";
}
#endif
//===----------------------------------------------------------------------===//
// AttrBuilder Method Implementations
//===----------------------------------------------------------------------===//
// FIXME: Remove this ctor, use AttributeSet.
AttrBuilder::AttrBuilder(AttributeList AL, unsigned Index) {
AttributeSet AS = AL.getAttributes(Index);
for (const auto &A : AS)
addAttribute(A);
}
AttrBuilder::AttrBuilder(AttributeSet AS) {
for (const auto &A : AS)
addAttribute(A);
}
void AttrBuilder::clear() {
Attrs.reset();
TargetDepAttrs.clear();
Alignment = StackAlignment = DerefBytes = DerefOrNullBytes = 0;
AllocSizeArgs = 0;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) {
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
assert(Val != Attribute::Alignment && Val != Attribute::StackAlignment &&
Val != Attribute::Dereferenceable && Val != Attribute::AllocSize &&
"Adding integer attribute without adding a value!");
Attrs[Val] = true;
return *this;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) {
if (Attr.isStringAttribute()) {
addAttribute(Attr.getKindAsString(), Attr.getValueAsString());
return *this;
}
Attribute::AttrKind Kind = Attr.getKindAsEnum();
Attrs[Kind] = true;
if (Kind == Attribute::Alignment)
Alignment = Attr.getAlignment();
else if (Kind == Attribute::StackAlignment)
StackAlignment = Attr.getStackAlignment();
else if (Kind == Attribute::Dereferenceable)
DerefBytes = Attr.getDereferenceableBytes();
else if (Kind == Attribute::DereferenceableOrNull)
DerefOrNullBytes = Attr.getDereferenceableOrNullBytes();
else if (Kind == Attribute::AllocSize)
AllocSizeArgs = Attr.getValueAsInt();
return *this;
}
AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) {
TargetDepAttrs[A] = V;
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
Attrs[Val] = false;
if (Val == Attribute::Alignment)
Alignment = 0;
else if (Val == Attribute::StackAlignment)
StackAlignment = 0;
else if (Val == Attribute::Dereferenceable)
DerefBytes = 0;
else if (Val == Attribute::DereferenceableOrNull)
DerefOrNullBytes = 0;
else if (Val == Attribute::AllocSize)
AllocSizeArgs = 0;
return *this;
}
AttrBuilder &AttrBuilder::removeAttributes(AttributeList A, uint64_t Index) {
remove(A.getAttributes(Index));
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(StringRef A) {
auto I = TargetDepAttrs.find(A);
if (I != TargetDepAttrs.end())
TargetDepAttrs.erase(I);
return *this;
}
std::pair<unsigned, Optional<unsigned>> AttrBuilder::getAllocSizeArgs() const {
return unpackAllocSizeArgs(AllocSizeArgs);
}
AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) {
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
Attrs[Attribute::Alignment] = true;
Alignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) {
// Default alignment, allow the target to define how to align it.
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
Attrs[Attribute::StackAlignment] = true;
StackAlignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) {
if (Bytes == 0) return *this;
Attrs[Attribute::Dereferenceable] = true;
DerefBytes = Bytes;
return *this;
}
AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) {
if (Bytes == 0)
return *this;
Attrs[Attribute::DereferenceableOrNull] = true;
DerefOrNullBytes = Bytes;
return *this;
}
AttrBuilder &AttrBuilder::addAllocSizeAttr(unsigned ElemSize,
const Optional<unsigned> &NumElems) {
return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems));
}
AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) {
// (0, 0) is our "not present" value, so we need to check for it here.
assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)");
Attrs[Attribute::AllocSize] = true;
// Reuse existing machinery to store this as a single 64-bit integer so we can
// save a few bytes over using a pair<unsigned, Optional<unsigned>>.
AllocSizeArgs = RawArgs;
return *this;
}
AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) {
// FIXME: What if both have alignments, but they don't match?!
if (!Alignment)
Alignment = B.Alignment;
if (!StackAlignment)
StackAlignment = B.StackAlignment;
if (!DerefBytes)
DerefBytes = B.DerefBytes;
if (!DerefOrNullBytes)
DerefOrNullBytes = B.DerefOrNullBytes;
if (!AllocSizeArgs)
AllocSizeArgs = B.AllocSizeArgs;
Attrs |= B.Attrs;
for (auto I : B.td_attrs())
TargetDepAttrs[I.first] = I.second;
return *this;
}
AttrBuilder &AttrBuilder::remove(const AttrBuilder &B) {
// FIXME: What if both have alignments, but they don't match?!
if (B.Alignment)
Alignment = 0;
if (B.StackAlignment)
StackAlignment = 0;
if (B.DerefBytes)
DerefBytes = 0;
if (B.DerefOrNullBytes)
DerefOrNullBytes = 0;
if (B.AllocSizeArgs)
AllocSizeArgs = 0;
Attrs &= ~B.Attrs;
for (auto I : B.td_attrs())
TargetDepAttrs.erase(I.first);
return *this;
}
bool AttrBuilder::overlaps(const AttrBuilder &B) const {
// First check if any of the target independent attributes overlap.
if ((Attrs & B.Attrs).any())
return true;
// Then check if any target dependent ones do.
for (const auto &I : td_attrs())
if (B.contains(I.first))
return true;
return false;
}
bool AttrBuilder::contains(StringRef A) const {
return TargetDepAttrs.find(A) != TargetDepAttrs.end();
}
bool AttrBuilder::hasAttributes() const {
return !Attrs.none() || !TargetDepAttrs.empty();
}
bool AttrBuilder::hasAttributes(AttributeList AL, uint64_t Index) const {
AttributeSet AS = AL.getAttributes(Index);
for (const auto Attr : AS) {
if (Attr.isEnumAttribute() || Attr.isIntAttribute()) {
if (contains(Attr.getKindAsEnum()))
return true;
} else {
assert(Attr.isStringAttribute() && "Invalid attribute kind!");
return contains(Attr.getKindAsString());
}
}
return false;
}
bool AttrBuilder::hasAlignmentAttr() const {
return Alignment != 0;
}
bool AttrBuilder::operator==(const AttrBuilder &B) {
if (Attrs != B.Attrs)
return false;
for (td_const_iterator I = TargetDepAttrs.begin(),
E = TargetDepAttrs.end(); I != E; ++I)
if (B.TargetDepAttrs.find(I->first) == B.TargetDepAttrs.end())
return false;
return Alignment == B.Alignment && StackAlignment == B.StackAlignment &&
DerefBytes == B.DerefBytes;
}
//===----------------------------------------------------------------------===//
// AttributeFuncs Function Defintions
//===----------------------------------------------------------------------===//
/// Which attributes cannot be applied to a type.
AttrBuilder AttributeFuncs::typeIncompatible(Type *Ty) {
AttrBuilder Incompatible;
if (!Ty->isIntegerTy())
// Attribute that only apply to integers.
Incompatible.addAttribute(Attribute::SExt)
.addAttribute(Attribute::ZExt);
if (!Ty->isPointerTy())
// Attribute that only apply to pointers.
Incompatible.addAttribute(Attribute::ByVal)
.addAttribute(Attribute::Nest)
.addAttribute(Attribute::NoAlias)
.addAttribute(Attribute::NoCapture)
.addAttribute(Attribute::NonNull)
.addDereferenceableAttr(1) // the int here is ignored
.addDereferenceableOrNullAttr(1) // the int here is ignored
.addAttribute(Attribute::ReadNone)
.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::StructRet)
.addAttribute(Attribute::InAlloca);
return Incompatible;
}
template<typename AttrClass>
static bool isEqual(const Function &Caller, const Function &Callee) {
return Caller.getFnAttribute(AttrClass::getKind()) ==
Callee.getFnAttribute(AttrClass::getKind());
}
/// Compute the logical AND of the attributes of the caller and the
/// callee.
///
/// This function sets the caller's attribute to false if the callee's attribute
/// is false.
template<typename AttrClass>
static void setAND(Function &Caller, const Function &Callee) {
if (AttrClass::isSet(Caller, AttrClass::getKind()) &&
!AttrClass::isSet(Callee, AttrClass::getKind()))
AttrClass::set(Caller, AttrClass::getKind(), false);
}
/// Compute the logical OR of the attributes of the caller and the
/// callee.
///
/// This function sets the caller's attribute to true if the callee's attribute
/// is true.
template<typename AttrClass>
static void setOR(Function &Caller, const Function &Callee) {
if (!AttrClass::isSet(Caller, AttrClass::getKind()) &&
AttrClass::isSet(Callee, AttrClass::getKind()))
AttrClass::set(Caller, AttrClass::getKind(), true);
}
/// If the inlined function had a higher stack protection level than the
/// calling function, then bump up the caller's stack protection level.
static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) {
// If upgrading the SSP attribute, clear out the old SSP Attributes first.
// Having multiple SSP attributes doesn't actually hurt, but it adds useless
// clutter to the IR.
AttrBuilder OldSSPAttr;
OldSSPAttr.addAttribute(Attribute::StackProtect)
.addAttribute(Attribute::StackProtectStrong)
.addAttribute(Attribute::StackProtectReq);
if (Callee.hasFnAttribute(Attribute::StackProtectReq)) {
Caller.removeAttributes(AttributeList::FunctionIndex, OldSSPAttr);
Caller.addFnAttr(Attribute::StackProtectReq);
} else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) &&
!Caller.hasFnAttribute(Attribute::StackProtectReq)) {
Caller.removeAttributes(AttributeList::FunctionIndex, OldSSPAttr);
Caller.addFnAttr(Attribute::StackProtectStrong);
} else if (Callee.hasFnAttribute(Attribute::StackProtect) &&
!Caller.hasFnAttribute(Attribute::StackProtectReq) &&
!Caller.hasFnAttribute(Attribute::StackProtectStrong))
Caller.addFnAttr(Attribute::StackProtect);
}
/// If the inlined function required stack probes, then ensure that
/// the calling function has those too.
static void adjustCallerStackProbes(Function &Caller, const Function &Callee) {
if (!Caller.hasFnAttribute("probe-stack") &&
Callee.hasFnAttribute("probe-stack")) {
Caller.addFnAttr(Callee.getFnAttribute("probe-stack"));
}
}
/// If the inlined function defines the size of guard region
/// on the stack, then ensure that the calling function defines a guard region
/// that is no larger.
static void
adjustCallerStackProbeSize(Function &Caller, const Function &Callee) {
if (Callee.hasFnAttribute("stack-probe-size")) {
uint64_t CalleeStackProbeSize;
Callee.getFnAttribute("stack-probe-size")
.getValueAsString()
.getAsInteger(0, CalleeStackProbeSize);
if (Caller.hasFnAttribute("stack-probe-size")) {
uint64_t CallerStackProbeSize;
Caller.getFnAttribute("stack-probe-size")
.getValueAsString()
.getAsInteger(0, CallerStackProbeSize);
if (CallerStackProbeSize > CalleeStackProbeSize) {
Caller.addFnAttr(Callee.getFnAttribute("stack-probe-size"));
}
} else {
Caller.addFnAttr(Callee.getFnAttribute("stack-probe-size"));
}
}
}
/// If the inlined function defines a min legal vector width, then ensure
/// the calling function has the same or larger min legal vector width. If the
/// caller has the attribute, but the callee doesn't, we need to remove the
/// attribute from the caller since we can't make any guarantees about the
/// caller's requirements.
/// This function is called after the inlining decision has been made so we have
/// to merge the attribute this way. Heuristics that would use
/// min-legal-vector-width to determine inline compatibility would need to be
/// handled as part of inline cost analysis.
static void
adjustMinLegalVectorWidth(Function &Caller, const Function &Callee) {
if (Caller.hasFnAttribute("min-legal-vector-width")) {
if (Callee.hasFnAttribute("min-legal-vector-width")) {
uint64_t CallerVectorWidth;
Caller.getFnAttribute("min-legal-vector-width")
.getValueAsString()
.getAsInteger(0, CallerVectorWidth);
uint64_t CalleeVectorWidth;
Callee.getFnAttribute("min-legal-vector-width")
.getValueAsString()
.getAsInteger(0, CalleeVectorWidth);
if (CallerVectorWidth < CalleeVectorWidth)
Caller.addFnAttr(Callee.getFnAttribute("min-legal-vector-width"));
} else {
// If the callee doesn't have the attribute then we don't know anything
// and must drop the attribute from the caller.
Caller.removeFnAttr("min-legal-vector-width");
}
}
}
/// If the inlined function has "null-pointer-is-valid=true" attribute,
/// set this attribute in the caller post inlining.
static void
adjustNullPointerValidAttr(Function &Caller, const Function &Callee) {
if (Callee.nullPointerIsDefined() && !Caller.nullPointerIsDefined()) {
Caller.addFnAttr(Callee.getFnAttribute("null-pointer-is-valid"));
}
}
#define GET_ATTR_COMPAT_FUNC
#include "AttributesCompatFunc.inc"
bool AttributeFuncs::areInlineCompatible(const Function &Caller,
const Function &Callee) {
return hasCompatibleFnAttrs(Caller, Callee);
}
void AttributeFuncs::mergeAttributesForInlining(Function &Caller,
const Function &Callee) {
mergeFnAttrs(Caller, Callee);
}