llvm-project/mlir/lib/Interfaces/ControlFlowInterfaces.cpp

401 lines
16 KiB
C++

//===- ControlFlowInterfaces.cpp - ControlFlow Interfaces -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// ControlFlowInterfaces
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/ControlFlowInterfaces.cpp.inc"
SuccessorOperands::SuccessorOperands(MutableOperandRange forwardedOperands)
: producedOperandCount(0), forwardedOperands(std::move(forwardedOperands)) {
}
SuccessorOperands::SuccessorOperands(unsigned int producedOperandCount,
MutableOperandRange forwardedOperands)
: producedOperandCount(producedOperandCount),
forwardedOperands(std::move(forwardedOperands)) {}
//===----------------------------------------------------------------------===//
// BranchOpInterface
//===----------------------------------------------------------------------===//
/// Returns the `BlockArgument` corresponding to operand `operandIndex` in some
/// successor if 'operandIndex' is within the range of 'operands', or None if
/// `operandIndex` isn't a successor operand index.
Optional<BlockArgument>
detail::getBranchSuccessorArgument(const SuccessorOperands &operands,
unsigned operandIndex, Block *successor) {
OperandRange forwardedOperands = operands.getForwardedOperands();
// Check that the operands are valid.
if (forwardedOperands.empty())
return llvm::None;
// Check to ensure that this operand is within the range.
unsigned operandsStart = forwardedOperands.getBeginOperandIndex();
if (operandIndex < operandsStart ||
operandIndex >= (operandsStart + forwardedOperands.size()))
return llvm::None;
// Index the successor.
unsigned argIndex =
operands.getProducedOperandCount() + operandIndex - operandsStart;
return successor->getArgument(argIndex);
}
/// Verify that the given operands match those of the given successor block.
LogicalResult
detail::verifyBranchSuccessorOperands(Operation *op, unsigned succNo,
const SuccessorOperands &operands) {
// Check the count.
unsigned operandCount = operands.size();
Block *destBB = op->getSuccessor(succNo);
if (operandCount != destBB->getNumArguments())
return op->emitError() << "branch has " << operandCount
<< " operands for successor #" << succNo
<< ", but target block has "
<< destBB->getNumArguments();
// Check the types.
for (unsigned i = operands.getProducedOperandCount(); i != operandCount;
++i) {
if (!cast<BranchOpInterface>(op).areTypesCompatible(
operands[i].getType(), destBB->getArgument(i).getType()))
return op->emitError() << "type mismatch for bb argument #" << i
<< " of successor #" << succNo;
}
return success();
}
//===----------------------------------------------------------------------===//
// RegionBranchOpInterface
//===----------------------------------------------------------------------===//
/// Verify that types match along all region control flow edges originating from
/// `sourceNo` (region # if source is a region, llvm::None if source is parent
/// op). `getInputsTypesForRegion` is a function that returns the types of the
/// inputs that flow from `sourceIndex' to the given region, or llvm::None if
/// the exact type match verification is not necessary (e.g., if the Op verifies
/// the match itself).
static LogicalResult
verifyTypesAlongAllEdges(Operation *op, Optional<unsigned> sourceNo,
function_ref<Optional<TypeRange>(Optional<unsigned>)>
getInputsTypesForRegion) {
auto regionInterface = cast<RegionBranchOpInterface>(op);
SmallVector<RegionSuccessor, 2> successors;
regionInterface.getSuccessorRegions(sourceNo, successors);
for (RegionSuccessor &succ : successors) {
Optional<unsigned> succRegionNo;
if (!succ.isParent())
succRegionNo = succ.getSuccessor()->getRegionNumber();
auto printEdgeName = [&](InFlightDiagnostic &diag) -> InFlightDiagnostic & {
diag << "from ";
if (sourceNo)
diag << "Region #" << sourceNo.value();
else
diag << "parent operands";
diag << " to ";
if (succRegionNo)
diag << "Region #" << succRegionNo.value();
else
diag << "parent results";
return diag;
};
Optional<TypeRange> sourceTypes = getInputsTypesForRegion(succRegionNo);
if (!sourceTypes.has_value())
continue;
TypeRange succInputsTypes = succ.getSuccessorInputs().getTypes();
if (sourceTypes->size() != succInputsTypes.size()) {
InFlightDiagnostic diag = op->emitOpError(" region control flow edge ");
return printEdgeName(diag) << ": source has " << sourceTypes->size()
<< " operands, but target successor needs "
<< succInputsTypes.size();
}
for (const auto &typesIdx :
llvm::enumerate(llvm::zip(*sourceTypes, succInputsTypes))) {
Type sourceType = std::get<0>(typesIdx.value());
Type inputType = std::get<1>(typesIdx.value());
if (!regionInterface.areTypesCompatible(sourceType, inputType)) {
InFlightDiagnostic diag = op->emitOpError(" along control flow edge ");
return printEdgeName(diag)
<< ": source type #" << typesIdx.index() << " " << sourceType
<< " should match input type #" << typesIdx.index() << " "
<< inputType;
}
}
}
return success();
}
/// Verify that types match along control flow edges described the given op.
LogicalResult detail::verifyTypesAlongControlFlowEdges(Operation *op) {
auto regionInterface = cast<RegionBranchOpInterface>(op);
auto inputTypesFromParent = [&](Optional<unsigned> regionNo) -> TypeRange {
return regionInterface.getSuccessorEntryOperands(regionNo).getTypes();
};
// Verify types along control flow edges originating from the parent.
if (failed(verifyTypesAlongAllEdges(op, llvm::None, inputTypesFromParent)))
return failure();
// RegionBranchOpInterface should not be implemented by Ops that do not have
// attached regions.
assert(op->getNumRegions() != 0);
auto areTypesCompatible = [&](TypeRange lhs, TypeRange rhs) {
if (lhs.size() != rhs.size())
return false;
for (auto types : llvm::zip(lhs, rhs)) {
if (!regionInterface.areTypesCompatible(std::get<0>(types),
std::get<1>(types))) {
return false;
}
}
return true;
};
// Verify types along control flow edges originating from each region.
for (unsigned regionNo : llvm::seq(0U, op->getNumRegions())) {
Region &region = op->getRegion(regionNo);
// Since there can be multiple `ReturnLike` terminators or others
// implementing the `RegionBranchTerminatorOpInterface`, all should have the
// same operand types when passing them to the same region.
Optional<OperandRange> regionReturnOperands;
for (Block &block : region) {
Operation *terminator = block.getTerminator();
auto terminatorOperands =
getRegionBranchSuccessorOperands(terminator, regionNo);
if (!terminatorOperands)
continue;
if (!regionReturnOperands) {
regionReturnOperands = terminatorOperands;
continue;
}
// Found more than one ReturnLike terminator. Make sure the operand types
// match with the first one.
if (!areTypesCompatible(regionReturnOperands->getTypes(),
terminatorOperands->getTypes()))
return op->emitOpError("Region #")
<< regionNo
<< " operands mismatch between return-like terminators";
}
auto inputTypesFromRegion =
[&](Optional<unsigned> regionNo) -> Optional<TypeRange> {
// If there is no return-like terminator, the op itself should verify
// type consistency.
if (!regionReturnOperands)
return llvm::None;
// All successors get the same set of operand types.
return TypeRange(regionReturnOperands->getTypes());
};
if (failed(verifyTypesAlongAllEdges(op, regionNo, inputTypesFromRegion)))
return failure();
}
return success();
}
/// Return `true` if region `r` is reachable from region `begin` according to
/// the RegionBranchOpInterface (by taking a branch).
static bool isRegionReachable(Region *begin, Region *r) {
assert(begin->getParentOp() == r->getParentOp() &&
"expected that both regions belong to the same op");
auto op = cast<RegionBranchOpInterface>(begin->getParentOp());
SmallVector<bool> visited(op->getNumRegions(), false);
visited[begin->getRegionNumber()] = true;
// Retrieve all successors of the region and enqueue them in the worklist.
SmallVector<unsigned> worklist;
auto enqueueAllSuccessors = [&](unsigned index) {
SmallVector<RegionSuccessor> successors;
op.getSuccessorRegions(index, successors);
for (RegionSuccessor successor : successors)
if (!successor.isParent())
worklist.push_back(successor.getSuccessor()->getRegionNumber());
};
enqueueAllSuccessors(begin->getRegionNumber());
// Process all regions in the worklist via DFS.
while (!worklist.empty()) {
unsigned nextRegion = worklist.pop_back_val();
if (nextRegion == r->getRegionNumber())
return true;
if (visited[nextRegion])
continue;
visited[nextRegion] = true;
enqueueAllSuccessors(nextRegion);
}
return false;
}
/// Return `true` if `a` and `b` are in mutually exclusive regions.
///
/// 1. Find the first common of `a` and `b` (ancestor) that implements
/// RegionBranchOpInterface.
/// 2. Determine the regions `regionA` and `regionB` in which `a` and `b` are
/// contained.
/// 3. Check if `regionA` and `regionB` are mutually exclusive. They are
/// mutually exclusive if they are not reachable from each other as per
/// RegionBranchOpInterface::getSuccessorRegions.
bool mlir::insideMutuallyExclusiveRegions(Operation *a, Operation *b) {
assert(a && "expected non-empty operation");
assert(b && "expected non-empty operation");
auto branchOp = a->getParentOfType<RegionBranchOpInterface>();
while (branchOp) {
// Check if b is inside branchOp. (We already know that a is.)
if (!branchOp->isProperAncestor(b)) {
// Check next enclosing RegionBranchOpInterface.
branchOp = branchOp->getParentOfType<RegionBranchOpInterface>();
continue;
}
// b is contained in branchOp. Retrieve the regions in which `a` and `b`
// are contained.
Region *regionA = nullptr, *regionB = nullptr;
for (Region &r : branchOp->getRegions()) {
if (r.findAncestorOpInRegion(*a)) {
assert(!regionA && "already found a region for a");
regionA = &r;
}
if (r.findAncestorOpInRegion(*b)) {
assert(!regionB && "already found a region for b");
regionB = &r;
}
}
assert(regionA && regionB && "could not find region of op");
// `a` and `b` are in mutually exclusive regions if both regions are
// distinct and neither region is reachable from the other region.
return regionA != regionB && !isRegionReachable(regionA, regionB) &&
!isRegionReachable(regionB, regionA);
}
// Could not find a common RegionBranchOpInterface among a's and b's
// ancestors.
return false;
}
bool RegionBranchOpInterface::isRepetitiveRegion(unsigned index) {
Region *region = &getOperation()->getRegion(index);
return isRegionReachable(region, region);
}
void RegionBranchOpInterface::getSuccessorRegions(
Optional<unsigned> index, SmallVectorImpl<RegionSuccessor> &regions) {
unsigned numInputs = 0;
if (index) {
// If the predecessor is a region, get the number of operands from an
// exiting terminator in the region.
for (Block &block : getOperation()->getRegion(*index)) {
Operation *terminator = block.getTerminator();
if (getRegionBranchSuccessorOperands(terminator, *index)) {
numInputs = terminator->getNumOperands();
break;
}
}
} else {
// Otherwise, use the number of parent operation operands.
numInputs = getOperation()->getNumOperands();
}
SmallVector<Attribute, 2> operands(numInputs, nullptr);
getSuccessorRegions(index, operands, regions);
}
Region *mlir::getEnclosingRepetitiveRegion(Operation *op) {
while (Region *region = op->getParentRegion()) {
op = region->getParentOp();
if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
return region;
}
return nullptr;
}
Region *mlir::getEnclosingRepetitiveRegion(Value value) {
Region *region = value.getParentRegion();
while (region) {
Operation *op = region->getParentOp();
if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
return region;
region = op->getParentRegion();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// RegionBranchTerminatorOpInterface
//===----------------------------------------------------------------------===//
/// Returns true if the given operation is either annotated with the
/// `ReturnLike` trait or implements the `RegionBranchTerminatorOpInterface`.
bool mlir::isRegionReturnLike(Operation *operation) {
return dyn_cast<RegionBranchTerminatorOpInterface>(operation) ||
operation->hasTrait<OpTrait::ReturnLike>();
}
/// Returns the mutable operands that are passed to the region with the given
/// `regionIndex`. If the operation does not implement the
/// `RegionBranchTerminatorOpInterface` and is not marked as `ReturnLike`, the
/// result will be `llvm::None`. In all other cases, the resulting
/// `OperandRange` represents all operands that are passed to the specified
/// successor region. If `regionIndex` is `llvm::None`, all operands that are
/// passed to the parent operation will be returned.
Optional<MutableOperandRange>
mlir::getMutableRegionBranchSuccessorOperands(Operation *operation,
Optional<unsigned> regionIndex) {
// Try to query a RegionBranchTerminatorOpInterface to determine
// all successor operands that will be passed to the successor
// input arguments.
if (auto regionTerminatorInterface =
dyn_cast<RegionBranchTerminatorOpInterface>(operation))
return regionTerminatorInterface.getMutableSuccessorOperands(regionIndex);
// TODO: The ReturnLike trait should imply a default implementation of the
// RegionBranchTerminatorOpInterface. This would make this code significantly
// easier. Furthermore, this may even make this function obsolete.
if (operation->hasTrait<OpTrait::ReturnLike>())
return MutableOperandRange(operation);
return llvm::None;
}
/// Returns the read only operands that are passed to the region with the given
/// `regionIndex`. See `getMutableRegionBranchSuccessorOperands` for more
/// information.
Optional<OperandRange>
mlir::getRegionBranchSuccessorOperands(Operation *operation,
Optional<unsigned> regionIndex) {
auto range = getMutableRegionBranchSuccessorOperands(operation, regionIndex);
return range ? Optional<OperandRange>(*range) : llvm::None;
}