forked from OSchip/llvm-project
2145 lines
76 KiB
C++
2145 lines
76 KiB
C++
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a basic region store model. In this model, we do have field
|
|
// sensitivity. But we assume nothing about the heap shape. So recursive data
|
|
// structures are largely ignored. Basically we do 1-limiting analysis.
|
|
// Parameter pointers are assumed with no aliasing. Pointee objects of
|
|
// parameters are created lazily.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Analysis/Analyses/LiveVariables.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::Optional;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Representation of binding keys.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class BindingKey {
|
|
public:
|
|
enum Kind { Direct = 0x0, Default = 0x1 };
|
|
private:
|
|
llvm ::PointerIntPair<const MemRegion*, 1> P;
|
|
uint64_t Offset;
|
|
|
|
explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
|
|
: P(r, (unsigned) k), Offset(offset) {}
|
|
public:
|
|
|
|
bool isDirect() const { return P.getInt() == Direct; }
|
|
|
|
const MemRegion *getRegion() const { return P.getPointer(); }
|
|
uint64_t getOffset() const { return Offset; }
|
|
|
|
void Profile(llvm::FoldingSetNodeID& ID) const {
|
|
ID.AddPointer(P.getOpaqueValue());
|
|
ID.AddInteger(Offset);
|
|
}
|
|
|
|
static BindingKey Make(const MemRegion *R, Kind k);
|
|
|
|
bool operator<(const BindingKey &X) const {
|
|
if (P.getOpaqueValue() < X.P.getOpaqueValue())
|
|
return true;
|
|
if (P.getOpaqueValue() > X.P.getOpaqueValue())
|
|
return false;
|
|
return Offset < X.Offset;
|
|
}
|
|
|
|
bool operator==(const BindingKey &X) const {
|
|
return P.getOpaqueValue() == X.P.getOpaqueValue() &&
|
|
Offset == X.Offset;
|
|
}
|
|
|
|
bool isValid() const {
|
|
return getRegion() != NULL;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
|
|
const RegionOffset &RO = R->getAsOffset();
|
|
if (RO.getRegion())
|
|
return BindingKey(RO.getRegion(), RO.getOffset(), k);
|
|
|
|
return BindingKey(R, 0, k);
|
|
}
|
|
|
|
namespace llvm {
|
|
static inline
|
|
raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
|
|
os << '(' << K.getRegion() << ',' << K.getOffset()
|
|
<< ',' << (K.isDirect() ? "direct" : "default")
|
|
<< ')';
|
|
return os;
|
|
}
|
|
} // end llvm namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Actual Store type.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Fine-grained control of RegionStoreManager.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct minimal_features_tag {};
|
|
struct maximal_features_tag {};
|
|
|
|
class RegionStoreFeatures {
|
|
bool SupportsFields;
|
|
public:
|
|
RegionStoreFeatures(minimal_features_tag) :
|
|
SupportsFields(false) {}
|
|
|
|
RegionStoreFeatures(maximal_features_tag) :
|
|
SupportsFields(true) {}
|
|
|
|
void enableFields(bool t) { SupportsFields = t; }
|
|
|
|
bool supportsFields() const { return SupportsFields; }
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main RegionStore logic.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class RegionStoreSubRegionMap : public SubRegionMap {
|
|
public:
|
|
typedef llvm::ImmutableSet<const MemRegion*> Set;
|
|
typedef llvm::DenseMap<const MemRegion*, Set> Map;
|
|
private:
|
|
Set::Factory F;
|
|
Map M;
|
|
public:
|
|
bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
|
|
Map::iterator I = M.find(Parent);
|
|
|
|
if (I == M.end()) {
|
|
M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
|
|
return true;
|
|
}
|
|
|
|
I->second = F.add(I->second, SubRegion);
|
|
return false;
|
|
}
|
|
|
|
void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
|
|
|
|
~RegionStoreSubRegionMap() {}
|
|
|
|
const Set *getSubRegions(const MemRegion *Parent) const {
|
|
Map::const_iterator I = M.find(Parent);
|
|
return I == M.end() ? NULL : &I->second;
|
|
}
|
|
|
|
bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
|
|
Map::const_iterator I = M.find(Parent);
|
|
|
|
if (I == M.end())
|
|
return true;
|
|
|
|
Set S = I->second;
|
|
for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
|
|
if (!V.Visit(Parent, *SI))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
void
|
|
RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
|
|
const SubRegion *R) {
|
|
const MemRegion *superR = R->getSuperRegion();
|
|
if (add(superR, R))
|
|
if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
|
|
WL.push_back(sr);
|
|
}
|
|
|
|
class RegionStoreManager : public StoreManager {
|
|
const RegionStoreFeatures Features;
|
|
RegionBindings::Factory RBFactory;
|
|
|
|
public:
|
|
RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
|
|
: StoreManager(mgr),
|
|
Features(f),
|
|
RBFactory(mgr.getAllocator()) {}
|
|
|
|
SubRegionMap *getSubRegionMap(Store store) {
|
|
return getRegionStoreSubRegionMap(store);
|
|
}
|
|
|
|
RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
|
|
|
|
Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
|
|
/// getDefaultBinding - Returns an SVal* representing an optional default
|
|
/// binding associated with a region and its subregions.
|
|
Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
|
|
|
|
/// setImplicitDefaultValue - Set the default binding for the provided
|
|
/// MemRegion to the value implicitly defined for compound literals when
|
|
/// the value is not specified.
|
|
StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
|
|
|
|
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
|
|
/// type. 'Array' represents the lvalue of the array being decayed
|
|
/// to a pointer, and the returned SVal represents the decayed
|
|
/// version of that lvalue (i.e., a pointer to the first element of
|
|
/// the array). This is called by ExprEngine when evaluating
|
|
/// casts from arrays to pointers.
|
|
SVal ArrayToPointer(Loc Array);
|
|
|
|
/// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
|
|
virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
|
|
|
|
/// \brief Evaluates C++ dynamic_cast cast.
|
|
/// The callback may result in the following 3 scenarios:
|
|
/// - Successful cast (ex: derived is subclass of base).
|
|
/// - Failed cast (ex: derived is definitely not a subclass of base).
|
|
/// - We don't know (base is a symbolic region and we don't have
|
|
/// enough info to determine if the cast will succeed at run time).
|
|
/// The function returns an SVal representing the derived class; it's
|
|
/// valid only if Failed flag is set to false.
|
|
virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
|
|
|
|
StoreRef getInitialStore(const LocationContext *InitLoc) {
|
|
return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
// Binding values to regions.
|
|
//===-------------------------------------------------------------------===//
|
|
RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
|
|
const Expr *Ex,
|
|
unsigned Count,
|
|
const LocationContext *LCtx,
|
|
RegionBindings B,
|
|
InvalidatedRegions *Invalidated);
|
|
|
|
StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
|
|
const Expr *E, unsigned Count,
|
|
const LocationContext *LCtx,
|
|
InvalidatedSymbols &IS,
|
|
const CallOrObjCMessage *Call,
|
|
InvalidatedRegions *Invalidated);
|
|
|
|
public: // Made public for helper classes.
|
|
|
|
void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
|
|
RegionStoreSubRegionMap &M);
|
|
|
|
RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
|
|
|
|
RegionBindings addBinding(RegionBindings B, const MemRegion *R,
|
|
BindingKey::Kind k, SVal V);
|
|
|
|
const SVal *lookup(RegionBindings B, BindingKey K);
|
|
const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
|
|
|
|
RegionBindings removeBinding(RegionBindings B, BindingKey K);
|
|
RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
|
|
BindingKey::Kind k);
|
|
|
|
RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
|
|
return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
|
|
BindingKey::Default);
|
|
}
|
|
|
|
public: // Part of public interface to class.
|
|
|
|
StoreRef Bind(Store store, Loc LV, SVal V);
|
|
|
|
// BindDefault is only used to initialize a region with a default value.
|
|
StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
assert(!lookup(B, R, BindingKey::Default));
|
|
assert(!lookup(B, R, BindingKey::Direct));
|
|
return StoreRef(addBinding(B, R, BindingKey::Default, V)
|
|
.getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
|
|
const LocationContext *LC, SVal V);
|
|
|
|
StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
|
|
|
|
StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
|
|
return StoreRef(store, *this);
|
|
}
|
|
|
|
/// BindStruct - Bind a compound value to a structure.
|
|
StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
|
|
|
|
/// BindVector - Bind a compound value to a vector.
|
|
StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
|
|
|
|
StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
|
|
|
|
/// KillStruct - Set the entire struct to unknown.
|
|
StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
|
|
|
|
StoreRef Remove(Store store, Loc LV);
|
|
|
|
void incrementReferenceCount(Store store) {
|
|
GetRegionBindings(store).manualRetain();
|
|
}
|
|
|
|
/// If the StoreManager supports it, decrement the reference count of
|
|
/// the specified Store object. If the reference count hits 0, the memory
|
|
/// associated with the object is recycled.
|
|
void decrementReferenceCount(Store store) {
|
|
GetRegionBindings(store).manualRelease();
|
|
}
|
|
|
|
bool includedInBindings(Store store, const MemRegion *region) const;
|
|
|
|
/// \brief Return the value bound to specified location in a given state.
|
|
///
|
|
/// The high level logic for this method is this:
|
|
/// getBinding (L)
|
|
/// if L has binding
|
|
/// return L's binding
|
|
/// else if L is in killset
|
|
/// return unknown
|
|
/// else
|
|
/// if L is on stack or heap
|
|
/// return undefined
|
|
/// else
|
|
/// return symbolic
|
|
SVal getBinding(Store store, Loc L, QualType T = QualType());
|
|
|
|
SVal getBindingForElement(Store store, const ElementRegion *R);
|
|
|
|
SVal getBindingForField(Store store, const FieldRegion *R);
|
|
|
|
SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
|
|
|
|
SVal getBindingForVar(Store store, const VarRegion *R);
|
|
|
|
SVal getBindingForLazySymbol(const TypedValueRegion *R);
|
|
|
|
SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
|
|
QualType Ty, const MemRegion *superR);
|
|
|
|
SVal getLazyBinding(const MemRegion *lazyBindingRegion,
|
|
Store lazyBindingStore);
|
|
|
|
/// Get bindings for the values in a struct and return a CompoundVal, used
|
|
/// when doing struct copy:
|
|
/// struct s x, y;
|
|
/// x = y;
|
|
/// y's value is retrieved by this method.
|
|
SVal getBindingForStruct(Store store, const TypedValueRegion* R);
|
|
|
|
SVal getBindingForArray(Store store, const TypedValueRegion* R);
|
|
|
|
/// Used to lazily generate derived symbols for bindings that are defined
|
|
/// implicitly by default bindings in a super region.
|
|
Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
|
|
const MemRegion *superR,
|
|
const TypedValueRegion *R,
|
|
QualType Ty);
|
|
|
|
/// Get the state and region whose binding this region R corresponds to.
|
|
std::pair<Store, const MemRegion*>
|
|
GetLazyBinding(RegionBindings B, const MemRegion *R,
|
|
const MemRegion *originalRegion,
|
|
bool includeSuffix = false);
|
|
|
|
StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
|
|
const TypedRegion *R);
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// State pruning.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
/// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
|
|
/// It returns a new Store with these values removed.
|
|
StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
|
|
SymbolReaper& SymReaper);
|
|
|
|
StoreRef enterStackFrame(ProgramStateRef state,
|
|
const LocationContext *callerCtx,
|
|
const StackFrameContext *calleeCtx);
|
|
|
|
StoreRef enterStackFrame(ProgramStateRef state,
|
|
const FunctionDecl *FD,
|
|
const LocationContext *callerCtx,
|
|
const StackFrameContext *calleeCtx);
|
|
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Region "extents".
|
|
//===------------------------------------------------------------------===//
|
|
|
|
// FIXME: This method will soon be eliminated; see the note in Store.h.
|
|
DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
|
|
const MemRegion* R, QualType EleTy);
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
static inline RegionBindings GetRegionBindings(Store store) {
|
|
return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
|
|
}
|
|
|
|
void print(Store store, raw_ostream &Out, const char* nl,
|
|
const char *sep);
|
|
|
|
void iterBindings(Store store, BindingsHandler& f) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
|
|
const BindingKey &K = I.getKey();
|
|
if (!K.isDirect())
|
|
continue;
|
|
if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
|
|
// FIXME: Possibly incorporate the offset?
|
|
if (!f.HandleBinding(*this, store, R, I.getData()))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegionStore creation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
|
|
RegionStoreFeatures F = maximal_features_tag();
|
|
return new RegionStoreManager(StMgr, F);
|
|
}
|
|
|
|
StoreManager *
|
|
ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
|
|
RegionStoreFeatures F = minimal_features_tag();
|
|
F.enableFields(true);
|
|
return new RegionStoreManager(StMgr, F);
|
|
}
|
|
|
|
|
|
RegionStoreSubRegionMap*
|
|
RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
|
|
|
|
SmallVector<const SubRegion*, 10> WL;
|
|
|
|
for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
|
|
if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
|
|
M->process(WL, R);
|
|
|
|
// We also need to record in the subregion map "intermediate" regions that
|
|
// don't have direct bindings but are super regions of those that do.
|
|
while (!WL.empty()) {
|
|
const SubRegion *R = WL.back();
|
|
WL.pop_back();
|
|
M->process(WL, R);
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region Cluster analysis.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
template <typename DERIVED>
|
|
class ClusterAnalysis {
|
|
protected:
|
|
typedef BumpVector<BindingKey> RegionCluster;
|
|
typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
|
|
llvm::DenseMap<const RegionCluster*, unsigned> Visited;
|
|
typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
|
|
WorkList;
|
|
|
|
BumpVectorContext BVC;
|
|
ClusterMap ClusterM;
|
|
WorkList WL;
|
|
|
|
RegionStoreManager &RM;
|
|
ASTContext &Ctx;
|
|
SValBuilder &svalBuilder;
|
|
|
|
RegionBindings B;
|
|
|
|
const bool includeGlobals;
|
|
|
|
public:
|
|
ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
|
|
RegionBindings b, const bool includeGlobals)
|
|
: RM(rm), Ctx(StateMgr.getContext()),
|
|
svalBuilder(StateMgr.getSValBuilder()),
|
|
B(b), includeGlobals(includeGlobals) {}
|
|
|
|
RegionBindings getRegionBindings() const { return B; }
|
|
|
|
RegionCluster &AddToCluster(BindingKey K) {
|
|
const MemRegion *R = K.getRegion();
|
|
const MemRegion *baseR = R->getBaseRegion();
|
|
RegionCluster &C = getCluster(baseR);
|
|
C.push_back(K, BVC);
|
|
static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
|
|
return C;
|
|
}
|
|
|
|
bool isVisited(const MemRegion *R) {
|
|
return (bool) Visited[&getCluster(R->getBaseRegion())];
|
|
}
|
|
|
|
RegionCluster& getCluster(const MemRegion *R) {
|
|
RegionCluster *&CRef = ClusterM[R];
|
|
if (!CRef) {
|
|
void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
|
|
CRef = new (Mem) RegionCluster(BVC, 10);
|
|
}
|
|
return *CRef;
|
|
}
|
|
|
|
void GenerateClusters() {
|
|
// Scan the entire set of bindings and make the region clusters.
|
|
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
|
|
RegionCluster &C = AddToCluster(RI.getKey());
|
|
if (const MemRegion *R = RI.getData().getAsRegion()) {
|
|
// Generate a cluster, but don't add the region to the cluster
|
|
// if there aren't any bindings.
|
|
getCluster(R->getBaseRegion());
|
|
}
|
|
if (includeGlobals) {
|
|
const MemRegion *R = RI.getKey().getRegion();
|
|
if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
|
|
AddToWorkList(R, C);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
|
|
if (unsigned &visited = Visited[&C])
|
|
return false;
|
|
else
|
|
visited = 1;
|
|
|
|
WL.push_back(std::make_pair(R, &C));
|
|
return true;
|
|
}
|
|
|
|
bool AddToWorkList(BindingKey K) {
|
|
return AddToWorkList(K.getRegion());
|
|
}
|
|
|
|
bool AddToWorkList(const MemRegion *R) {
|
|
const MemRegion *baseR = R->getBaseRegion();
|
|
return AddToWorkList(baseR, getCluster(baseR));
|
|
}
|
|
|
|
void RunWorkList() {
|
|
while (!WL.empty()) {
|
|
const MemRegion *baseR;
|
|
RegionCluster *C;
|
|
llvm::tie(baseR, C) = WL.back();
|
|
WL.pop_back();
|
|
|
|
// First visit the cluster.
|
|
static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
|
|
|
|
// Next, visit the base region.
|
|
static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
|
|
}
|
|
}
|
|
|
|
public:
|
|
void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
|
|
void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
|
|
void VisitBaseRegion(const MemRegion *baseR) {}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binding invalidation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
|
|
const MemRegion *R,
|
|
RegionStoreSubRegionMap &M) {
|
|
|
|
if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
|
|
for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
|
|
I != E; ++I)
|
|
RemoveSubRegionBindings(B, *I, M);
|
|
|
|
B = removeBinding(B, R);
|
|
}
|
|
|
|
namespace {
|
|
class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
|
|
{
|
|
const Expr *Ex;
|
|
unsigned Count;
|
|
const LocationContext *LCtx;
|
|
StoreManager::InvalidatedSymbols &IS;
|
|
StoreManager::InvalidatedRegions *Regions;
|
|
public:
|
|
invalidateRegionsWorker(RegionStoreManager &rm,
|
|
ProgramStateManager &stateMgr,
|
|
RegionBindings b,
|
|
const Expr *ex, unsigned count,
|
|
const LocationContext *lctx,
|
|
StoreManager::InvalidatedSymbols &is,
|
|
StoreManager::InvalidatedRegions *r,
|
|
bool includeGlobals)
|
|
: ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
|
|
Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
|
|
|
|
void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
|
|
void VisitBaseRegion(const MemRegion *baseR);
|
|
|
|
private:
|
|
void VisitBinding(SVal V);
|
|
};
|
|
}
|
|
|
|
void invalidateRegionsWorker::VisitBinding(SVal V) {
|
|
// A symbol? Mark it touched by the invalidation.
|
|
if (SymbolRef Sym = V.getAsSymbol())
|
|
IS.insert(Sym);
|
|
|
|
if (const MemRegion *R = V.getAsRegion()) {
|
|
AddToWorkList(R);
|
|
return;
|
|
}
|
|
|
|
// Is it a LazyCompoundVal? All references get invalidated as well.
|
|
if (const nonloc::LazyCompoundVal *LCS =
|
|
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
|
|
|
|
const MemRegion *LazyR = LCS->getRegion();
|
|
RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
|
|
|
|
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
|
|
const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
|
|
if (baseR && (baseR == LazyR || baseR->isSubRegionOf(LazyR)))
|
|
VisitBinding(RI.getData());
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
|
|
BindingKey *I, BindingKey *E) {
|
|
for ( ; I != E; ++I) {
|
|
// Get the old binding. Is it a region? If so, add it to the worklist.
|
|
const BindingKey &K = *I;
|
|
if (const SVal *V = RM.lookup(B, K))
|
|
VisitBinding(*V);
|
|
|
|
B = RM.removeBinding(B, K);
|
|
}
|
|
}
|
|
|
|
void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
|
|
// Symbolic region? Mark that symbol touched by the invalidation.
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
|
|
IS.insert(SR->getSymbol());
|
|
|
|
// BlockDataRegion? If so, invalidate captured variables that are passed
|
|
// by reference.
|
|
if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
|
|
for (BlockDataRegion::referenced_vars_iterator
|
|
BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
|
|
BI != BE; ++BI) {
|
|
const VarRegion *VR = *BI;
|
|
const VarDecl *VD = VR->getDecl();
|
|
if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
|
|
AddToWorkList(VR);
|
|
}
|
|
else if (Loc::isLocType(VR->getValueType())) {
|
|
// Map the current bindings to a Store to retrieve the value
|
|
// of the binding. If that binding itself is a region, we should
|
|
// invalidate that region. This is because a block may capture
|
|
// a pointer value, but the thing pointed by that pointer may
|
|
// get invalidated.
|
|
Store store = B.getRootWithoutRetain();
|
|
SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
|
|
if (const Loc *L = dyn_cast<Loc>(&V)) {
|
|
if (const MemRegion *LR = L->getAsRegion())
|
|
AddToWorkList(LR);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we have a normal data region. Record that we touched the region.
|
|
if (Regions)
|
|
Regions->push_back(baseR);
|
|
|
|
if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
|
|
// Invalidate the region by setting its default value to
|
|
// conjured symbol. The type of the symbol is irrelavant.
|
|
DefinedOrUnknownSVal V =
|
|
svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
|
|
B = RM.addBinding(B, baseR, BindingKey::Default, V);
|
|
return;
|
|
}
|
|
|
|
if (!baseR->isBoundable())
|
|
return;
|
|
|
|
const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
|
|
QualType T = TR->getValueType();
|
|
|
|
// Invalidate the binding.
|
|
if (T->isStructureOrClassType()) {
|
|
// Invalidate the region by setting its default value to
|
|
// conjured symbol. The type of the symbol is irrelavant.
|
|
DefinedOrUnknownSVal V =
|
|
svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
|
|
B = RM.addBinding(B, baseR, BindingKey::Default, V);
|
|
return;
|
|
}
|
|
|
|
if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
|
|
// Set the default value of the array to conjured symbol.
|
|
DefinedOrUnknownSVal V =
|
|
svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
|
|
AT->getElementType(), Count);
|
|
B = RM.addBinding(B, baseR, BindingKey::Default, V);
|
|
return;
|
|
}
|
|
|
|
if (includeGlobals &&
|
|
isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
|
|
// If the region is a global and we are invalidating all globals,
|
|
// just erase the entry. This causes all globals to be lazily
|
|
// symbolicated from the same base symbol.
|
|
B = RM.removeBinding(B, baseR);
|
|
return;
|
|
}
|
|
|
|
|
|
DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
|
|
T,Count);
|
|
assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
|
|
B = RM.addBinding(B, baseR, BindingKey::Direct, V);
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
|
|
const Expr *Ex,
|
|
unsigned Count,
|
|
const LocationContext *LCtx,
|
|
RegionBindings B,
|
|
InvalidatedRegions *Invalidated) {
|
|
// Bind the globals memory space to a new symbol that we will use to derive
|
|
// the bindings for all globals.
|
|
const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
|
|
SVal V =
|
|
svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
|
|
/* symbol type, doesn't matter */ Ctx.IntTy,
|
|
Count);
|
|
|
|
B = removeBinding(B, GS);
|
|
B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
|
|
|
|
// Even if there are no bindings in the global scope, we still need to
|
|
// record that we touched it.
|
|
if (Invalidated)
|
|
Invalidated->push_back(GS);
|
|
|
|
return B;
|
|
}
|
|
|
|
StoreRef RegionStoreManager::invalidateRegions(Store store,
|
|
ArrayRef<const MemRegion *> Regions,
|
|
const Expr *Ex, unsigned Count,
|
|
const LocationContext *LCtx,
|
|
InvalidatedSymbols &IS,
|
|
const CallOrObjCMessage *Call,
|
|
InvalidatedRegions *Invalidated) {
|
|
invalidateRegionsWorker W(*this, StateMgr,
|
|
RegionStoreManager::GetRegionBindings(store),
|
|
Ex, Count, LCtx, IS, Invalidated, false);
|
|
|
|
// Scan the bindings and generate the clusters.
|
|
W.GenerateClusters();
|
|
|
|
// Add the regions to the worklist.
|
|
for (ArrayRef<const MemRegion *>::iterator
|
|
I = Regions.begin(), E = Regions.end(); I != E; ++I)
|
|
W.AddToWorkList(*I);
|
|
|
|
W.RunWorkList();
|
|
|
|
// Return the new bindings.
|
|
RegionBindings B = W.getRegionBindings();
|
|
|
|
// For all globals which are not static nor immutable: determine which global
|
|
// regions should be invalidated and invalidate them.
|
|
// TODO: This could possibly be more precise with modules.
|
|
//
|
|
// System calls invalidate only system globals.
|
|
if (Call && Call->isInSystemHeader()) {
|
|
B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
|
|
Ex, Count, LCtx, B, Invalidated);
|
|
// Internal calls might invalidate both system and internal globals.
|
|
} else {
|
|
B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
|
|
Ex, Count, LCtx, B, Invalidated);
|
|
B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
|
|
Ex, Count, LCtx, B, Invalidated);
|
|
}
|
|
|
|
return StoreRef(B.getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extents for regions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DefinedOrUnknownSVal
|
|
RegionStoreManager::getSizeInElements(ProgramStateRef state,
|
|
const MemRegion *R,
|
|
QualType EleTy) {
|
|
SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
|
|
const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
|
|
if (!SizeInt)
|
|
return UnknownVal();
|
|
|
|
CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
|
|
|
|
if (Ctx.getAsVariableArrayType(EleTy)) {
|
|
// FIXME: We need to track extra state to properly record the size
|
|
// of VLAs. Returning UnknownVal here, however, is a stop-gap so that
|
|
// we don't have a divide-by-zero below.
|
|
return UnknownVal();
|
|
}
|
|
|
|
CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
|
|
|
|
// If a variable is reinterpreted as a type that doesn't fit into a larger
|
|
// type evenly, round it down.
|
|
// This is a signed value, since it's used in arithmetic with signed indices.
|
|
return svalBuilder.makeIntVal(RegionSize / EleSize, false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Location and region casting.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
|
|
/// type. 'Array' represents the lvalue of the array being decayed
|
|
/// to a pointer, and the returned SVal represents the decayed
|
|
/// version of that lvalue (i.e., a pointer to the first element of
|
|
/// the array). This is called by ExprEngine when evaluating casts
|
|
/// from arrays to pointers.
|
|
SVal RegionStoreManager::ArrayToPointer(Loc Array) {
|
|
if (!isa<loc::MemRegionVal>(Array))
|
|
return UnknownVal();
|
|
|
|
const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
|
|
const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
|
|
|
|
if (!ArrayR)
|
|
return UnknownVal();
|
|
|
|
// Strip off typedefs from the ArrayRegion's ValueType.
|
|
QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
|
|
const ArrayType *AT = cast<ArrayType>(T);
|
|
T = AT->getElementType();
|
|
|
|
NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
|
|
}
|
|
|
|
SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
|
|
const CXXRecordDecl *baseDecl;
|
|
if (baseType->isPointerType())
|
|
baseDecl = baseType->getCXXRecordDeclForPointerType();
|
|
else
|
|
baseDecl = baseType->getAsCXXRecordDecl();
|
|
|
|
assert(baseDecl && "not a CXXRecordDecl?");
|
|
|
|
loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
|
|
if (!derivedRegVal)
|
|
return derived;
|
|
|
|
const MemRegion *baseReg =
|
|
MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
|
|
|
|
return loc::MemRegionVal(baseReg);
|
|
}
|
|
|
|
SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
|
|
bool &Failed) {
|
|
Failed = false;
|
|
|
|
loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
|
|
if (!baseRegVal)
|
|
return UnknownVal();
|
|
const MemRegion *BaseRegion = baseRegVal->stripCasts();
|
|
|
|
// Assume the derived class is a pointer or a reference to a CXX record.
|
|
derivedType = derivedType->getPointeeType();
|
|
assert(!derivedType.isNull());
|
|
const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
|
|
if (!DerivedDecl && !derivedType->isVoidType())
|
|
return UnknownVal();
|
|
|
|
// Drill down the CXXBaseObject chains, which represent upcasts (casts from
|
|
// derived to base).
|
|
const MemRegion *SR = BaseRegion;
|
|
while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
|
|
QualType BaseType = TSR->getLocationType()->getPointeeType();
|
|
assert(!BaseType.isNull());
|
|
const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
|
|
if (!SRDecl)
|
|
return UnknownVal();
|
|
|
|
// If found the derived class, the cast succeeds.
|
|
if (SRDecl == DerivedDecl)
|
|
return loc::MemRegionVal(TSR);
|
|
|
|
// If the region type is a subclass of the derived type.
|
|
if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) {
|
|
// This occurs in two cases.
|
|
// 1) We are processing an upcast.
|
|
// 2) We are processing a downcast but we jumped directly from the
|
|
// ancestor to a child of the cast value, so conjure the
|
|
// appropriate region to represent value (the intermediate node).
|
|
return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl,
|
|
BaseRegion));
|
|
}
|
|
|
|
// If super region is not a parent of derived class, the cast definitely
|
|
// fails.
|
|
if (!derivedType->isVoidType() &&
|
|
DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) {
|
|
Failed = true;
|
|
return UnknownVal();
|
|
}
|
|
|
|
if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
|
|
// Drill down the chain to get the derived classes.
|
|
SR = R->getSuperRegion();
|
|
else {
|
|
// We reached the bottom of the hierarchy.
|
|
|
|
// If this is a cast to void*, return the region.
|
|
if (derivedType->isVoidType())
|
|
return loc::MemRegionVal(TSR);
|
|
|
|
// We did not find the derived class. We we must be casting the base to
|
|
// derived, so the cast should fail.
|
|
Failed = true;
|
|
return UnknownVal();
|
|
}
|
|
}
|
|
|
|
return UnknownVal();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loading values from regions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
|
|
const MemRegion *R) {
|
|
|
|
if (const SVal *V = lookup(B, R, BindingKey::Direct))
|
|
return *V;
|
|
|
|
return Optional<SVal>();
|
|
}
|
|
|
|
Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
|
|
const MemRegion *R) {
|
|
if (R->isBoundable())
|
|
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
|
|
if (TR->getValueType()->isUnionType())
|
|
return UnknownVal();
|
|
|
|
if (const SVal *V = lookup(B, R, BindingKey::Default))
|
|
return *V;
|
|
|
|
return Optional<SVal>();
|
|
}
|
|
|
|
SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
|
|
assert(!isa<UnknownVal>(L) && "location unknown");
|
|
assert(!isa<UndefinedVal>(L) && "location undefined");
|
|
|
|
// For access to concrete addresses, return UnknownVal. Checks
|
|
// for null dereferences (and similar errors) are done by checkers, not
|
|
// the Store.
|
|
// FIXME: We can consider lazily symbolicating such memory, but we really
|
|
// should defer this when we can reason easily about symbolicating arrays
|
|
// of bytes.
|
|
if (isa<loc::ConcreteInt>(L)) {
|
|
return UnknownVal();
|
|
}
|
|
if (!isa<loc::MemRegionVal>(L)) {
|
|
return UnknownVal();
|
|
}
|
|
|
|
const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
|
|
|
|
if (isa<AllocaRegion>(MR) ||
|
|
isa<SymbolicRegion>(MR) ||
|
|
isa<CodeTextRegion>(MR)) {
|
|
if (T.isNull()) {
|
|
if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
|
|
T = TR->getLocationType();
|
|
else {
|
|
const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
|
|
T = SR->getSymbol()->getType(Ctx);
|
|
}
|
|
}
|
|
MR = GetElementZeroRegion(MR, T);
|
|
}
|
|
|
|
// FIXME: Perhaps this method should just take a 'const MemRegion*' argument
|
|
// instead of 'Loc', and have the other Loc cases handled at a higher level.
|
|
const TypedValueRegion *R = cast<TypedValueRegion>(MR);
|
|
QualType RTy = R->getValueType();
|
|
|
|
// FIXME: We should eventually handle funny addressing. e.g.:
|
|
//
|
|
// int x = ...;
|
|
// int *p = &x;
|
|
// char *q = (char*) p;
|
|
// char c = *q; // returns the first byte of 'x'.
|
|
//
|
|
// Such funny addressing will occur due to layering of regions.
|
|
|
|
if (RTy->isStructureOrClassType())
|
|
return getBindingForStruct(store, R);
|
|
|
|
// FIXME: Handle unions.
|
|
if (RTy->isUnionType())
|
|
return UnknownVal();
|
|
|
|
if (RTy->isArrayType()) {
|
|
if (RTy->isConstantArrayType())
|
|
return getBindingForArray(store, R);
|
|
else
|
|
return UnknownVal();
|
|
}
|
|
|
|
// FIXME: handle Vector types.
|
|
if (RTy->isVectorType())
|
|
return UnknownVal();
|
|
|
|
if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
|
|
return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
|
|
|
|
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
|
|
// FIXME: Here we actually perform an implicit conversion from the loaded
|
|
// value to the element type. Eventually we want to compose these values
|
|
// more intelligently. For example, an 'element' can encompass multiple
|
|
// bound regions (e.g., several bound bytes), or could be a subset of
|
|
// a larger value.
|
|
return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
|
|
}
|
|
|
|
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
|
|
// FIXME: Here we actually perform an implicit conversion from the loaded
|
|
// value to the ivar type. What we should model is stores to ivars
|
|
// that blow past the extent of the ivar. If the address of the ivar is
|
|
// reinterpretted, it is possible we stored a different value that could
|
|
// fit within the ivar. Either we need to cast these when storing them
|
|
// or reinterpret them lazily (as we do here).
|
|
return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
|
|
}
|
|
|
|
if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
|
|
// FIXME: Here we actually perform an implicit conversion from the loaded
|
|
// value to the variable type. What we should model is stores to variables
|
|
// that blow past the extent of the variable. If the address of the
|
|
// variable is reinterpretted, it is possible we stored a different value
|
|
// that could fit within the variable. Either we need to cast these when
|
|
// storing them or reinterpret them lazily (as we do here).
|
|
return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
|
|
}
|
|
|
|
RegionBindings B = GetRegionBindings(store);
|
|
const SVal *V = lookup(B, R, BindingKey::Direct);
|
|
|
|
// Check if the region has a binding.
|
|
if (V)
|
|
return *V;
|
|
|
|
// The location does not have a bound value. This means that it has
|
|
// the value it had upon its creation and/or entry to the analyzed
|
|
// function/method. These are either symbolic values or 'undefined'.
|
|
if (R->hasStackNonParametersStorage()) {
|
|
// All stack variables are considered to have undefined values
|
|
// upon creation. All heap allocated blocks are considered to
|
|
// have undefined values as well unless they are explicitly bound
|
|
// to specific values.
|
|
return UndefinedVal();
|
|
}
|
|
|
|
// All other values are symbolic.
|
|
return svalBuilder.getRegionValueSymbolVal(R);
|
|
}
|
|
|
|
std::pair<Store, const MemRegion *>
|
|
RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
|
|
const MemRegion *originalRegion,
|
|
bool includeSuffix) {
|
|
|
|
if (originalRegion != R) {
|
|
if (Optional<SVal> OV = getDefaultBinding(B, R)) {
|
|
if (const nonloc::LazyCompoundVal *V =
|
|
dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
|
|
return std::make_pair(V->getStore(), V->getRegion());
|
|
}
|
|
}
|
|
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
|
|
const std::pair<Store, const MemRegion *> &X =
|
|
GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
|
|
|
|
if (X.second)
|
|
return std::make_pair(X.first,
|
|
MRMgr.getElementRegionWithSuper(ER, X.second));
|
|
}
|
|
else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
|
|
const std::pair<Store, const MemRegion *> &X =
|
|
GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
|
|
|
|
if (X.second) {
|
|
if (includeSuffix)
|
|
return std::make_pair(X.first,
|
|
MRMgr.getFieldRegionWithSuper(FR, X.second));
|
|
return X;
|
|
}
|
|
|
|
}
|
|
// C++ base object region is another kind of region that we should blast
|
|
// through to look for lazy compound value. It is like a field region.
|
|
else if (const CXXBaseObjectRegion *baseReg =
|
|
dyn_cast<CXXBaseObjectRegion>(R)) {
|
|
const std::pair<Store, const MemRegion *> &X =
|
|
GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
|
|
|
|
if (X.second) {
|
|
if (includeSuffix)
|
|
return std::make_pair(X.first,
|
|
MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
|
|
X.second));
|
|
return X;
|
|
}
|
|
}
|
|
|
|
// The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
|
|
// possible for a valid lazy binding.
|
|
return std::make_pair((Store) 0, (const MemRegion *) 0);
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForElement(Store store,
|
|
const ElementRegion* R) {
|
|
// We do not currently model bindings of the CompoundLiteralregion.
|
|
if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
|
|
return UnknownVal();
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
if (const Optional<SVal> &V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
const MemRegion* superR = R->getSuperRegion();
|
|
|
|
// Check if the region is an element region of a string literal.
|
|
if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
|
|
// FIXME: Handle loads from strings where the literal is treated as
|
|
// an integer, e.g., *((unsigned int*)"hello")
|
|
QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
|
|
if (T != Ctx.getCanonicalType(R->getElementType()))
|
|
return UnknownVal();
|
|
|
|
const StringLiteral *Str = StrR->getStringLiteral();
|
|
SVal Idx = R->getIndex();
|
|
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
|
|
int64_t i = CI->getValue().getSExtValue();
|
|
// Abort on string underrun. This can be possible by arbitrary
|
|
// clients of getBindingForElement().
|
|
if (i < 0)
|
|
return UndefinedVal();
|
|
int64_t length = Str->getLength();
|
|
// Technically, only i == length is guaranteed to be null.
|
|
// However, such overflows should be caught before reaching this point;
|
|
// the only time such an access would be made is if a string literal was
|
|
// used to initialize a larger array.
|
|
char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
|
|
return svalBuilder.makeIntVal(c, T);
|
|
}
|
|
}
|
|
|
|
// Check for loads from a code text region. For such loads, just give up.
|
|
if (isa<CodeTextRegion>(superR))
|
|
return UnknownVal();
|
|
|
|
// Handle the case where we are indexing into a larger scalar object.
|
|
// For example, this handles:
|
|
// int x = ...
|
|
// char *y = &x;
|
|
// return *y;
|
|
// FIXME: This is a hack, and doesn't do anything really intelligent yet.
|
|
const RegionRawOffset &O = R->getAsArrayOffset();
|
|
|
|
// If we cannot reason about the offset, return an unknown value.
|
|
if (!O.getRegion())
|
|
return UnknownVal();
|
|
|
|
if (const TypedValueRegion *baseR =
|
|
dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
|
|
QualType baseT = baseR->getValueType();
|
|
if (baseT->isScalarType()) {
|
|
QualType elemT = R->getElementType();
|
|
if (elemT->isScalarType()) {
|
|
if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
|
|
if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
|
|
if (SymbolRef parentSym = V->getAsSymbol())
|
|
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
|
|
|
|
if (V->isUnknownOrUndef())
|
|
return *V;
|
|
// Other cases: give up. We are indexing into a larger object
|
|
// that has some value, but we don't know how to handle that yet.
|
|
return UnknownVal();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
|
|
superR);
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForField(Store store,
|
|
const FieldRegion* R) {
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
if (const Optional<SVal> &V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
QualType Ty = R->getValueType();
|
|
return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
|
|
}
|
|
|
|
Optional<SVal>
|
|
RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
|
|
const MemRegion *superR,
|
|
const TypedValueRegion *R,
|
|
QualType Ty) {
|
|
|
|
if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
|
|
const SVal &val = D.getValue();
|
|
if (SymbolRef parentSym = val.getAsSymbol())
|
|
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
|
|
|
|
if (val.isZeroConstant())
|
|
return svalBuilder.makeZeroVal(Ty);
|
|
|
|
if (val.isUnknownOrUndef())
|
|
return val;
|
|
|
|
// Lazy bindings are handled later.
|
|
if (isa<nonloc::LazyCompoundVal>(val))
|
|
return Optional<SVal>();
|
|
|
|
llvm_unreachable("Unknown default value");
|
|
}
|
|
|
|
return Optional<SVal>();
|
|
}
|
|
|
|
SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
|
|
Store lazyBindingStore) {
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
|
|
return getBindingForElement(lazyBindingStore, ER);
|
|
|
|
return getBindingForField(lazyBindingStore,
|
|
cast<FieldRegion>(lazyBindingRegion));
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
|
|
const TypedValueRegion *R,
|
|
QualType Ty,
|
|
const MemRegion *superR) {
|
|
|
|
// At this point we have already checked in either getBindingForElement or
|
|
// getBindingForField if 'R' has a direct binding.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
|
|
// Lazy binding?
|
|
Store lazyBindingStore = NULL;
|
|
const MemRegion *lazyBindingRegion = NULL;
|
|
llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
|
|
true);
|
|
|
|
if (lazyBindingRegion)
|
|
return getLazyBinding(lazyBindingRegion, lazyBindingStore);
|
|
|
|
// Record whether or not we see a symbolic index. That can completely
|
|
// be out of scope of our lookup.
|
|
bool hasSymbolicIndex = false;
|
|
|
|
while (superR) {
|
|
if (const Optional<SVal> &D =
|
|
getBindingForDerivedDefaultValue(B, superR, R, Ty))
|
|
return *D;
|
|
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
|
|
NonLoc index = ER->getIndex();
|
|
if (!index.isConstant())
|
|
hasSymbolicIndex = true;
|
|
}
|
|
|
|
// If our super region is a field or element itself, walk up the region
|
|
// hierarchy to see if there is a default value installed in an ancestor.
|
|
if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
|
|
superR = SR->getSuperRegion();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (R->hasStackNonParametersStorage()) {
|
|
if (isa<ElementRegion>(R)) {
|
|
// Currently we don't reason specially about Clang-style vectors. Check
|
|
// if superR is a vector and if so return Unknown.
|
|
if (const TypedValueRegion *typedSuperR =
|
|
dyn_cast<TypedValueRegion>(superR)) {
|
|
if (typedSuperR->getValueType()->isVectorType())
|
|
return UnknownVal();
|
|
}
|
|
}
|
|
|
|
// FIXME: We also need to take ElementRegions with symbolic indexes into
|
|
// account. This case handles both directly accessing an ElementRegion
|
|
// with a symbolic offset, but also fields within an element with
|
|
// a symbolic offset.
|
|
if (hasSymbolicIndex)
|
|
return UnknownVal();
|
|
|
|
return UndefinedVal();
|
|
}
|
|
|
|
// All other values are symbolic.
|
|
return svalBuilder.getRegionValueSymbolVal(R);
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForObjCIvar(Store store,
|
|
const ObjCIvarRegion* R) {
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
|
|
if (const Optional<SVal> &V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
const MemRegion *superR = R->getSuperRegion();
|
|
|
|
// Check if the super region has a default binding.
|
|
if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
|
|
if (SymbolRef parentSym = V->getAsSymbol())
|
|
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
|
|
|
|
// Other cases: give up.
|
|
return UnknownVal();
|
|
}
|
|
|
|
return getBindingForLazySymbol(R);
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
|
|
if (const Optional<SVal> &V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
// Lazily derive a value for the VarRegion.
|
|
const VarDecl *VD = R->getDecl();
|
|
QualType T = VD->getType();
|
|
const MemSpaceRegion *MS = R->getMemorySpace();
|
|
|
|
if (isa<UnknownSpaceRegion>(MS) ||
|
|
isa<StackArgumentsSpaceRegion>(MS))
|
|
return svalBuilder.getRegionValueSymbolVal(R);
|
|
|
|
if (isa<GlobalsSpaceRegion>(MS)) {
|
|
if (isa<NonStaticGlobalSpaceRegion>(MS)) {
|
|
// Is 'VD' declared constant? If so, retrieve the constant value.
|
|
QualType CT = Ctx.getCanonicalType(T);
|
|
if (CT.isConstQualified()) {
|
|
const Expr *Init = VD->getInit();
|
|
// Do the null check first, as we want to call 'IgnoreParenCasts'.
|
|
if (Init)
|
|
if (const IntegerLiteral *IL =
|
|
dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
|
|
const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
|
|
return svalBuilder.evalCast(V, Init->getType(), IL->getType());
|
|
}
|
|
}
|
|
|
|
if (const Optional<SVal> &V
|
|
= getBindingForDerivedDefaultValue(B, MS, R, CT))
|
|
return V.getValue();
|
|
|
|
return svalBuilder.getRegionValueSymbolVal(R);
|
|
}
|
|
|
|
if (T->isIntegerType())
|
|
return svalBuilder.makeIntVal(0, T);
|
|
if (T->isPointerType())
|
|
return svalBuilder.makeNull();
|
|
|
|
return UnknownVal();
|
|
}
|
|
|
|
return UndefinedVal();
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
|
|
// All other values are symbolic.
|
|
return svalBuilder.getRegionValueSymbolVal(R);
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForStruct(Store store,
|
|
const TypedValueRegion* R) {
|
|
assert(R->getValueType()->isStructureOrClassType());
|
|
|
|
// If we already have a lazy binding, don't create a new one.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
BindingKey K = BindingKey::Make(R, BindingKey::Default);
|
|
if (const nonloc::LazyCompoundVal *V =
|
|
dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
|
|
return *V;
|
|
}
|
|
|
|
return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
|
|
}
|
|
|
|
SVal RegionStoreManager::getBindingForArray(Store store,
|
|
const TypedValueRegion * R) {
|
|
assert(Ctx.getAsConstantArrayType(R->getValueType()));
|
|
|
|
// If we already have a lazy binding, don't create a new one.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
BindingKey K = BindingKey::Make(R, BindingKey::Default);
|
|
if (const nonloc::LazyCompoundVal *V =
|
|
dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
|
|
return *V;
|
|
}
|
|
|
|
return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
|
|
}
|
|
|
|
bool RegionStoreManager::includedInBindings(Store store,
|
|
const MemRegion *region) const {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
region = region->getBaseRegion();
|
|
|
|
for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
|
|
const BindingKey &K = it.getKey();
|
|
if (region == K.getRegion())
|
|
return true;
|
|
const SVal &D = it.getData();
|
|
if (const MemRegion *r = D.getAsRegion())
|
|
if (r == region)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binding values to regions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StoreRef RegionStoreManager::Remove(Store store, Loc L) {
|
|
if (isa<loc::MemRegionVal>(L))
|
|
if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
|
|
return StoreRef(removeBinding(GetRegionBindings(store),
|
|
R).getRootWithoutRetain(),
|
|
*this);
|
|
|
|
return StoreRef(store, *this);
|
|
}
|
|
|
|
StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
|
|
if (isa<loc::ConcreteInt>(L))
|
|
return StoreRef(store, *this);
|
|
|
|
// If we get here, the location should be a region.
|
|
const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
|
|
|
|
// Check if the region is a struct region.
|
|
if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
|
|
QualType Ty = TR->getValueType();
|
|
if (Ty->isStructureOrClassType())
|
|
return BindStruct(store, TR, V);
|
|
if (Ty->isVectorType())
|
|
return BindVector(store, TR, V);
|
|
}
|
|
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
|
|
if (ER->getIndex().isZeroConstant()) {
|
|
if (const TypedValueRegion *superR =
|
|
dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
|
|
QualType superTy = superR->getValueType();
|
|
// For now, just invalidate the fields of the struct/union/class.
|
|
// This is for test rdar_test_7185607 in misc-ps-region-store.m.
|
|
// FIXME: Precisely handle the fields of the record.
|
|
if (superTy->isStructureOrClassType())
|
|
return KillStruct(store, superR, UnknownVal());
|
|
}
|
|
}
|
|
}
|
|
else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
|
|
// Binding directly to a symbolic region should be treated as binding
|
|
// to element 0.
|
|
QualType T = SR->getSymbol()->getType(Ctx);
|
|
|
|
// FIXME: Is this the right way to handle symbols that are references?
|
|
if (const PointerType *PT = T->getAs<PointerType>())
|
|
T = PT->getPointeeType();
|
|
else
|
|
T = T->getAs<ReferenceType>()->getPointeeType();
|
|
|
|
R = GetElementZeroRegion(SR, T);
|
|
}
|
|
|
|
// Perform the binding.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
return StoreRef(addBinding(B, R, BindingKey::Direct,
|
|
V).getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
|
|
SVal InitVal) {
|
|
|
|
QualType T = VR->getDecl()->getType();
|
|
|
|
if (T->isArrayType())
|
|
return BindArray(store, VR, InitVal);
|
|
if (T->isStructureOrClassType())
|
|
return BindStruct(store, VR, InitVal);
|
|
|
|
return Bind(store, svalBuilder.makeLoc(VR), InitVal);
|
|
}
|
|
|
|
// FIXME: this method should be merged into Bind().
|
|
StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
|
|
const CompoundLiteralExpr *CL,
|
|
const LocationContext *LC,
|
|
SVal V) {
|
|
return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
|
|
V);
|
|
}
|
|
|
|
StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
|
|
const MemRegion *R,
|
|
QualType T) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
SVal V;
|
|
|
|
if (Loc::isLocType(T))
|
|
V = svalBuilder.makeNull();
|
|
else if (T->isIntegerType())
|
|
V = svalBuilder.makeZeroVal(T);
|
|
else if (T->isStructureOrClassType() || T->isArrayType()) {
|
|
// Set the default value to a zero constant when it is a structure
|
|
// or array. The type doesn't really matter.
|
|
V = svalBuilder.makeZeroVal(Ctx.IntTy);
|
|
}
|
|
else {
|
|
// We can't represent values of this type, but we still need to set a value
|
|
// to record that the region has been initialized.
|
|
// If this assertion ever fires, a new case should be added above -- we
|
|
// should know how to default-initialize any value we can symbolicate.
|
|
assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
|
|
V = UnknownVal();
|
|
}
|
|
|
|
return StoreRef(addBinding(B, R, BindingKey::Default,
|
|
V).getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
|
|
SVal Init) {
|
|
|
|
const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
|
|
QualType ElementTy = AT->getElementType();
|
|
Optional<uint64_t> Size;
|
|
|
|
if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
|
|
Size = CAT->getSize().getZExtValue();
|
|
|
|
// Check if the init expr is a string literal.
|
|
if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
|
|
const StringRegion *S = cast<StringRegion>(MRV->getRegion());
|
|
|
|
// Treat the string as a lazy compound value.
|
|
nonloc::LazyCompoundVal LCV =
|
|
cast<nonloc::LazyCompoundVal>(svalBuilder.
|
|
makeLazyCompoundVal(StoreRef(store, *this), S));
|
|
return CopyLazyBindings(LCV, store, R);
|
|
}
|
|
|
|
// Handle lazy compound values.
|
|
if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
|
|
return CopyLazyBindings(*LCV, store, R);
|
|
|
|
// Remaining case: explicit compound values.
|
|
|
|
if (Init.isUnknown())
|
|
return setImplicitDefaultValue(store, R, ElementTy);
|
|
|
|
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
|
|
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
|
|
uint64_t i = 0;
|
|
|
|
StoreRef newStore(store, *this);
|
|
for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
|
|
// The init list might be shorter than the array length.
|
|
if (VI == VE)
|
|
break;
|
|
|
|
const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
|
|
const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
|
|
|
|
if (ElementTy->isStructureOrClassType())
|
|
newStore = BindStruct(newStore.getStore(), ER, *VI);
|
|
else if (ElementTy->isArrayType())
|
|
newStore = BindArray(newStore.getStore(), ER, *VI);
|
|
else
|
|
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
|
|
}
|
|
|
|
// If the init list is shorter than the array length, set the
|
|
// array default value.
|
|
if (Size.hasValue() && i < Size.getValue())
|
|
newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
|
|
|
|
return newStore;
|
|
}
|
|
|
|
StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
|
|
SVal V) {
|
|
QualType T = R->getValueType();
|
|
assert(T->isVectorType());
|
|
const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
|
|
|
|
// Handle lazy compound values.
|
|
if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&V))
|
|
return CopyLazyBindings(*LCV, store, R);
|
|
|
|
// We may get non-CompoundVal accidentally due to imprecise cast logic or
|
|
// that we are binding symbolic struct value. Kill the field values, and if
|
|
// the value is symbolic go and bind it as a "default" binding.
|
|
if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
|
|
SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
|
|
return KillStruct(store, R, SV);
|
|
}
|
|
|
|
QualType ElemType = VT->getElementType();
|
|
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
|
|
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
|
|
unsigned index = 0, numElements = VT->getNumElements();
|
|
StoreRef newStore(store, *this);
|
|
|
|
for ( ; index != numElements ; ++index) {
|
|
if (VI == VE)
|
|
break;
|
|
|
|
NonLoc Idx = svalBuilder.makeArrayIndex(index);
|
|
const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
|
|
|
|
if (ElemType->isArrayType())
|
|
newStore = BindArray(newStore.getStore(), ER, *VI);
|
|
else if (ElemType->isStructureOrClassType())
|
|
newStore = BindStruct(newStore.getStore(), ER, *VI);
|
|
else
|
|
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
|
|
}
|
|
return newStore;
|
|
}
|
|
|
|
StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
|
|
SVal V) {
|
|
|
|
if (!Features.supportsFields())
|
|
return StoreRef(store, *this);
|
|
|
|
QualType T = R->getValueType();
|
|
assert(T->isStructureOrClassType());
|
|
|
|
const RecordType* RT = T->getAs<RecordType>();
|
|
RecordDecl *RD = RT->getDecl();
|
|
|
|
if (!RD->isCompleteDefinition())
|
|
return StoreRef(store, *this);
|
|
|
|
// Handle lazy compound values.
|
|
if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
|
|
return CopyLazyBindings(*LCV, store, R);
|
|
|
|
// We may get non-CompoundVal accidentally due to imprecise cast logic or
|
|
// that we are binding symbolic struct value. Kill the field values, and if
|
|
// the value is symbolic go and bind it as a "default" binding.
|
|
if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
|
|
SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
|
|
return KillStruct(store, R, SV);
|
|
}
|
|
|
|
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
|
|
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
|
|
|
|
RecordDecl::field_iterator FI, FE;
|
|
StoreRef newStore(store, *this);
|
|
|
|
for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
|
|
|
|
if (VI == VE)
|
|
break;
|
|
|
|
// Skip any unnamed bitfields to stay in sync with the initializers.
|
|
if (FI->isUnnamedBitfield())
|
|
continue;
|
|
|
|
QualType FTy = FI->getType();
|
|
const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
|
|
|
|
if (FTy->isArrayType())
|
|
newStore = BindArray(newStore.getStore(), FR, *VI);
|
|
else if (FTy->isStructureOrClassType())
|
|
newStore = BindStruct(newStore.getStore(), FR, *VI);
|
|
else
|
|
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
|
|
++VI;
|
|
}
|
|
|
|
// There may be fewer values in the initialize list than the fields of struct.
|
|
if (FI != FE) {
|
|
RegionBindings B = GetRegionBindings(newStore.getStore());
|
|
B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
|
|
newStore = StoreRef(B.getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
return newStore;
|
|
}
|
|
|
|
StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
|
|
SVal DefaultVal) {
|
|
BindingKey key = BindingKey::Make(R, BindingKey::Default);
|
|
|
|
// The BindingKey may be "invalid" if we cannot handle the region binding
|
|
// explicitly. One example is something like array[index], where index
|
|
// is a symbolic value. In such cases, we want to invalidate the entire
|
|
// array, as the index assignment could have been to any element. In
|
|
// the case of nested symbolic indices, we need to march up the region
|
|
// hierarchy untile we reach a region whose binding we can reason about.
|
|
const SubRegion *subReg = R;
|
|
|
|
while (!key.isValid()) {
|
|
if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
|
|
subReg = tmp;
|
|
key = BindingKey::Make(tmp, BindingKey::Default);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
// Remove the old bindings, using 'subReg' as the root of all regions
|
|
// we will invalidate.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
OwningPtr<RegionStoreSubRegionMap>
|
|
SubRegions(getRegionStoreSubRegionMap(store));
|
|
RemoveSubRegionBindings(B, subReg, *SubRegions);
|
|
|
|
// Set the default value of the struct region to "unknown".
|
|
if (!key.isValid())
|
|
return StoreRef(B.getRootWithoutRetain(), *this);
|
|
|
|
return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
|
|
Store store,
|
|
const TypedRegion *R) {
|
|
|
|
// Nuke the old bindings stemming from R.
|
|
RegionBindings B = GetRegionBindings(store);
|
|
|
|
OwningPtr<RegionStoreSubRegionMap>
|
|
SubRegions(getRegionStoreSubRegionMap(store));
|
|
|
|
// B and DVM are updated after the call to RemoveSubRegionBindings.
|
|
RemoveSubRegionBindings(B, R, *SubRegions.get());
|
|
|
|
// Now copy the bindings. This amounts to just binding 'V' to 'R'. This
|
|
// results in a zero-copy algorithm.
|
|
return StoreRef(addBinding(B, R, BindingKey::Default,
|
|
V).getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Raw" retrievals and bindings.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
|
|
SVal V) {
|
|
if (!K.isValid())
|
|
return B;
|
|
return RBFactory.add(B, K, V);
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::addBinding(RegionBindings B,
|
|
const MemRegion *R,
|
|
BindingKey::Kind k, SVal V) {
|
|
return addBinding(B, BindingKey::Make(R, k), V);
|
|
}
|
|
|
|
const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
|
|
if (!K.isValid())
|
|
return NULL;
|
|
return B.lookup(K);
|
|
}
|
|
|
|
const SVal *RegionStoreManager::lookup(RegionBindings B,
|
|
const MemRegion *R,
|
|
BindingKey::Kind k) {
|
|
return lookup(B, BindingKey::Make(R, k));
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
|
|
BindingKey K) {
|
|
if (!K.isValid())
|
|
return B;
|
|
return RBFactory.remove(B, K);
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
|
|
const MemRegion *R,
|
|
BindingKey::Kind k){
|
|
return removeBinding(B, BindingKey::Make(R, k));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State pruning.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class removeDeadBindingsWorker :
|
|
public ClusterAnalysis<removeDeadBindingsWorker> {
|
|
SmallVector<const SymbolicRegion*, 12> Postponed;
|
|
SymbolReaper &SymReaper;
|
|
const StackFrameContext *CurrentLCtx;
|
|
|
|
public:
|
|
removeDeadBindingsWorker(RegionStoreManager &rm,
|
|
ProgramStateManager &stateMgr,
|
|
RegionBindings b, SymbolReaper &symReaper,
|
|
const StackFrameContext *LCtx)
|
|
: ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
|
|
/* includeGlobals = */ false),
|
|
SymReaper(symReaper), CurrentLCtx(LCtx) {}
|
|
|
|
// Called by ClusterAnalysis.
|
|
void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
|
|
void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
|
|
|
|
void VisitBindingKey(BindingKey K);
|
|
bool UpdatePostponed();
|
|
void VisitBinding(SVal V);
|
|
};
|
|
}
|
|
|
|
void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
|
|
RegionCluster &C) {
|
|
|
|
if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
|
|
if (SymReaper.isLive(VR))
|
|
AddToWorkList(baseR, C);
|
|
|
|
return;
|
|
}
|
|
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
|
|
if (SymReaper.isLive(SR->getSymbol()))
|
|
AddToWorkList(SR, C);
|
|
else
|
|
Postponed.push_back(SR);
|
|
|
|
return;
|
|
}
|
|
|
|
if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
|
|
AddToWorkList(baseR, C);
|
|
return;
|
|
}
|
|
|
|
// CXXThisRegion in the current or parent location context is live.
|
|
if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
|
|
const StackArgumentsSpaceRegion *StackReg =
|
|
cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
|
|
const StackFrameContext *RegCtx = StackReg->getStackFrame();
|
|
if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
|
|
AddToWorkList(TR, C);
|
|
}
|
|
}
|
|
|
|
void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
|
|
BindingKey *I, BindingKey *E) {
|
|
for ( ; I != E; ++I)
|
|
VisitBindingKey(*I);
|
|
}
|
|
|
|
void removeDeadBindingsWorker::VisitBinding(SVal V) {
|
|
// Is it a LazyCompoundVal? All referenced regions are live as well.
|
|
if (const nonloc::LazyCompoundVal *LCS =
|
|
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
|
|
|
|
const MemRegion *LazyR = LCS->getRegion();
|
|
RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
|
|
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
|
|
const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
|
|
if (baseR && baseR->isSubRegionOf(LazyR))
|
|
VisitBinding(RI.getData());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If V is a region, then add it to the worklist.
|
|
if (const MemRegion *R = V.getAsRegion()) {
|
|
AddToWorkList(R);
|
|
|
|
// All regions captured by a block are also live.
|
|
if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
|
|
BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
|
|
E = BR->referenced_vars_end();
|
|
for ( ; I != E; ++I)
|
|
AddToWorkList(I.getCapturedRegion());
|
|
}
|
|
}
|
|
|
|
|
|
// Update the set of live symbols.
|
|
for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
|
|
SI!=SE; ++SI)
|
|
SymReaper.markLive(*SI);
|
|
}
|
|
|
|
void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
|
|
const MemRegion *R = K.getRegion();
|
|
|
|
// Mark this region "live" by adding it to the worklist. This will cause
|
|
// use to visit all regions in the cluster (if we haven't visited them
|
|
// already).
|
|
if (AddToWorkList(R)) {
|
|
// Mark the symbol for any live SymbolicRegion as "live". This means we
|
|
// should continue to track that symbol.
|
|
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
|
|
SymReaper.markLive(SymR->getSymbol());
|
|
}
|
|
|
|
// Visit the data binding for K.
|
|
if (const SVal *V = RM.lookup(B, K))
|
|
VisitBinding(*V);
|
|
}
|
|
|
|
bool removeDeadBindingsWorker::UpdatePostponed() {
|
|
// See if any postponed SymbolicRegions are actually live now, after
|
|
// having done a scan.
|
|
bool changed = false;
|
|
|
|
for (SmallVectorImpl<const SymbolicRegion*>::iterator
|
|
I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
|
|
if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
|
|
if (SymReaper.isLive(SR->getSymbol())) {
|
|
changed |= AddToWorkList(SR);
|
|
*I = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
StoreRef RegionStoreManager::removeDeadBindings(Store store,
|
|
const StackFrameContext *LCtx,
|
|
SymbolReaper& SymReaper) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
|
|
W.GenerateClusters();
|
|
|
|
// Enqueue the region roots onto the worklist.
|
|
for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
|
|
E = SymReaper.region_end(); I != E; ++I) {
|
|
W.AddToWorkList(*I);
|
|
}
|
|
|
|
do W.RunWorkList(); while (W.UpdatePostponed());
|
|
|
|
// We have now scanned the store, marking reachable regions and symbols
|
|
// as live. We now remove all the regions that are dead from the store
|
|
// as well as update DSymbols with the set symbols that are now dead.
|
|
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
const BindingKey &K = I.getKey();
|
|
|
|
// If the cluster has been visited, we know the region has been marked.
|
|
if (W.isVisited(K.getRegion()))
|
|
continue;
|
|
|
|
// Remove the dead entry.
|
|
B = removeBinding(B, K);
|
|
|
|
// Mark all non-live symbols that this binding references as dead.
|
|
if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
|
|
SymReaper.maybeDead(SymR->getSymbol());
|
|
|
|
SVal X = I.getData();
|
|
SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
|
|
for (; SI != SE; ++SI)
|
|
SymReaper.maybeDead(*SI);
|
|
}
|
|
|
|
return StoreRef(B.getRootWithoutRetain(), *this);
|
|
}
|
|
|
|
StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
|
|
const LocationContext *callerCtx,
|
|
const StackFrameContext *calleeCtx)
|
|
{
|
|
const Decl *D = calleeCtx->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
return enterStackFrame(state, FD, callerCtx, calleeCtx);
|
|
|
|
// FIXME: when we handle more cases, this will need to be expanded.
|
|
|
|
const BlockDecl *BD = cast<BlockDecl>(D);
|
|
BlockDecl::param_const_iterator PI = BD->param_begin(),
|
|
PE = BD->param_end();
|
|
StoreRef store = StoreRef(state->getStore(), *this);
|
|
const CallExpr *CE = cast<CallExpr>(calleeCtx->getCallSite());
|
|
CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
|
|
for (; AI != AE && PI != PE; ++AI, ++PI) {
|
|
SVal ArgVal = state->getSVal(*AI, callerCtx);
|
|
store = Bind(store.getStore(),
|
|
svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
|
|
ArgVal);
|
|
}
|
|
|
|
return store;
|
|
}
|
|
|
|
StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
|
|
const FunctionDecl *FD,
|
|
const LocationContext *callerCtx,
|
|
const StackFrameContext *calleeCtx)
|
|
{
|
|
FunctionDecl::param_const_iterator PI = FD->param_begin(),
|
|
PE = FD->param_end();
|
|
StoreRef store = StoreRef(state->getStore(), *this);
|
|
|
|
if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) {
|
|
CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
|
|
|
|
// Copy the arg expression value to the arg variables. We check that
|
|
// PI != PE because the actual number of arguments may be different than
|
|
// the function declaration.
|
|
for (; AI != AE && PI != PE; ++AI, ++PI) {
|
|
SVal ArgVal = state->getSVal(*AI, callerCtx);
|
|
store = Bind(store.getStore(),
|
|
svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
|
|
ArgVal);
|
|
}
|
|
|
|
// For C++ method calls, also include the 'this' pointer.
|
|
if (const CXXMemberCallExpr *CME = dyn_cast<CXXMemberCallExpr>(CE)) {
|
|
loc::MemRegionVal This =
|
|
svalBuilder.getCXXThis(cast<CXXMethodDecl>(CME->getCalleeDecl()),
|
|
calleeCtx);
|
|
SVal CalledObj = state->getSVal(CME->getImplicitObjectArgument(),
|
|
callerCtx);
|
|
store = Bind(store.getStore(), This, CalledObj);
|
|
}
|
|
}
|
|
else if (const CXXConstructExpr *CE =
|
|
dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) {
|
|
CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
|
|
AE = CE->arg_end();
|
|
|
|
// Copy the arg expression value to the arg variables.
|
|
for (; AI != AE; ++AI, ++PI) {
|
|
SVal ArgVal = state->getSVal(*AI, callerCtx);
|
|
store = Bind(store.getStore(),
|
|
svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
|
|
ArgVal);
|
|
}
|
|
}
|
|
else {
|
|
assert(isa<CXXDestructorDecl>(calleeCtx->getDecl()));
|
|
}
|
|
|
|
return store;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RegionStoreManager::print(Store store, raw_ostream &OS,
|
|
const char* nl, const char *sep) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
OS << "Store (direct and default bindings), "
|
|
<< (void*) B.getRootWithoutRetain()
|
|
<< " :" << nl;
|
|
|
|
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
|
|
OS << ' ' << I.getKey() << " : " << I.getData() << nl;
|
|
}
|